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Abstract

This study is devoted to the modelling of ductile damage in uranium dioxide. This polycrystalline material contains two popula-
tions of voids of well separated size. The problem addressed here is the prediction of the effective flow surface of a Gurson material
containing randomly oriented oblate voids. The case of spherical voids is considered first and the variational approach of Gurson is
generalized by adding a compressible component to his original velocity field. The case of aligned oblate voids is then considered
and a suitable generalization of a velocity field due to Gologanu et al. (ASME J. Engrg. Mater. Technol. 116 (1994) 290–297) is
proposed. The extension to randomly oriented voids is achieved by averaging over all orientations. In each case, rigorous upper
bounds and approximate estimates are derived and compared (in the case of spherical voids) with Finite Element simulations.
To cite this article: P.-G. Vincent et al., C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Endommagement ductile de matériaux poreux contenant deux populations de cavités. Cette étude est consacrée à la mo-
délisation de l’endommagement ductile dans l’oxyde d’uranium. Ce matériau polycristallin présente deux familles de cavités de
tailles très différentes. Le problème est abordé ici comme la recherche d’un critère de plasticité pour un matériau de Gurson conte-
nant des cavités ellipsoïdales aplaties distribuées aléatoirement. Dans un premier temps, le cas des cavités sphériques est examiné.
La démarche variationnelle de Gurson est reprise en ajoutant une composante compressible au champ de vitesse de Gurson. Cette
démarche est ensuite étendue aux ellipsoïdes aplatis et alignés en reprenant et en complétant un champ de vitesse proposé par
Gologanu et al. (ASME J. Engrg. Mater. Technol. 116 (1994) 290–297). Enfin l’extension aux ellipsoïdes orientés aléatoirement
se fait par une prise de moyenne appropriée sur les orientations. Dans chaque cas, des bornes supérieures rigoureuses ainsi que
des estimations sont proposées et comparées (seulement dans le cas des cavités sphériques) avec des calculs par éléments finis.
Pour citer cet article : P.-G. Vincent et al., C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The present work is devoted to the mechanical behavior of uranium dioxide (UO2) studied by the French “Institut
de Radioprotection et de Sûreté Nucléaire” (IRSN) to assess the safety of fuel rods under accident conditions. UO2 is
a polycrystalline material which, when highly irradiated, exhibits a microstructure with two populations of voids of
rather different sizes and shapes, as schematically depicted in Fig. 1 (micrographs of the actual material can be found
in [1]). The smallest voids are intragranular and almost spherical in shape. The largest voids are elongated and located
at grain boundaries (see Fig. 1). At high temperature the ceramic matrix is ductile, and under accident conditions the
increase in pressure in the voids can cause the voids to grow and to coalesce, eventually leading to the formation of a
macroscopic crack. This process is very similar to that of ductile rupture in metals (Leblond [2]) and the present study
is an attempt to analyze damage evolution in UO2 by similar means.

Three different scales are relevant in this problem. The microscopic scale corresponds to the single grain level
where the spherical pores can be distinguished (Fig. 1 right). At the mesoscopic (or intermediate) scale (Fig. 1 left)
the smallest voids are ‘smeared out’ and the different grains appear as different domains with different orientations
of the same porous material. Then, at the macroscopic scale all voids are smeared out and the polycrystal is seen as
a homogeneous material. The objective of this study is to derive an expression for the effective (macroscopic) yield
surface of such bi-porous materials when the sound material at the microscopic scale is a ductile ideally plastic von
Mises material (with yield stress σ0).

Let V denote a representative volume element of this material at the mesoscopic scale. V consists of a domain
M occupied by the (porous) matrix (the smallest voids being smeared out), the remaining domain V − M being
occupied by the large voids. Two different measures of porosity corresponding to the different scales involved in the
problem should be distinguished. At the mesoscopic scale (single grain scale) the volume fraction of the smallest
voids is denoted by fb . At the macroscopic scale (polycrystal) the volume fraction of the largest voids in V is denoted
by fe. The total porosity f is obtained by considering the volume fraction of the sound material and reads as f =
fe + fb − fefb .

At the mesoscopic scale the plastic flow of the porous matrix, with porosity fb, is assumed to be governed by the
Gurson–Needleman–Tvergaard (GTN) yield function:

q3

(
σeq

σ0

)2

+ 2q1fb cosh

(
3

2

σm

σ0

)
− 1 − (q1fb)

2 = 0 (1)

where σm and σeq denote the usual hydrostatic stress and equivalent stress. The original Gurson yield function cor-
responds to q1 = q3 = 1 [3]. The qi ’s are adjustable parameters introduced by Tvergaard and Needleman (see for
instance [4]) to fit the yield function (1) with numerical simulations. The most popular choices in the literature are
q1 ranging from 1.25 to 1.5 and q3 = 1, but Leblond et al. [5] have introduced q3 = 1 + 2/3fb to satisfy a nonlinear
variational upper bound for porous ductile materials.

In this study an expression for the effective yield surface of porous materials, consisting of a GTN matrix and
containing ellipsoidal cavities, is derived. A variational approach is adopted to characterize the effective dissipation

Fig. 1. Left: polycrystalline structure of UO2 showing intergranular lenticular and intragranular voids. Right: close-up on the spherical intragranular
voids.
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Fig. 2. (a) Assemblage of ellipsoids. (b) Single hollow ellipsoid.

potential of the (bi-)porous material. Upper bounds for the effective strain-rate potential of the representative volume
element can be obtained from the variational principle:

Φ(Ė) = inf
v∈K(Ė)

1

|V |
∫
M

ϕ
(
ε(v)

)
dV with K(Ė) ≡ {v | v = Ė · x on ∂V } (2)

where Ė is the overall strain-rate and ϕ is the matrix dissipation potential which will be specified in due time.
To make the problem more amenable to analytical calculations, the representative volume element V under consid-

eration is seen as an assemblage of self-similar hollow spheroids (axisymmetric ellipsoids) which are identical copies,
after dilatation and rotation, of a unit hollow ellipsoid as shown in Fig. 2. This unit hollow ellipsoid, denoted by Ω ,
contains at its center an ellipsoidal cavity ω. The outer and inner surfaces are confocal ellipsoids.

This article is organized as follows. Section 2 is devoted to the case where the large voids are spherical. Rigorous
upper bounds and estimates are derived. In particular, an estimate in the form of a generalized Gurson’s yield function
is proposed in Eq. (14). The resulting predictions are compared with Finite Element simulations. The approximation
which is made in the velocity field consisting in a uniform dilatation in the matrix, does not affect significantly the
response of such a bi-porous material. The case of oblate ellipsoidal voids in a Gurson matrix is addressed in Section 3.
The velocity field of Gologanu et al. [6] is recalled first and used in Section 3.2 to derive an estimate for a single hollow
ellipsoid. The case of randomly oriented oblate ellipsoidal voids is considered in Section 3.3 where an upper bound for
the effective potential is derived. Finally an estimate of the yield function for a Gurson material containing randomly
oriented ellipsoidal voids is derived in Section 3.4.

2. Spherical voids

Let us consider first the case where the largest pores are spherical. The unit volume element is a hollow sphere with
internal and external radii a1 and a2 respectively.

The problem of a hollow sphere made of a Gurson matrix under hydrostatic loading has been investigated ana-
lytically by Perrin and Leblond [7–9], but remains widely open for more general loading conditions. A variational
approach is followed here.

2.1. Incompressible matrix: single hollow sphere and assemblage

Let us briefly recall the derivation (due to Perrin [8]) of Gurson’s yield function when there is no small voids
(fb = 0). In this case the matrix potential reduces to ϕ(ε̇) = σ0ε̇eq. Using the variational principle (2) with a ve-
locity field which combines the exact velocity under hydrostatic loading and a homogeneous and purely deviatoric
deformation field, namely:

vG(Ė) = Ėm

a3
2 er + D · x, D = Ė − Ėmi (3)
r2



248 P.-G. Vincent et al. / C. R. Mecanique 336 (2008) 245–259
where i is the second-order identity tensor, the effective potential for the unit-volume element is found to be bounded
from above by:

Φ(Ė) � 1

|Ω|
∫

Ω−ω

ϕ
(
ε(vG)

)
dΩ � σ0

|Ω|
r=a2∫

r=a1

S(r)

√√√√√√ 1

S(r)

2π∫
φ=0

π∫
θ=0

ε̇2
eq dS dr (4)

where ε̇ = ε(vG), S(r) = 4πr2 and dS = r2 sin θ dθ dφ (spherical coordinates r , θ , φ). After a few algebraic manip-
ulations, one finally obtains [10]:

Φ(Ė) � ΦG(Ė) = σ0

1∫
fe

√
4Ė2

m

y2
+ Ė2

eq dy

where ΦG is the dissipation potential associated with the yield surface (1) with q1 = q3 = 1 and fe instead of fb .

2.2. Compressible GTN matrix: upper bound for the single hollow sphere and the assemblage

When the matrix obeys the GTN yield function (1), the dissipation potential entering the variational principle (2)
reads:

ϕ(ε̇) = σ0

1∫
q1fb

√
4ε̇2

m

y2
+ ε̇2

eq

q3
dy (5)

Use is made of a compressible velocity field in the form

v = Ax + vG(Ė − Ai) (6)

The velocity field (6) has a uniform dilatation-rate in the matrix ε̇m = A. The following upper bound for the effective
potential is then obtained from the variational principle:

Φ(Ė) � inf
A

1

|Ω|
∫

Ω−ω

σ0

( 1∫
q1fb

√
4A2

y2
+ ε2

eq(v
G)

q3
dy

)
dΩ (7)

Applying the Cauchy–Schwarz inequality on each concentric sphere, one obtains:

Φ(Ė) � inf
A

σ0

|Ω|
1∫

q1fb

r=b∫
r=a

S(r)

√√√√√√4A2

y2
+ 1

S(r)

2π∫
φ=0

π∫
θ=0

ε2
eq(v

G)

q3
dS dr dy

and finally

Φ(Ė) � inf
A

σ0

1∫
q1fb

1∫
fe

√
4A2

y2
+ 4

q3

(Ėm − A)2

z2
+ Ė2

eq

q3
dzdy (8)

The right-hand side of (8) provides a rigorous upper-bound to the effective potential of a unit-volume element which
can be extended by a classical argument into an upper bound for the potential of any composite sphere assemblage.

To the best of our knowledge, the minimization with respect to A in the upper bound (8) cannot be performed in
closed form. An approximation preserving the upper bound character of (8) can be obtained by making the particular
choice:

A = Ā ≡ q1fb
Ėm (9)
fe + q1fb
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It should be noted that Ā is the exact minimizer of (8) in several particular cases. First, when fb (respectively fe)
vanishes, it is easy to see that A = 0 (respectively A = Ėm) is solution of the infimum problem in (8). Similarly, when
q3 = 1 and q1fb = fe, A = 1/2Ėm is the solution of (8). Specifying A = Ā in (8) gives the following upper bound:

Φ(Ė) � σ0

1∫
q1fb

1∫
fe

√
4q2

1f 2
b

(fe + q1fb)2

Ė2
m

y2
+ 4f 2

e

q3(fe + q1fb)2

Ė2
m

z2
+ Ė2

eq

q3
dzdy (10)

Remark. In the practical application that we have in mind, the two populations of voids are subjected to internal
pressures, pb in the small voids and pe in the largest voids. The variational principles (2) and (8) must be modified
accordingly by making the following replacements:

ϕ(ε̇)→ϕb(ε̇) = ϕ(ε̇) − 3pbε̇m

1

|V |
∫
M

ϕ
(
ε(v)

)
dV → 1

|V |
[∫

M

ϕb

(
ε(v)

)
dV − 3pe

∫
V −M

ε̇m dV

]

Φ(Ė)→Φ(Ė) − 3peĖm + 3(1 − fe)(pe − pb)A

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11)

Then, a minimization with respect to A has to be performed in the modified variational principle (8). It should be
emphasized that the approximate expression (9) does not hold true when the internal pressures pe and pb are different.
In the interest of space, the influence of the internal pressures will not be studied here and is left for separate work.

2.3. Compressible GTN matrix: Gurson-like estimate for the single hollow sphere and the assemblage

The double integral in (8) and (10) can be expressed in closed form by means of the relations given in Appendix A.
However the resulting expression is too complicated to find an explicit equation for the yield surface corresponding
to the dissipation potential (10). Instead, an approximate expression can be proposed. For this purpose it is noted that,
when specialized to purely deviatoric and purely hydrostatic conditions, the upper bound (10) gives two particular
stress states located on the effective yield surface of the material (for simplicity, results given in (12) to (14) are for
q1 = 1; otherwise, fb must be replaced by q1fb in these expressions):

Σm = 0, Σeq = σ̃0 with σ̃0 = σ0(1 − fb)(1 − fe)/
√

q3 (12)

and

Σm = p̃, Σeq = 0 with p̃ = 1

3
σ0

2√
q3(fb + fe)

(
C1 + ln(C2)

)
(13)

where

B1 =
√

f 2
e + f 2

b q3, B2 = fb

√
f 2

e + q3, B3 = fe

√
1 + f 2

b q3

B4 = fbfe

√
1 + q3, C1 = 2(B1 − B2 − B3 + B4)

C2 = f
fb(1−fe)

√
q3

b f
(1−fb)fe
e

(
B1 − fe

B3 − fe

)fe
(

B4 − fbfe

B2 − fbfe

)fbfe
(

B1 − fb
√

q3

B2 − fb
√

q3

)fb
√

q3
(

B4 − fbfe
√

q3

B3 − fbfe
√

q3

)fbfe
√

q3

The second approximation which is introduced here consists in enforcing the form (1) as an approximation (hopefully
accurate) for the effective yield surface of the bi-porous material which reads as:

1

β

(
Σeq

σ0

)2

+ 1

α
cosh

(
3

2

Σm

σ0

)
− 1 = 0, with α ≡ cosh

(
3

2

p̃

σ0

)
and β ≡ α

α − 1

(
σ̃0

σ0

)2

(14)

This yield function can be further refined by improving the prediction (12) for purely deviatoric stress. This is done
by means of a variational argument close to that developed by Suquet [11].
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2.4. Variational bound and refined estimate

Coming back to the variational characterization (2), the effective potential Φ can be written as:

Φ(Ė) � inf
v∈K(Ė)

σ0

|V |
∫
M

1∫
q1fb

√
4ε̇2

m

y2
+ ε̇2

eq

q3
dy dV

The Cauchy–Schwarz inequality is applied first to the integral on y:

Φ(Ė) � σ0
√

1 − q1fb

|V | inf
v∈K(Ė)

∫
M

(
4(1 − q1fb)

q1fb

ε̇2
m + (1 − q1fb)

q3
ε̇2

eq

)1/2

dV

and then to the integral on V :

Φ(Ė) � σ0
√

1 − q1fb

√
1 − fe

[
inf

v∈K(Ė)

1

|V |
∫
M

(
9

2
k1ε̇

2
m + 3

2
μ1ε̇

2
eq

)
dV

]1/2

where

k1 = 8(1 − q1fb)

9q1fb

, μ1 = 2(1 − q1fb)

3q3

Therefore when the composite has overall isotropy:

Φ(Ė) � σ0
√

1 − q1fb

√
1 − fe

(
9

2
k̃1Ė

2
m + 3

2
μ̃1Ė

2
eq

)1/2

where k̃1 and μ̃1 denote the effective bulk and shear moduli of a linear porous material with bulk and shear moduli k1

and μ1 respectively.
As is now well-recognized, the bounds obtained by (most) variational techniques are rather poor for hydrostatic

loadings but sharp under purely deviatoric loadings. Therefore a sharper estimate for the flow surface of the bi-porous
material can be obtained by considering the yield function (14) with (13) and:

Σm = 0, Σeq = σ̃0, σ̃0 = σ0
√

(1 − q1fb)(1 − fe)

√
3

2
μ̃1Ėeq (15)

In the absence of further information on the composite microstructure besides overall isotropy, the sharpest bounds
on the effective moduli k̃1 and μ̃1 are the Hashin–Shtrikman bounds (only the upper bound is relevant here):

k̃1 � 4

3
μ1

1 − fe

fe + 4μ1
3k1

, μ̃1 � μ1
1 − fe

1 + 6fe
k1+2μ1
9k1+8μ1

and the following upper bound for Φ is obtained:

Φ(Ė) � σ0
(1 − q1fb)(1 − fe)√

q3

(
4Ė2

m

fe + q1fb

q3

+ Ė2
eq

1 + fe
2q3+3q1fb

3q3+2q1fb

)1/2

(16)

The corresponding point under purely deviatoric loading reads as:

Σm = 0, Σeq = σ̃0, σ̃0 = σ0
(1 − q1fb)(1 − fe)√

q3

√
1

1 + fe
2q3+3q1fb

3q3+2q1fb

(17)

The resulting estimate (14) is a rigorous upper bound for purely hydrostatic or purely deviatoric overall stress. As can
be seen in Fig. 3 this estimate remains an upper bound for intermediate stress triaxiality ratios.
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Fig. 3. Effective yield surface for a porous material with two populations of voids for different void volume fractions fb (small voids) and fe (large
voids). Upper bound (8) (crosses), estimate (14) with (13) and (12) (black solid line), estimate (14) with (13) and (17) (thick black solid line), FEM
simulations (full squares), hydrostatic point of [8] (vertical line), Gurson yield function with total porosity f (dashed line).

2.5. Comparison with Finite Element simulations

To assess the accuracy of the upper bound (8) and of the estimate (14) with (13) and (17), the predictions of these
models for the effective yield surface of the bi-porous material are compared in Fig. 3 with full-field numerical sim-
ulations obtained with the Finite Element Method. Attention is limited in the numerical simulations to axisymmetric
deformations, one quarter of a hollow sphere is meshed and boundary conditions corresponding to uniform deforma-
tions are imposed on the outer boundary of the hollow sphere. The matrix is a Gurson material with q1 = q3 = 1.
Different radial paths in the space of macroscopic stress are followed (a stress-driven method similar to that described
in Michel et al. [12] is used).

As can be seen from Fig. 3, the upper bound (8) and the estimate (14) are in good agreement. The exact result
of Perrin [8] for hydrostatic loading has been evaluated numerically and is indicated as a vertical line in this figure.
Both the upper bound (8) and the estimate are in very good agreement with this exact result. The results of the FEM
simulations are shown as full squares. As expected they lie inside the prediction of the upper bound (8), with an
excellent agreement under hydrostatic stress and a good agreement under purely deviatoric stress. The quality of the
match between the analytical equation (14) with (13) and (17) and the FEM simulations is excellent for purely hy-
drostatic or deviatoric stress and good at all other stress triaxiality ratios. The Gurson flow surface with total porosity
f = fe + fb − fefb is also shown as dashed lines. The motivation for considering the total porosity is that Perrin
and Leblond [7,9] observed for fb and fe small enough (which is the case in practice), a good agreement between
their exact result under hydrostatic loading and the corresponding prediction of the Gurson yield function with total
porosity f . The present model (8) coincides with the Gurson model with porosity f under purely deviatoric loading
conditions but differs from it under hydrostatic loading. Overall, the Gurson model with total porosity f is in reason-
able agreement with the other models. However it seems to slightly overestimate the effective carrying capacity of the
bi-porous material and its agreement with the FEM simulations is less satisfactory than that of the other, more refined,
models.

2.6. Local dilatation rate and evolution of the damage parameters

The mass balance equations written at the mesoscopic and macroscopic scales respectively yield:

ḟb = 3(1 − fb)ε̇m, ḟ = 3(1 − f )Ėm (18)

which, for the present model where ε̇m = A, yields by virtue of the relations between f , fe and fb:

ḟe = 3(1 − fe)(Ėm − A)



252 P.-G. Vincent et al. / C. R. Mecanique 336 (2008) 245–259
Fig. 4. Hollow sphere under hydrostatic tension: relative rate-growth of the damage parameters. Exact result (Perrin [8], solid line; or equivalently
N -phase secant method with N � 100), predictions based on the Aoptimal minimizing (8) (horizontal solid line) or on the approximation (9)
(horizontal dashed line). (a) fe = 1%, fb = 10%. (b) fe = 1%, fb = 1%.

Fig. 5. Macroscopic response of a porous hollow sphere under hydrostatic loading. Full circles: upper bound (10); Black solid line: estimate (14).
White squares: modified secant method (100 layers surrounding the cavity ω; a local porosity f i

b
is defined in each layer). (a) Initial porosities:

fb = 0.1, fe = 0.2. (b) Initial porosities: fb = 0.1, fe = 0.01.

The first equation in (18) raises the question of the accuracy of the dilatation rate ε̇m which is approximated by A in
the present approach.

The velocity field (6) corresponds to a uniform dilatation-rate throughout the matrix. This particular choice is
legitimate since it yields an admissible velocity field, but can be questioned in view of the analytical result of Perrin and
Leblond [7,9] who showed that the dilatation-rate in a porous hollow sphere under hydrostatic loading is nonuniform.
A comparison between the (uniform) dilatation rate predicted by the minimization of (8), the estimate (9) for this
dilatation rate, the exact result of [8] and the prediction of the N -phase secant method (in the spirit of Bilger et al. [13])
is shown in Fig. 4 (q1 = q3 = 1).

Incorporating the exact result of [8] into a predictive scheme is not an easy task. One of the difficulties is that
accounting for the nonuniformity of the dilatation-rate during an evolution process requests considering the secondary
porosity fb (corresponding to the smaller voids) as a field rather than as a parameter fb uniform throughout the matrix.
Keeping track of this field along the evolution of the porous material is a formidable task which is beyond the scope
of this study. It is very likely that such porosity fluctuations play an important role in the coalescence process, but it is
our belief that the part of the damage evolution corresponding to the cavity growth should be correctly approximated
by the present model considering that the secondary porosity remains uniform.

To check this assertion the response of a hollow sphere, consisting of a Gurson matrix (q1 = q3 = 1, porosity fb

uniform at time t = 0 in the matrix) containing a spherical central cavity, and subjected to hydrostatic strain-rate has
been integrated in time. At each time step the change in volume of the central cavity and the change in volume of
the secondary porosity are evaluated using the evolution equations (18). Different predictions are shown in Fig. 5, the
response of the hollow sphere as predicted by the N -phase modified secant method (with N = 101 we expect these
results to be almost exact under hydrostatic loading as it was the case for a von Mises matrix [13]), the predictions of
the upper bound (8) and of the estimate (14). Surprisingly, all the predictions lie almost on top of each other, meaning
that neglecting the spatial heterogeneity of the secondary porosity fb does not affect significantly the response of the
porous material.
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3. Oblate ellipsoidal voids

We now turn to the case where the large voids are oblate spheroids with random orientations.

3.1. Incompressible matrix: single hollow ellipsoid

We consider first the case where the matrix is an incompressible von Mises material (no small voids at the mi-
croscopic scale). To simplify things further, the volume element is assumed to be a single hollow ellipsoid. More
specifically the outer and inner surfaces of this hollow domain are confocal ellipsoids and one can introduce a contin-
uous family of ellipsoids parametrized by a dimensionless scalar parameter λ such that the inner surface corresponds
to λ = λ1 and the outer surface corresponds to λ = λ2. The axis of revolution of the two oblate ellipsoids is the z axis
(see Appendix B for more details).

The macroscopic strain-rate is split into an axisymmetric part and a non-axisymmetric part ĖNA:

Ė = ĖA + ĖNA with ĖA = Ėxx + Ėyy

2
(ex ⊗ ex + ey ⊗ ey) + Ėzzez ⊗ ez, ĖNA = Ė − ĖA (19)

The velocity field in the matrix is chosen of the following form:

v(x) = vGo(x) + vNA(x) with vNA(x) = ĖNA · x (20)

where the velocity field vGo (recalled in Appendix B) has been proposed by Gologanu et al. [6] and satisfies
vGo = ĖA · x on ∂Ω . It follows from the variational property (2) that

Φ(Ė) � σ0

|Ω|
∫

Ω−ω

ε̇eq dΩ � σ0

λ2∫
λ1

√
J (λ)

√√√√√√
2π∫

φ=0

π∫
β=0

ε̇2
eqJλβφ dβ dφ dλ (21)

with

ε̇ = ε(v), ε̇2
eq = (ε̇Go

eq )2 + (ĖNA
eq )2 + 4

3
ε̇Go : ĖNA

and

Jλβφ = b(a2 sin2 β + b2 cos2 β) sinβ

|Ω| , J (λ) =
2π∫

φ=0

π∫
β=0

Jλβφ dβ dφ = 4

3

πb(2a2 + b2)

|Ω| , |Ω| = 4

3
πa2b

2
2

It can be shown that the integral of the cross-term in the expression of ε̇2
eq cancels out. After a few algebraic manipu-

lations, this inequality simplifies into:

Φ(Ė) � σ0

λ2∫
λ1

√
J (λ)

√
Ė : Q(λ) : Ė dλ (22)

where the detailed expression of the fourth-order tensor Q is given in Appendix B.

3.2. Compressible GTN matrix: single hollow ellipsoid

The matrix is now a GTN material whose dissipation potential ϕ is given by (5). Following the same procedure
as in Section 2.2, the trial velocity field in the matrix is the sum of the incompressible velocity field (20) and of a
compressible contribution:

v(x) = Ax + vGo(x) + vNA(x) with vNA(x) = DNA · x (23)
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vGo is the velocity field of [6] (recalled in Appendix B) and satisfies vGo = DA · x on ∂Ω where D = Ė − Ai can be
split into an axisymmetric part DA and a non-axisymmetric part DNA as in (19). The variational principle (2), when
used with this compressible trial velocity field, gives:

Φ(Ė) � inf
A

1

|Ω|
∫

Ω−ω

σ0

1∫
q1fb

√
4A2

y2
+ ε̇2

eq

q3
dy dΩ, ε̇ = ε(v)

and after use of the Cauchy–Schwarz inequality:

Φ(Ė) � inf
A

σ0

1∫
q1fb

λ2∫
λ1

√√√√√√J 2(λ)
4A2

y2
+ J (λ)

q3

2π∫
φ=0

π∫
β=0

ε̇2
eqJλβφ dβ dφ dλdy (24)

The last term can be computed following the same lines as in the above section:

Φ(Ė) � inf
A

σ0

1∫
q1fb

λ2∫
λ1

√
J 2(λ)

4A2

y2
+ J (λ)

q3
D : Q(λ) : D dλdy (25)

3.3. Compressible GTN matrix: upper bound for the assemblage of randomly oriented hollow ellipsoids

The velocity field (23) satisfies boundary conditions of uniform deformation on the outer surface of the hollow
ellipsoid v = Ė · x on ∂Ω . These particular boundary conditions allow for the extension of this field into a velocity
field which is continuous over the entire assemblage of hollow ellipsoids (it would not be the case with velocity fields
satisfying other boundary conditions). Using the extended velocity field into the variational principle (2) leads to an
upper bound for the assemblage (R denotes a dependence on the orientation of the quantity under consideration and∮

is the average over all possible orientations):

Φ(Ė) �
∮

σ0 inf
A(R)

1∫
q1fb

λ2∫
λ1

√
J 2(λ)

4A2(R)

y2
+ J (λ)

q3
D(R) : Q(R, λ) : D(R)dλdy dR (26)

The dilatation rate A varies from one ellipsoid to another. But having in mind that the geometry of the assemblage is
not known in detail and that we do not wish to keep track of a heterogenous dilatation-rate field, attention is restricted
to a single A, independent of R, for all the ellipsoids and uniform throughout the assemblage (this choice preserves
the upper bound character of (26)). Therefore:

Φ(Ė) � σ0

∮
inf
A

1∫
q1fb

λ2∫
λ1

√
J 2(λ)

4A2

y2
+ J (λ)

q3
D : Q(R, λ) : D dλdy dR

Then, using the fact the sum of infima is bounded from above by the infimum of the sum, one gets that:

Φ(Ė) � σ0 inf
A

∮ 1∫
q1fb

λ2∫
λ1

√
J 2(λ)

4A2

y2
+ J (λ)

q3
D : Q(R, λ) : D dλdy dR

and making use of the Cauchy–Schwarz inequality the following upper bound is obtained:

Φ(Ė) � σ0 inf
A

1∫
q1fb

λ2∫
λ1

√
J 2(λ)

4A2

y2
+ J (λ)

q3

∮
D : Q(R, λ) : D dRdλdy (27)

Following Gatt et al. [14] we note that:∮
D : Q(R, λ) : D dR = 3QJ D2

m + 3
QKD2

eq with QJ = Q :: J and QK = Q :: K

10
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where J and K are the usual fourth-order projectors over purely isotropic and purely deviatoric symmetric second-
order tensors. Finally, after a few algebraic operations, the following upper bound is obtained:

Φ(Ė) � σ0 inf
A

1∫
q1fb

λ2∫
λ1

√
J 2(λ)

4A2

y2
+ J (λ)

q3

(
3QJ (λ)(Ėm − A)2 + J (λ)Ė2

eq

)
dλdy (28)

with

QJ (λ) = 4

9

bπ

|Ω|
(
b2(−1 + 6Rα̃ + 3Z2α̃)2 + 2a2(1 − 6Z2α̃ + 12R2α̃2 + 12Z2α̃2 + 9Z2

2 α̃2

+ 6Zα̃(1 + 2Rα̃ − 3Z2α̃)
))

where all quantities a, b, R, Z, α̃, . . . are defined in Appendix B and depend on λ.

3.4. Compressible GTN matrix: Gurson-like estimate for the assemblage of randomly oriented hollow ellipsoids

The final expression (28) is a rigorous upper bound for any assemblage of randomly oriented self-similar hollow
ellipsoids. It involves a minimization over A and a double integral which have to be evaluated numerically. In practice
it can be useful to have an estimate (hopefully accurate) for the effective potential Φ or for the corresponding yield
function in the space of macroscopic stresses.

For this purpose, the study of a single hollow ellipsoid with compressible matrix is reconsidered starting from
Eq. (24). Using a few changes of variables and approximations almost identical to that initially proposed by Gologanu
et al. [6] and detailed in Appendix C, we arrive at the following estimate for the effective potential of a single hollow
ellipsoid:

Φ(Ė) ≈ inf
A

σ ′
0

1∫
q1fb

1∫
y2/y1

√
4A2

y2
+ D : S(z) : D dy dz (29)

where σ ′
0, the yi ’s and the fourth-order tensor S are specified in Appendix C. Then, averaging this estimate over all

possible orientations and using the Cauchy–Schwarz inequality as in Section 3.3, the following estimate is obtained:

Φ(Ė) ≈ inf
A

σ0(g + 1)

1∫
q1fb

1∫
f̃

√
4A2

y2
+ (Ėm − A)2

z2

ã2

q3
+ (Ėm − A)2 b̃2

q3
+ (Ėeq)2

q3
dzdy (30)

where ã, b̃, f̃ and g are specified in Appendix C. When the large voids are spherical, it follows from the detailed
expressions given in Appendix C that ã = 2, b̃ = 0 and g = 0. The potential (30) reduces to the upper bound (8).

Again, the form (30) is not very convenient for practical purposes and an analytical estimate for the associated
yield function is searched for in the general form of the Gurson yield function. Under pure deviatoric macroscopic
stress the prediction of the model (30) is

Σm = 0, Σeq = σ̃0 with σ̃0 = σ0(1 − fe)(1 − q1fb)/
√

q3 (31)

irrespective of the aspect ratio of the ellipsoid. This prediction is clearly an upper bound for the actual strength of the
bi-porous material under pure shear. It is possible to improve on this upper bound by making use of the variational
bound (15). As in Section 2.4, the effective moduli k̃1 and μ̃1 can be evaluated by a linear scheme appropriate for
the microstructure under consideration (for randomly oriented confocal ellipsoids, the Ponte Castañeda–Willis [15]
bound seems to be most appropriate). The resulting expression is too complicated to be given in closed form, but its
implementation is straightforward.

In order to determine the flow stress under hydrostatic loading conditions, the following expression is proposed
for A:

A = Ā ≡ q1fb

˜ Ėm (32)

f + q1fb
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Fig. 6. Effective yield surface of a Gurson material (q1 = q3 = 1) containing randomly oriented oblate ellipsoidal voids (w = 1/5). Comparison
between the upper bound (28) (crosses), the estimate (14) (solid line) with (31) and (33) and the estimate (14) (thick solid line) with (33) and (15)
where μ̃1 is estimated with the PCW bound [15].

This choice for A leads under hydrostatic stress to:

Σeq = 0, Σm = p̃ with p̃ = 1

3
σ0(g + 1)I (33)

where I is an integral whose detailed expression is given in Appendix A with

ft = f̃ , fs = q1fb, P̃ = 2

∣∣∣∣ q1fb

f̃ + q1fb

∣∣∣∣
Q̃ = 1√

q3

∣∣∣∣ f̃ ã

f̃ + q1fb

∣∣∣∣ and R̃ = 1√
q3

∣∣∣∣ f̃ b̃

f̃ + q1fb

∣∣∣∣
The approximate yield function can be written as in (14) using the above expressions for σ̃0 and p̃.

A comparison between the corresponding estimate and the upper bound (28) is shown in Fig. 6. The aspect ratio
of the voids is defined as w = a1/b1 (w � 1 corresponds to oblate voids). The agreement between the bound and the
estimate is very good.
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Appendix A. Detailed expression of the integral I

I =
1∫

fs

1∫
ft

√
P̃ 2

y2
+ Q̃2

z2
+ R̃2 dzdy

Introducing the notations:

B̃1 =
√

P̃ 2 + Q̃2 + R̃2, B̃2 =
√

P̃ 2 + f 2
s (Q̃2 + R̃2), B̃3 =

√
Q̃2 + f 2

t (P̃ 2 + R̃2)

B̃4 =
√

f 2
s Q̃2 + f 2

t (P̃ 2 + f 2
s R̃2), B̃5 = P̃ Q̃R̃, Ãi = (P̃ 2Q̃2 − R̃2B̃2

i ), C̃i = 2B̃5B̃i , i = 1,4

K = Ã1Ã4 − C̃1C̃4, L = Ã1C̃4 − C̃1Ã4, M = Ã2Ã3 − C̃2C̃3, N = Ã2C̃3 + Ã3C̃2

an analytical expression for I is obtained:

I = B̃1 − B̃2 − B̃3 + B̃4 + P̃ Q̃

2R̃
arcsin

(
LM − NK

M2 + N2

)

+ ln

[(
Q̃ + B̃3

ft (Q̃ + B̃1)

)Q̃(
fs(ft P̃ + B̃3)

ft P̃ + B̃4

)(P̃ ft )
(

P̃ + B̃2

fs(P̃ + B̃1)

)P̃ (
ft (fsQ̃ + B̃2)

fsQ̃ + B̃4

)(Q̃fs)
]
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Appendix B. The velocity field (20) and related results

The detailed construction of the velocity field used in the variational analysis on a single hollow ellipsoid is given
here. The notations are essentially those of Gologanu et al. [6]. The foci of the confocal ellipsoids are located on

a circle with radius c =
√

b2
1 − a2

1 =
√

b2
2 − a2

2 and the hollow ellipsoidal region occupied by the matrix can be
described in cylindrical coordinates (ρ,φ, z) by:

ρ = c coshλ sinβ, φ = φ, z = c sinhλ cosβ, λ ∈ [λ1, λ2], β ∈ [0,π], φ ∈ [0,2π] (B.1)

The inner and outer ellipsoids correspond to λ = λ1 and λ = λ2 respectively. The surfaces λ = constant are confocal
ellipsoids with minor and major semi-axes given by:

a = c sinhλ and b = c coshλ (B.2)

Additional relations are useful:

fe = a1b
2
1

a2b
2
2

, e2 = c

b2
, e1 = c

b1
and e = c

b
(B.3)

The incompressible velocity field proposed by Gologanu et al. [6] reads as:

vGo = A(Ė)v(A) +B(Ė)v(B) with v(A) = R(λ)ρeρ + Z(λ)zez, v(B) = −x

2
ex − y

2
ey + zez (B.4)

with

R(λ) = −ac/b2 + arcsin(c/b) and Z(λ) = 2c/a − 2 arcsin(c/b)

A(Ė) = 3Ėm/(2R2 + Z2), B(Ė) = Ėzz −AZ2, R2 = R(λ2), Z2 = Z(λ2)

Note that vGo = ĖA · x on ∂Ω .
When the second-order tensor Ė is stored in vector form as:

Ė = ( Ėxx, Ėyy, Ėzz,
√

2Ėxy,
√

2Ėxz,
√

2Ėyz )

the fourth-order tensor Q, used in Section 3, reads in matrix form as:

Q(λ) = T T · 2πb

|Ω|
(

I1 I2

I2 I3

)
· T + J (λ)QNA, I1 = 8

9

(
3b2R2 + 2a2(R2 + RZ + Z2)

)

I2 = 4

3
(−b2R + a2Z), I3 = 4a2

3
+ 2b2

3
, α̃ = 1

2R2 + Z2
= a2b

2
2

2c3

T is a 2×6 matrix and QNA is a symmetric 6 × 6 matrix whose non-zero entries are:

T11 = T12 = T13 = α̃, T21 = T22 = −α̃Z2, T23 = 1 − α̃Z2

QNA
11 = QNA

22 = −QNA
12 = 1

3
, QNA

44 = QNA
55 = QNA

66 = 2

3

Remark. The nontrivial part of the Gurson velocity field (3) is the solution of the elasticity problem (under the
constraint of incompressibility) of a hollow sphere under hydrostatic loading. Following up on this observation, a quite
natural choice for a sensible velocity field in the problem of the hollow ellipsoid would be the exact solution of an
incompressible elasticity problem posed on the hollow ellipsoid. Although very few exact results are available for
such a geometry, the exact solution of the elasticity problem corresponding to a hydrostatic deformation of the inner
ellipsoid and to a uniform deformation D on the outer ellipsoid is known (Milton [16]), with

D = Dxx(ex ⊗ ex + ey ⊗ ey) + Dzzez ⊗ ez, Dxx = −1

3
+ α(e1) − feα(e2), Dzz = −2Dxx − fe

α(e) = −1 − e2

+
√

1 − e2
arcsin(e) (B.5)
2e2 2e3
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Interestingly, this solution coincides with the field vGo when Ė = D. Therefore the velocity field of Gologanu et al. [6]
illustrates once again the interest of using solutions of elasticity problems as trial fields for ideally plastic problems
(as first suggested by Gărăjeu [17] and further explored by Monchiet et al. [18]).

Appendix C. Derivation of the estimates (29) and (30)

The starting point of this derivation is the relation (24). The integral

2π∫
φ=0

π∫
β=0

ε2
eq(v

Go)Jλβφ dβ dφ

is evaluated following [6] by replacing cos2 β by 1/3. Then, adopting the same sequence of changes of variables as [6]
and the same approximations on ε2

eq(v
Go) in (24) leads to an estimate for Φ(Ė). The sequence of changes of variables

reads as:

x̃ = c3/(ab2) = 1

sinhλ cosh2 λ
, then ỹ = χx̃

x̃ + 3χ/4
with χ =

√
π2 + 32/3 and finally z = y2

ỹ

The following estimate is obtained

Φ(Ė) ≈ inf
A

σ ′
0

1∫
q1fb

1∫
y2/y1

√
4A2

y2
+ A′2(D)y2

2

q3z2
+ B′2(D)

q3
+ (ĖNA

eq )2

q3
dzdy (C.1)

with:

σ ′
0 = 16πc3σ0

9|Ω|y2
, y2 = ỹ

(
x̃(λ2)

)
, y1 = ỹ

(
x̃(λ1)

)
, A′ = A(D)F̄ +B(D)Ḡ, B′ = B(D)H̄

and F̄ , Ḡ and H̄ are constants which can be found in [6]. The term

A′2(D)y2
2

z2
+B′2(D)

can be developed by considering that H̄ 2 + Ḡ2y2 ≈ 1. The result reads as:

Φ(Ė) ≈ inf
A

σ ′
0

1∫
q1fb

1∫
y2/y1

√
4A2

y2
+ [

F̄ 2A2(D) + 2F̄ ḠA(D)B(D)
] y2

2

q3z2
+ B2(D)

q3
+ (ĖNA

eq )2

q3
dzdy (C.2)

Then the term

[
F̄ 2A2(D) + 2F̄ ḠA(D)B(D)

] y2
2

q3z2
+ B2(D)

q3
+ (ĖNA

eq )2

q3

can easily be written as D : S : D where S is a fourth-order tensor.
The next step concerns randomly oriented ellipsoids. Following the same procedure as in Section 3.3 and introduc-

ing the projections of S over J and K , one obtains:

Φ(Ė) ≈ inf
A

σ ′
0

1∫
q1fb

1∫
y2/y1

√
4A2

y2
+ (Ėm − A)2

z2

ã2

q3
+ (Ėm − A)2 b̃2

q3
+ (Ėeq)2

q3
dzdy

≈ inf
A

σ0(g + 1)

1∫
q1fb

1∫
f̃

√
4A2

y2
+ (Ėm − A)2

z2

ã2

q3
+ (Ėm − A)2 b̃2

q3
+ (Ėeq)2

q3
dzdy (C.3)

with:
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f̃ = g + fe

g + 1
, g = 4e3

2

3χ

√
1 − e2

2

, ã2 = 3

κ2(g + 1)2

(
3 − 2η + 4ηZ2

χg

)
, b̃2 =

(
1 − 2

χg
Z2

)2

Z2 = 2e2√
1 − e2

2

− 2 arcsin(e2), κ =
(

2

3
+ g(1 − f )(g + 2f + gf )

3(g + 1)2(g + f )2 log g+1
g+f

)−1

η = κ(1 − f )(g + 1)(g + f ) sinh(2κ(α2 − α1))

(g + 1)2 + (g + f )2 + 2(g + 1)(g + f )(κ(α2 − α1) sinh(2κ(α2 − α1)) − cosh(2κ(α2 − α1)))

with α2 = α(e2), α1 = α(e1), the function α(e) being defined in (B.5).
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