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Abstract

Topology optimization is applied here to discuss an optimization problem of fatigue resistance. Fatigue lifetime is maximized by
optimizing the shape of a structure in cyclic plasticity combined with Lemaitre damage law. The topology optimization algorithm
is detailed. A 3D numerical example is given. To cite this article: B. Desmorat, R. Desmorat, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Optimisation topologique en fatigue oligo-cyclique. L’optimisation topologique est utilisée pour traiter un problème d’opti-
misation de résistance en fatigue. La durée de vie en fatigue est maximisée en optimisant la forme d’une structure en plasticité
cyclique combinée à la loi d’endommagement de Lemaitre. L’algorithme d’optimisation est détaillé. Un exemple numérique 3D
est présenté. Pour citer cet article : B. Desmorat, R. Desmorat, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Topology optimization is often restricted to elastic behavior and monotonic loading. Classical algorithms are now
efficient to handle the complex 3D cases [1]. In order to maximize the global rigidity of an elastic structure, one
possible formulation is the minimization of the complementary elastic energy at both the local and global scales
(alternate directions algorithm [2]). The local minimization is an important feature to keep in fatigue as, if a damage
law with an energetic basis is used, it can lead to the minimization of local plasticity and damage. Ensuring this local
minimization over a cycle in fatigue leads to the maximization of the lifetime. These reasons make us consider and
extend the algorithm of alternate directions to low cycle fatigue in three steps: define a cyclic elasto-plasticity law that
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derives from a state potential, relate this potential to fatigue life and define a fatigue life maximization problem (on
which a generalized alternate directions algorithm is used). The design problem is then stated as follows: determine
the lightest structure that can achieve a given lifetime.

2. Cyclic elasto-plasticity law

Let us consider an isotropic and homogeneous material in the framework of generalized standard materials under
the assumption of small strains and displacements. The behavior is elasto-plastic with linear kinematic hardening, so
that the initial set of constitutive equations may be integrated in cyclic plasticity where the assumptions of proportional
loading and of a symmetric stabilized cycle have been made (see for instance [3]).

The stress amplitude Δσ and the total strain amplitude Δε are then related by the nonlinear relation Δε = ∂ψcyclic

∂Δσ

with

ψcyclic(Δσ) = 1
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are the elasticity parameters, C is the plastic modulus and (.)D denotes the deviatoric part of a tensor.
The stress-strain cyclic law reads:

Δεij = 1 + ν
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Δσij − ν

E
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This cyclic elasto-plasticity law can be interpreted as a nonlinear elasticity law relating the amplitude of stress Δσ

(during one cycle) to the amplitude of total strain Δε. In the following sections, we will use the notation ψcyclic(Δσ) =
ψ

cyclic
e (Δσ) + ψ

cyclic
p (Δσ) with (e and p standing for elastic and plastic contributions):

ψ
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e (Δσ) = Δσ 2

eqRν

2E
, ψ

cyclic
p (Δσ) = 〈Δσeq − 2σY 〉2+

2C
(3)

3. Damage governed low cycle fatigue

Damage is next classically described by the state variable D which models at mesoscale a loss of resisting area
due to micro-cracks or micro-cavities (0 � D < 1) [4]. Failure of the representative volume element occurs when
D reaches its critical value Dc (of the order of magnitude of 0.2–0.3 for metals). Isotropic damage is coupled to
elasticity and plasticity by means of the effective stress tensor σ̃ij = σij

1−D
, i.e. the stress tensor σij is replaced by σ̃ij

in the elasticity law as well as in the yield criterion. Lemaitre’s damage evolution law is used:

Ḋ =
(

Y

S

)s

ṗ with Y = σ 2
eqRν

2E
(4)

in which Y is the strain energy density release rate, S, s and Dc are material parameters, and σeq is the von Mises
stress.

In order to evaluate the number of cycles to crack initiation, a reliable damage increment over one cycle
δD
δN

= ∫
1 cycle Ḋ dt can be determined with the assumption of uncoupled elasto-plasticity and damage (i.e. of dam-

age estimated by post-processing an elasto-plastic computation) [5].
Assuming that the strain energy release rate does not vary much between the applied load inducing the reach of the

yield stress and the minimum and maximum loads inducing the maximum von Mises stress, the damage increment
over one cycle δD

δN
reads (for a symmetric periodic loading):⎧⎪⎪⎨
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if Δσeq > 2σY

δD = 0 otherwise

(5)
δN
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in which δp
δN

= ∫
1 cycle ṗ dt is the increase of accumulated plastic strain during one cycle, Rν is the triaxiality function

and where the yield stress σY acts as the asymptotic fatigue limit in Wöhler diagram. For cyclic loading, the number of
cycles to crack initiation NR is obtained for D = Dc after integration over the number of cycles. Considering Eq. (3)

and with δp
δN

= 23/2

C1/2 (ψ
cyclic
p )1/2, one obtains:

NR = Dc

( δD
δN

)
= A

(ψ
cyclic
e (Δσ))s(ψ

cyclic
p (Δσ))1/2

with A = 22s−3/2
√

C SsDc (6)

4. Fatigue life maximization problem

4.1. Cyclic elasto-plasticity problem

Consider a 3D medium Ω . The external boundary is split into two surfaces: Γ0 and Γ1. On Γ0 is imposed a
zero displacement, on Γ1 a periodic surface load F(t) which vary symmetrically with an amplitude ΔF . The cyclic
elasto-plasticity problem is defined as a nonlinear elasticity problem (P ):

(P)

{
Δσij,j = 0 in Ω, Δεij = ∂ψcyclic(Δσ)

∂Δσij
, Δεij = 1

2 (Δui,j + Δuj,i)

Δσijnj = ΔFi on Γ1, Δui = 0 on Γ0

(7)

This problem is put into a variational form, in which Ec = ∫
Ω

ψcyclic(Δσ)dV is the complementary energy.

4.2. Optimization problem

In order to increase the number of cycles to crack initiation in the structure, consider the following minimization
problem, with respect to material and void distribution:

min

[ ∫
Ω

ψ
cyclic
e (Δσ)dV +

∫
Ω

ψ
cyclic
p (Δσ)dV

]

This optimization problem is the classical compliance optimization in the case of linear elasticity (i.e. if ψ
cyclic
p (Δσ) =

0 everywhere in the structure) which corresponds to the maximization of the global rigidity of an elastic structure [6,1].
In its general form, this optimization problem is similar to the problem of minimizing the complementary energy of a
structure made of nonlinear elastic material [7,8]. This optimization problem has to be formulated in an integral form
(and not in a local form) because the distribution of material is not a priori known, and then the location of the failure
point in which damage will reach its critical value is also not a priori known.

To solve this optimization problem (known to be ill-posed even in the linear elasticity setting), we will consider
a distributed fictitious density β allowed to vary between βmin > 0 and 1 (βmin �= 0 is set for numerical reasons).
Introduce β in the state potential ψβ as following:

ψβ = 1

βn
ψcyclic (8)

This leads to the definition of an equivalent Young’s modulus E∗ = βnE, an equivalent plastic modulus C∗ = βnC

and to an unchanged elastic limit. Introduce a cost term in the objective function in order to limit the total quantity of
material in the optimal design. The optimization problem then reads:

min
β∈[βmin,1]

[ ∫
Ω

ψβ(Δσ)dV +
∫
Ω

cost(β)dV

]

This problem is put into the form of a double minimization with the use of the variational formulation of the local
problem (P):

min
β∈[βmin,1] min

Δτ∈ad

[ ∫
Ω

ψβ(Δτ)dV +
∫
Ω

cost(β)dV

]
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Remark 1. β has no specific physical meaning and is not related to a damaged configuration. We are looking forward
to optimizing the distribution of material in a fixed domain and thus want to obtain values of β mostly close to 0 and 1
(black and white design), which explains the use of the power n (n ≈ 3).

4.3. Optimization algorithm

The optimization procedure (initially introduced in the framework of linear elasticity in [2]) consists in:

– an initialization of iteration (q = 0): β(0) ⇒ Δσ(0),
– local minimizations minβ∈[βmin,1]( 1

βn ψcyclic(Δσ (q)) + cost(β)) with respect to β with fixed stress Δσ(q) which

give β(q+1) for iteration q + 1,
• a global minimization with respect to Δσ with fixed optimization parameters β(q+1) which gives Δσ(q+1)

(finite element computation and use of complementary energy theorem),
• iterations on local and global minimizations (q ← q + 1).

After one set of local minimizations followed by a global minimization, the criterion decreases. The criterion being a
positive quantity, the algorithm is convergent.

4.4. Local minimizations with fixed stress field

The cost functional is chosen proportional to the distributed fictitious density: cost(β) = kβ , where the parameter
k is a constant chosen by the user. The local minimization problem reads then:

min
β∈[βmin,1]

[
B

βn
+ kβ

]
with the β-independent constant B = 1

2

(
Δσ 2

eqRν

E
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)

Let β0 = ( nB
k

)1/(n+1). The principle of the minimization is identical to the classical Solid Isotropic Material with
Penalization (SIMP) case:{

β = βmin if β0 � βmin
β = β0 if βmin � β0 � 1
β = 1 if 1 � β0

4.5. Fatigue life maximization problem

During the local minimizations steps (with fixed stress amplitude), the locally heavily loaded points in the structure
have an optimal fictitious density equal to 1. Locally, the maximization of lifetime for a fixed stress amplitude (i.e.
minimization of (ψ

cyclic
e )s(ψ

cyclic
p )1/2) is achieved for a fictitious density equal to 1. Thus, with the optimization

procedure, the heavily loaded points where the crack initiation will occur have a fictitious density optimal with respect
to fatigue life.

The design problem of finding the lightest structure that achieves a given lifetime is solved using the following
procedure: determine the lightest structure that can achieve a given lifetime. The numerical procedure is: (i) choose
an initial value for the cost parameter k, (ii) apply the optimization algorithm, (iii) if the number of cycles to rupture
is lower than the targeted one, allow for more material in the design domain by decreasing the value of k and run
the optimization procedure again (increase k otherwise). When the targeted number of cycles to crack initiation is
obtained, the optimal distribution of material is given by the last optimization procedure.

5. Numerical example

Consider as an example a beam clamped on both lateral sides. A surface load is imposed on the upper surface at
its center on 20% of the length of the bar (Fig. 1). The load varies symmetrically between 100 and −100 MPa. The
material parameters are: Young’s modulus E = 200 000 MPa, Poisson’s ratio ν = 0.3, plastic modulus C = 6000 MPa,
yield stress σY = 180 MPa, damage parameters S = 2.8 MPa, s = 2 and Dc = 0.2 (those of a 2-1/4 CrMo steel [5]).

Table 1 shows for different optimized geometries the results of the proposed design procedure:
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Table 1
Numerical results

Tableau 1
Résultats numériques

Cost parameter k 1.0 0.6 0.2
Material volume 48 % 52 % 69 %
Number of cycles to crack initiation 1580 5603 83 620
(Normalized) Optimized energy

∫
Ω ψβ(Δσ)dx 1.0 0.75 0.53

Fig. 1. Sketch of the 3D medium and boundary conditions.

Fig. 1. Description du milieu 3D et des conditions aux limites considérés.

Fig. 2. Von Mises stress-amplitude (MPa) on the optimized deformed geometry at crack initiation (material volume equal to 48%).

Fig. 2. Amplitude de contrainte de von Mises (MPa) sur la géométrie déformée à initiation de fissure (pour un volume de matière de 48 %).

Fig. 3. Damage field on half of the optimized geometry at crack initiation for a material volume equal to 48% (middle cutting plane).

Fig. 3. Endommagement sur la moitié de la structure à initiation de fissure pour un volume de matière de 48 % (plan de coupe central).

– the increase of the number of cycles to rupture with an increasing total material volume,
– the increase of the total material volume with an decreasing cost parameter k,
– the increase of the energy term

∫
Ω

ψβ(Δσ)dx (normalized with respect to the case k = 1) of the optimized
criterion with a decreasing total material volume.
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Figs. 2 and 3 show the von Mises stress amplitude (more than 90% of the optimized structure is plastified with a
maximum plastic strain amplitude of 1.3%) and the damage field on the optimized geometry for the number of cycles
to crack initiation in the case of a material volume equal to 48%. The critical damage is obtained at the lower clamped
parts of the structure.

6. Conclusion

Continuum Damage Mechanics can be used for the low cycle fatigue design of a structure by considering Lemaitre
damage evolution law: damage is governed by the plasticity (through the accumulated plastic strain rate) and is
enhanced by the stress level (through the elastic energy density). The damage increment per cycle in fatigue is then
expressed as a function of the associated complementary energy density. Both the state potential and the local damage
increment are minimized by the proposed topology optimization procedure. An optimized structure shape is gained in
fatigue under symmetric cyclic loading, as illustrated in a three-dimensional cantilever beam.
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