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Abstract

Analytical and numerical approaches are used to solve an axisymmetric crack problem with a refined Barenblatt–Dugdale ap-
proach. The analytical method utilizes potential theory in classical linear elasticity, where a suitable potential is selected for the
treatment of the mixed boundary problem. The closed-form solution for the problem with constant pressure applied near the tip
of a penny-shaped crack is studied to illustrate the methodology of the analysis and also to provide a fundamental solution for
the numerical approach. Taking advantage of the superposition principle, an exact solution is derived to predict the extent of the
plastic zone where a Tresca yield condition is imposed, which also provides a useful benchmark for the numerical study presented
in the second part. For an axisymmetric crack, the numerical discretization is required only in the radial direction, which renders
the programming work efficient. Through an iterative scheme, the numerical method is able to determine the size of the crack tip
plasticity, which is governed by the nonlinear von Mises criterion. The relationships between the applied load and the length of
the plastic zone are compared for three different yielding conditions. To cite this article: S. Chaiyat et al., C. R. Mecanique 336
(2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Évaluation analytique et numérique de la plasticité au voisinage du front d’une fissure en forme de pièce de monnaie
soumise à un chargement axisymétrique. On utilise des approches analytiques et numériques pour résoudre un problème de
fissure axisymétrique avec un modèle de Barenblatt–Dugdale raffiné. La méthode analytique utilise la théorie du potentiel en
élasticité linéaire classique, un potentiel approprié étant choisi pour le traitement du problème aux limites mixte. La solution
complète du problème comportant une pression uniforme appliquée au voisinage du front d’une fissure en forme de pièce de
monnaie est étudiée afin d’illustrer la méthodologie de l’analyse et également fournir une solution de référence pour l’approche
numérique. Grâce au principe de superposition, une solution exacte est obtenue afin de prédire l’étendue de la zone plastique
où une condition de Tresca est imposée, ce qui fournit aussi un test utile pour qualifier l’étude numérique présentée dans la
seconde partie. Pour une fissure axisymétrique, seule une discrétisation dans la direction radiale est requise, ce qui permet une
programmation efficace. Grâce à une procédure itérative, la méthode numérique est capable d’évaluer la taille de la zone plastique,
qui est déterminée par le critère non-linéaire de von Mises. Les relations entre le chargement appliqué et la taille de la zone
plastique sont comparées pour trois conditions d’écoulement différentes. Pour citer cet article : S. Chaiyat et al., C. R. Mecanique
336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Initiation and propagation of a fatigue crack in metallic alloys are involved with cumulative microstructural dam-
age, as explained by Coffin [1] in terms of the plastic strain experienced locally by the material. At the microscopic
level Weertman [2] has used the Bilby–Cottrell–Swinden model to study the slip zone ahead of a mode III crack. At
the macroscopic level, cumulative damage theory has been examined by Fleck and Anderson [3] for varying plastic
strain ranges. Knowledge of the crack tip plasticity is, therefore, fundamental for studying the failure process.

Most solid materials develop inelastic deformation when the yield strength is exceeded. Under such a circumstance,
the singular stress distribution predicted by the linear elastic fracture mechanics (LEFM) becomes untenable in the
region sufficiently close to the crack tip. To make the singular terms disappear, Barenblatt [4] postulated that there
exists a system of cohesive forces acting near the edge of the crack, where the distance between the opposite walls
of the crack is small and the molecular attractive forces become strong. He also proposed that the cohesive stresses
distribute in such a manner as to cause the crack faces to close smoothly and remove the stress singularity at the crack
tip.

Dugdale [5] proposed a strip-yield model to study the extent of the plastic zone in the vicinity of the crack tip. He
considered a through crack of length 2l lying in a thin ideal elastoplastic sheet which is subjected to a uniform plane
stress loading at infinity. Assuming the plastic zone is modeled as a yielded strip over some length s ahead of its two
crack tips, he postulated the effect of yielding as causing an increase in the crack length that includes the extent of the
plastic zone. Accordingly, the elastic–plastic crack problem is reduced to an elastic problem over a hypothetical crack
of length 2(l + s), with the flow stress, σY , applied in the yield zone to close the effective crack. Dugdale also showed
good agreement between the results derived by this approach and experiment.

Since most flaws within engineering materials are more realistically represented by three dimensional (3D) geome-
tries, it is useful to extend Dugdale’s 2D hypothesis to 3D study. In this work, a penny-shaped crack of radius c is
considered. When subjected to the remote axisymmetrical loading, the yield zone is assumed to occur in front of the
crack tip and coplanar to the physical crack, which leads to a hypothetical penny-shaped crack of radius a. In the
original 2D Dugdale approach, the requirement of the plastic zone carrying the yield stress is, in fact, equivalent to the
Tresca condition, because the minimal principal stress is the stress component normal to the plane and vanishes under
the plane stress condition. However, this is usually not true in 3D analysis. To address this point, the results based on
the Tresca and the von Mises yielding criteria are derived in the present work and compared with those based on the
original Dugdale’s postulation.

The penny-shaped crack problem has received extensive investigation in the literature of fracture mechanics. One
of the important solutions to the penny-shaped crack problem was derived by Sneddon [6], whose pioneer treatment
by means of Hankel transform has attracted active contributions to this research field, [7–10], to name a few. Other
than this popular technique, several methods are also available, such as [11,12]. The analytical method developed by
Green and Zerna [13] and Collins [14] is another powerful tool. A historical review of the method and its application
to axisymmetric mixed boundary value problems in elasticity is elaborated in [15]. The method was extended to
study the non-axisymmetric problem by Keer [16], and its successful applications have covered various aspects of the
penny-shaped crack problem [17,18].

In [18], Keer and Mura developed an analytical solutions to the penny-shaped crack under mode I loading with
Tresca yield criterion prescribed in the Barenblatt–Dugdale type plastic zone. The same problem is also solved numer-
ically by Kelly and Nowell [19] through quadratic programming. The penny-shaped crack under mixed mode loading
has been studied in [20], and a related formulation for fatigue crack growth has been proposed by Chen and Keer [21].
Their work was referenced by Wang and Li [22] in developing the damage model for solids with defects

This article incorporates both an analytical method and a numerical method to investigate the plasticity zone of a
penny-shaped Dugdale crack subjected to axisymmetric loading. The Green and Zerna potential as presented in [21] is
employed in the analytical method. This formulation is found effective for the analytical treatment of the Tresca con-
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Nomenclature

a radius of the penny-shaped Dugdale crack
A(ξ) unknown function in the potential
b outer radius of the annular ring
c inner radius of the plastic zone
d inner radius of the annular ring
H(x) Heaviside function
J0(ξr), J1(ξr) Bessel function of the zeroth and the

first order
KI mode I stress intensity factor
Kr

ij , Kθ
ij influence coefficient of σrr , σθθ caused by

the annular loading
l half length of the original two dimensional

Dugdale crack
N number of elements used in the numerical

analysis
p constant pressure near the crack tip
p0 constant pressure inside the crack
q(t) unknown function in A(ξ)

r0, r1, ri , . . . , rN discretization in the radial direc-
tion

(r, θ, z) polar coordinates
s length of the plastic zone in two dimensional

Dugdale crack
t parameter of integration
T uniform remote tension
uz displacement in z-direction

xi the center of the annular element along the
radial direction

φ Green and Zerna potential function
λa

r , λc
r , λa

θ , λc
θ intermediate quantities in the expres-

sions of the stress components
μ shear modulus
ν Poisson’s ratio
σ1, σ3 the maximum and minimum principal

stresses
σzz, σrr , σθθ normal stress components in cylindri-

cal coordinates
σrθ , σzθ , σzr shear stress components in cylindrical

coordinates
σ

(i)
rr , σ

(i)
θθ the resultant stress components at the cen-

ter of the ith element
σY yield stress of the material
τi constant annular loading on the ith element
τj constant annular loading on the j th element
τz constant tensile loading in the annular ring
ξ parameter of integration

Superscripts

– represents the reduced problem
(I) the first part of the reduced problem
(II) the second part of the reduced problem

dition. The detailed application of the method and some related algebraic manipulations are illustrated in Appendix A
to solve the problem of the Dugdale-type yield condition. The complete solution at the crack plane is also presented
for convenience of reference, since this did not appear in [21–23]. The numerical approach proposed in the second
part utilizes the fundamental results shown for the solved problem in Appendix A. For the axisymmetric problem,
minimal programming work is required since the discretization is only needed along the radial direction. The problem
based on the Tresca criterion is linear and can be achieved in a straightforward manner. The problem based on the
von Mises criterion is nonlinear; however, this mathematical difficulty can also be overcome by the present numerical
computation, with the introduction of an effective iterative scheme.

2. Analytical method

2.1. Problem formulation

A three dimensional extension of Dugdale’s strip yield model is considered in this study. For a penny-shaped crack
of radius c under remote tension T in the z direction, a coplanar plastic yield ring is formed in front of the crack.
By taking advantage of the axial symmetry, the cylindrical coordinate system (r, θ, z) is employed, as illustrated in
Fig. 1. Dugdale’s hypothesis approximates the size of the plastic zone by considering the enlarged crack of radius a

with yielding condition satisfied in the ring . The boundary conditions are summarized as follows:

σzθ = σzr = 0, z = 0 (1a)

uz = 0, z = 0 (r > a) (1b)
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Fig. 1. Barenblatt–Dugdale type penny-shaped crack under uniform tension at infinity.

σzz = 0, z = 0 (0 < r < c) (1c)

σzz = T , z = ∞ (1d)

yielding condition, z = 0 (c < r < a) (1e)

In the last of the above boundary conditions, i.e. Eq. (1e), three types of yielding conditions are of current interest:

(1) the original Dugdale’s condition postulates,

σzz = σY , z = 0 (c < r < a) (2a)

where σY is the yield stress of the material subject to uniaxial tension. The solution to this problem is discussed
in Appendix A and in Maugis [23].

(2) Tresca’s yield condition gives

|σ1 − σ3| = σY , z = 0 (c < r < a) (2b)

where σ1 and σ3 are the maximum and minimum principal stresses. For comparison, this problem is solved both
analytically and numerically in the current study.

(3) von Mises criterion for the current problem may be expressed as

(σzz − σrr)
2 + (σzz − σθθ )

2 + (σrr − σθθ )
2 = 2σ 2

Y , z = 0 (c < r < a) (2c)

where the problem is solved numerically.

According to Green and Zerna [13], the solution to an axisymmetric problem may be expressed by a potential
function φ,

σzz = −∂2φ

∂z2
+ z

∂3φ

∂z3
(3a)

σθθ = −∂2φ

∂z2
− (1 − 2ν)

∂2φ

∂r2
+ z

r

∂2φ

∂z∂r
(3b)

σrr = ∂2φ

∂r2
+ 2ν

r

∂φ

∂r
+ z

∂3φ

∂z∂r
(3c)

σzr = z
∂3φ

∂z2∂r
(3d)

σzθ = z

r

∂3φ

∂z2∂θ
(3e)

2μuz = −2(1 − ν)
∂φ + z

∂2φ

2
(3f)
∂z ∂z
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where μ and ν are the shear modulus and Poisson’s ratio of the material, respectively.
A suitable form for the potential function φ can be expressed as [21]

φ = −
∞∫

0

1

ξ
A(ξ)e−ξzJ0(ξr)dξ (4)

where J0(ξr) is the zeroth order Bessel function and A(ξ) is an unknown function determined from the boundary
conditions. By using the potential function of Eqs. (3), (4), it is seen that the boundary condition (1a) is automati-
cally satisfied. To reconcile the unsatisfactory boundary condition (1d), a reduced problem is considered, which is
formulized through the superposition principle.

2.2. Solution to the problem with Tresca yielding condition

Assuming the Tresca yield condition is satisfied in the domain of plastic ring c < r < a, the boundary conditions
(Eqs. (1a)–(1d)) are still valid in this case, while the last condition (Eq. (1e)) takes the form of Eq. (2b). It is assumed
at this stage that the maximum principal stress in the plastic zone is σzz and the minimum principal stress is σθθ ,
Eq. (2b) is thus

σzz − σθθ = σY , z = 0 (c < r < a) (5)

The justification of the above assumption will be checked, a posteriori, after the solution is obtained.
According to the principle of superposition, the above problem may be reduced after subtracting a uniaxial uniform

stress of σ
(0)
zz = T whereby all other stress components vanish. For the reduced problem, the first two boundary

conditions are Eqs. (1a), (1b), while the last three boundary conditions become [18]

σzz = −T , z = 0 (0 < r < c) (6c)

σzz = 0, z = ∞ (6d)

σzz − σθθ = σY − T , z = 0 (c < r < a) (6e)

where σzz with the symbol ‘bar’ on represents the modified stress component in the reduced problem. The principle
of superposition may be employed again to further simplify the algebra involved in the above reduced problem, which
is decomposed as the summation of the following two problems. The first problem corresponds to the penny-shaped
crack under uniform internal load −T inside the crack, which is solved in Appendix A. From Eqs. (A.21)–(A.23), the
stress components inside the crack (r < a) for the first problem are

σ (I)
zz = −T (7a)

σ
(I)
θθ = −T

(
1

2
+ ν

)
(7b)

σ (I)
rr = −T

(
1

2
+ ν

)
(7c)

where the superscript (I) represents the first part of the reduced problem. Accordingly, the corresponding boundary
conditions (Eqs. (6c)–(6e)) are adapted for the second problem as

σ (II)
zz = 0, z = 0 (0 < r < c) (8c)

σ (II)
zz = 0, z = ∞ (8d)

σ (II)
zz − σ

(II)
θθ = σY − T

(
1

2
+ ν

)
, z = 0 (c < r < a) (8e)

where the superscript (II) represents the second part of the reduced problem. This problem may also be solved by the
method given in Appendix A. First, using the Green–Zerna potential, Eq. (8e) leads to

(1 − 2ν)
∂2φ

∂r2

∣∣∣∣ = σY −
(

1

2
+ ν

)
T (9)
z=0
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Utilizing Eq. (A.9), the above Eq. (9) yields

d

dr

[
1

r

r∫
c

tq(t)√
r2 − t2

dt

]
= 2σY − (1 + 2ν)T

2(1 − 2ν)
(10)

The solution to the above Abel type integral equation is determined as

q(t) = 2

π

2σY − (1 + 2ν)T

(1 − 2ν)

[√
t2 − c2 − c

2
cos−1(c/t)

]
(11)

Compared with the above result, there appears to be a misprint in the solution given in [18]. In the plastic zone, the
stress components are evaluated as follows:

σ (II)
zz = 2σY − (1 + 2ν)T

2(1 − 2ν)

(
2 − c

r

)

σ
(II)
θθ = 2σY − (1 + 2ν)T

2(1 − 2ν)

(
1 − c

r
+ 2ν

)

σ (II)
rr = 2σY − (1 + 2ν)T

2(1 − 2ν)

(
1 − 2ν

c

r
+ 2ν

)
(12)

After carrying out the superposition, the following results are arrived for the penny-shaped Dugdale crack with Tresca
condition prescribed in the yield ring:

σzz − σzz = σY

σzz − σrr = σY −
[
σY −

(
1

2
+ ν

)
T

]
c

r

σrr − σθθ =
[
σY −

(
1

2
+ ν

)
T

]
c

r
(13)

Since c/r in plastic domain is smaller than 1, it is now seen that Tresca’s yield criterion given by Eq. (5) is valid.
The requirement that the stress singularity vanishes at r = a gives the relationship between the applied stress and

the length of the plastic zone

(1 − 2ν)T /σY

2 − (1 + 2ν)T /σY

=
√

1 − (c/a)2 − c

2a
cos−1(c/a) (14)

which verifies Keer and Mura’s result [18]. Using the above results, one may also evaluate the stress components for
r > a on the crack plane z = 0. From those lengthy expressions, whose details are not transcribed here, two interesting
results are observed. The singularities of σθθ and σrr at r = a also vanish as the condition (14) is satisfied. In such an
instance, the stress components σzz, σθθ and σrr all exhibit continuous distribution on the crack plane z = 0.

3. Numerical method

In this section, a numerical approach is proposed to solve the axisymmetric crack problem. The fundamentals of
the numerical method are based on the solution of a penny-shaped crack under constant annular loading inside the
crack, which may be readily deduced from the analytical solution of the problem solved in Appendix A. Both of the
problems considering Tresca and von Mises criterion are solved by employing this numerical technique.

3.1. Formulation and discretization

Consider a penny-shaped crack of radius a subject to a constant annular (d < r < b) tensile stress τz, as shown in
Fig. 2. The solution to this problem may be deduced from the problem solved in Appendix A through superposition,
noting the difference of the sign convention. The following induced stresses in zones (i)–(iii) along the crack face are
derived.
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Fig. 2. Penny-shaped crack of radius a subject to a constant annular (d < r < b) tensile stress τz on the crack face.

• Zone (i) (r < d , z = 0):

σzz = σθθ = σrr = 0 (15)

• Zone (ii) (d < r < b, z = 0):

σzz = τz

σθθ = τz

[(
1

2
+ ν

)
−

(
1

2
− ν

)
d2

r2

]

σrr = τz

[(
1

2
+ ν

)
+

(
1

2
− ν

)
d2

r2

]
(16)

• Zone (iii) (b < r < a, z = 0):

σzz = 0

σθθ = τz

[(
1

2
− ν

)
(b2 − d2)

r2

]

σrr = −τz

[(
1

2
− ν

)
(b2 − d2)

r2

]
(17)

The stress intensity factor (SIF) at r = a due to the annular loading is given by

KI = 2τz√
πa

(√
a2 − b2 −

√
a2 − d2

)
(18)

In the numerical solution, the stress component σzz on the crack face is regarded as unknown. The axisymmetric
distribution of σzz on z = 0, r < a may be discretized on the annulus. The discretization is only required along the
radial direction, while it is also noted that this radial discretization can be non-uniform.

In the radial direction, the penny-shaped crack is discretized into N elements. On each element, the stress σzz

is assumed to be constant. Although this may lead to some error, however, when the total number of the elements
becomes larger and the size of each element becomes sufficiently small, reasonable accuracy can be achieved. Other
stress components σθθ and σrr may also occur due to the existence of σzz in each annual ring to ensure an equilibrium
of the stress state, as demonstrated by Eqs. (16), (17). The resultant stress components can therefore be calculated by
superposing the contributions from all the annular elements.

3.2. Case study

3.2.1. The Tresca criterion
The penny-shaped crack is first discretized as described in the previous section. The non-zero σzz exists only in the

yield zone (c < r < a), which is the computational domain to be discretized in the current computation. Assuming N

elements are used in this analysis, the yield zone is discretized along the radial direction, c = r0 < r1 < r2 < · · · <

rN = a, as shown in Fig. 3. The magnitude of σzz on the j th element is assumed to be τj , which is the unknown that
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Fig. 3. Discretization of the plastic zone (c < r < a) along the radial direction.

needs to be determined. The Tresca yield condition is made to be satisfied at the center of each element. Denote xi as
the center of the ith element

xi = 1

2
(ri + ri−1) (19)

The induced stress σθθ at xi can be determined from Eqs. (15)–(17), with r replaced by xi . This relation is recorded
in the following form:

σθθ (r = xi) =
N∑

j=1

Kθ
ij τj (20)

where the influence coefficient, Kθ
ij , can be determined accordingly from either of the Eqs. (15)–(17).

The uniform remote tension T may be regarded as an additional unknown. From the result in Appendix A, it is
seen that T also causes σθθ on the crack face, although with no effect on σzz, i.e.,

σθθ (r = xi) = −T

(
1

2
+ ν

)
(21)

Summarizing all the contributions, the Tresca’s condition at xi gives

(
1

2
+ ν

)
T + τi −

N∑
j=1

Kθ
ij τj = σY (i = 1,2, . . . ,N) (22)

The above equation gives a total of N linear algebraic equations, while a total of N + 1 unknowns is present in the
current problem. The additional equation is derived by considering that the SIF vanishes at r = a, which may be
formulated by considering the contributions to the SIFs from T and each τj , cf. Eqs. (18) and (A.24),

2T

√
a

π
− 2√

πa

N∑
j=1

[(√
a2 − r2

j−1 −
√

a2 − r2
j

)
τj

] = 0 (23)

From Eqs. (22) and (23), a system of N + 1 linear algebraic equations with a total of N + 1 unknowns is formulated.
The unknowns in Eqs. (22) and (23) may be nondimensionalized by σY . After solving the system of linear algebraic
equations, the numerical results for T/σY and τj /σY (j = 1,2, . . . , n) are obtained.

3.2.2. The von Mises criterion
The discretization for the von Mises criterion problem is the same as in the preceding. It is noted that Eqs. (19)–

(21), (23) of the previous section remain valid for the current problem. The resultant σθθ at r = xi is denoted as

σ
(i)
θθ = −T

(
1

2
+ ν

)
+

N∑
j=1

Kθ
ij τj (24)

Similar to Eqs. (19), (20), the resulting stress σrr on the crack face is found by utilizing Eqs. (25) and (26) where

σrr(r = xi) =
N∑

Kr
ij τj (25)
j=1
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due to the annular tensile loading τj , where the influence coefficient, Kr
ij , is determined from either of Eqs. (15)–(17),

and

σrr(r = xi) = −T

(
1

2
+ ν

)
(26)

due to the uniform remote tension T . Consequently, the resultant σrr at r = xi is

σ (i)
rr = −T

(
1

2
+ ν

)
+

N∑
j=1

Kr
ij τj (27)

Enforcing the von Mises criterion, i.e. Eq. (2c), at xi gives(
τi − σ

(i)
θθ

)2 + (
τi − σ (i)

rr

)2 + (
σ (i)

rr − σ
(i)
θθ

)2 = 2σ 2
Y (i = 1,2, . . . ,N) (28)

Eq. (28) essentially is a system of nonlinear algebraic equations, which, however, cannot be solved in a straightforward
manner as experienced in the previous case. An iterative scheme is employed to facilitate the programming. First, the
above Eq. (28) is reorganized as follows:

τi = σ
(i)
θθ +

√
2σ 2

Y − (
τi − σ

(i)
rr

)2 − (
σ

(i)
rr − σ

(i)
θθ

)2
(i = 1,2, . . . ,N) (29)

It is implicitly assumed above that τi � σ
(i)
θθ holds in the plastic zone. This assumption is instantly verified once a

convergent solution is established. Next, the right-hand side of Eq. (29) is evaluated by the known value from the
previous iteration step, and its result is used to update the value of τi for the current iteration step. Finally, with the
current value of τi , Eq. (23) is used to update the remote tension T . In this study, the initial values for τi are set
as zeros, and the above iteration is repeated until satisfactory convergence is attained, i.e., the maximum difference
between the current and the previous values of τi is controlled within a given tolerance. Numerical examples show
that the proposed iterative scheme is quite efficient. In some cases, the relative error between two successive iterations
converges to 10−8 after about 10 iterations.

4. Results and discussions

For the plastic zone governed by the Tresca criterion, Eq. (14) shows its length is dependent on Poisson’s ratio,
which differs from a Dugdale crack, as given by Eq. (A.27). Fig. 4 shows the influence of Poisson’s ratio on the
length of the plastic zone. The analytical results for various Poisson’s ratios are compared with the results of a penny-
shaped Dugdale crack. The comparison shows that as the applied load becomes larger, the results based on Dugdale’s
condition approach the Tresca condition with higher Poisson’s ratios. It is also observed that as the Poisson’s ratio
increases, the applied stress must increase to acquire the same length of plastic zone. This coincides qualitatively with
the crack tip plastic zone result for a 2D semi-infinite crack [24]. Considering the particular case when the Poisson’s
ratio reaches 0.5, it is recognized from Eq. (14) that a/c = 1 and hence no plastic zone can occur when the applied
tension T is below the yield stress.

Fig. 4. Comparison of the analytical results of the Dugdale condition and the Tresca condition with various Poisson’s ratios.



S. Chaiyat et al. / C. R. Mecanique 336 (2008) 54–68 63
Table 1
Convergence of the numerical results based on the von Mises condition with various element numbers (ν = 0.25)

N a/c = 1.05 a/c = 2.0 a/c = 6.0

Iterations CPU time (s) Iterations CPU time (s) Iterations CPU time (s)

50 11 0.031 50 0.047 299 0.203
100 11 0.063 50 0.125 299 0.672
200 11 0.250 50 0.594 299 2.531
500 11 3.484 50 5.547 299 17.563

1000 11 24.781 50 32.625 299 81.547

Table 2
Convergence of the numerical results based on the von Mises condition for various Poisson’s ratios (N = 100)

ν a/c = 1.05 a/c = 2.0 a/c = 6.0

Iterations CPU time (s) Iterations CPU time (s) Iterations CPU time (s)

0.20 11 0.047 50 0.016 299 0.172
0.25 11 0.016 49 0.047 328 0.172
0.30 17 0.031 49 0.016 364 0.172
0.40 46 0.031 61 0.047 467 0.297
0.45 103 0.078 121 0.078 543 0.313

Fig. 5. Variation of the normalized σzz in the plastic zone for the three different yield conditions.

The convergence of the numerical results based on the von Mises condition is presented in Tables 1 and 2. In
the computation, the result is considered as convergent when the maximum absolute error between two successive
iterations is below 10−8. As shown in Table 1, the grid size virtually has no effect on the total number of iterations
required to achieve a convergent results. However, the computational time usually increases in a nonlinear manner
when more elements are used (Table 1). For ν = 0.25, the iteration usually converges in less than 300 loops when a/c

is smaller than 6. It is also found that the convergence of the numerical computation does depend on the Poisson’s
ratio, and usually larger value of ν decreases the convergent speed (Table 2). It takes less than 1 second to run a typical
problem on a Pentium 4 computer, when 100 elements are used.

The distribution of the normalized σzz in the yielding zone is shown in Fig. 5 for the three yield conditions when
a/c = 2 and ν = 0.25. For the Tresca condition, the maximum relative error between the numerical and analytical
solutions is about 4 × 10−5, when 100 elements are used in the discretization. The comparison of all the three yield
conditions for ν = 0.25 is shown in Fig. 6, where the analytical results based on the Tresca yield condition are
provided to benchmark the present numerical analysis. Here, 100 elements are employed for the numerical results of
both the Tresca and von Mises criterions. For the Tresca condition, it is difficult to discern the difference between
the numerical and the analytical results in the figure, since the absolute error of the numerical method is generally
about 10−5 (Table 3).

It is postulated in [18] that the von Mises criterion might be more reasonable to decide the plastic domain. As
a calibration, the results based on the Dugdale condition and the Tresca criterion are compared with the von Mises



64 S. Chaiyat et al. / C. R. Mecanique 336 (2008) 54–68
Fig. 6. Comparison of three different yielding conditions for small a/c and ν = 0.25.

Table 3
The numerical results vs. the analytical results of the Tresca condition for ν = 0.25

a/c T /σY

Analytical Numerical Absolute error

1.2 0.6411261 0.6411176 0.0000085
1.6 0.8004665 0.8004542 0.0000122
2.0 0.8592893 0.8592767 0.0000126
4.0 0.9423774 0.9423733 0.0000041
6.0 0.9637025 0.9637034 0.0000008

Table 4
Comparison of numerical results of the three yielding conditions for small a/c and ν = 0.25

a/c T /σY

Tresca Von Mises Dugdale

1.02 0.307274 0.33987659 0.1970564
1.04 0.396142 0.44732872 0.2746703
1.06 0.454172 0.51818407 0.3316678
1.08 0.497475 0.57088019 0.3777051
1.10 0.531968 0.61246836 0.4165978
1.12 0.560549 0.64650576 0.4503399

condition. It is observed in Fig. 6 that the plastic zone based on the von Mises criterion usually possesses a shorter
length than the other two criteria. It is also indicated that when the yield zone is small (a/c ∼ 1), the Dugdale condition
gives the longest length of the plastic zone (Table 4). However, as the yield zone becomes larger (a/c > 3), the
prediction based on Dugdale condition lies between the results based on the other two criteria.

5. Conclusions

This article discusses both analytical and numerical solutions of an axisymmetric penny-shaped crack. Using the
Barenblatt–Dugdale model, the crack tip plasticity is investigated for three types of yield conditions. The numeri-
cal solution to the problem with a Tresca yield condition is benchmarked by the derived analytical solution, which
shows reasonable agreement. The proposed numerical method is effective and the programming implementation is
convenient, as demonstrated in solving the nonlinear problem with the von Mises criterion.
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Appendix A. Solution to the problem of Dugdale type yielding condition

A.1. Constant pressure near the crack tip

For a pressurized crack with constant pressure p on c < r < a and zero on r < c, assuming the penny-shaped
crack of radius a is contained in an infinite media devoid of external loading, the first three boundary conditions,
Eqs. (1a)–(1c), are retained, while the last two, Eqs. (1d) and (1e), need to be replaced by the following:

σzz = 0, z = ∞ (A.1d)

σzz = −p, z = 0 (c < r < a) (A.1e)

It is seen that the boundary condition (A.1d) is automatically satisfied by the potential of Eq. (4). For the current
problem, the function is chosen as

A(ξ) =
a∫

c

q(t) sin(ξ t)dt (A.2)

with the restriction to ensure that no stress singularity occurs at r = c

q(c) = 0 (A.3)

With the assistance of the identity
∞∫

0

sin(ξ t)J0(ξr)dξ = H(t − r)√
t2 − r2

(A.4)

the following result is obtained after interchanging the sequence of integration:

∂φ

∂z

∣∣∣∣
z=0

=
a∫

c

q(t)
H(t − r)√

t2 − r2
dt (A.5)

where H(x) is the Heaviside function, with

H(x) =
{

1 (x � 0)

0 (x < 0)
(A.6)

Similarly, by utilizing the identities

dJ0(ξr)

dr
= −ξJ1(ξr) (A.7)

where J1(ξr) is the Bessel function of the first order, and
∞∫

0

sin(ξ t)J1(ξr)dξ = t

r
√

r2 − t2
H(r − t) (A.8)

the following result is derived:

∂φ

∂r

∣∣∣∣
z=0

=
a∫

tq(t)

r
√

r2 − t2
H(r − t)dt (A.9)
c
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From Eq. (4),

∂2φ

∂z2
= −

∞∫
0

ξA(ξ)e−ξzJ0(ξr)dr (A.10)

Owing to the condition (A.3), A(ξ) may be rewritten in the following form after carrying out integration by parts

A(ξ) = −q(a)
cos(ξa)

ξ
+ 1

ξ

a∫
c

cos(ξ t)q ′(t)dt (A.11)

Substituting (A.11) to (A.10) and using the identity
∞∫

0

cos(ξ t)J0(ξr)dξ = H(r − t)√
r2 − t2

(A.12)

the following result is achieved:

∂2φ

∂z2

∣∣∣∣
z=0

= q(a)
H(r − a)√

r2 − a2
−

a∫
c

q ′(t)H(r − t)√
r2 − t2

dt (A.13)

Now it is seen from Eqs. (3f) and (A.5), boundary condition (1b) is automatically satisfied, and from Eqs. (3a)
and (A.13), boundary condition (1c) is also automatically satisfied. The only remaining boundary condition (A.1e)
leads to

r∫
c

q ′(t)√
r2 − t2

dt = −p (A.14)

After inverting the above Abel integral equation, the following solution is determined with the requirement of (A.3),

q(t) = − 2

π
p
√

t2 − c2 (A.15)

Substituting this result into Eqs. (A.2), (4), and (3a)–(3c), one may obtain the stress distribution on the crack plane
z = 0. It is found that all the stress components vanish for r < c. When r > c, the nonvanishing stress components are

σzz =

⎧⎪⎨
⎪⎩

−p, c < r < a

2

π
p

[√
a2 − c2

r2 − a2
− sin−1

√
a2 − c2

r2 − c2

]
, r > a

(A.16)

σθθ =

⎧⎪⎪⎨
⎪⎪⎩

−pλc
θ , c < r < a

2

π
p

(
λa

θ

√
a2 − c2

r2 − a2
− λc

θ sin−1

√
a2 − c2

r2 − c2

)
, r > a

(A.17)

σrr =

⎧⎪⎪⎨
⎪⎪⎩

−pλc
r , c < r < a

2

π
p

(
λa

r

√
a2 − c2

r2 − a2
− λc

r sin−1

√
a2 − c2

r2 − c2

)
, r > a

(A.18)

where in the above Eqs. (A.17), (A.18),

λc
θ =

(
1

2
+ ν

)
−

(
1

2
− ν

)
c2

r2
, λa

θ =
(

1

2
+ ν

)
−

(
1

2
− ν

)
a2

r2

λc
r =

(
1 + ν

)
+

(
1 − ν

)
c2

2
, λa

r =
(

1 + ν

)
+

(
1 − ν

)
a2

2
(A.19)
2 2 r 2 2 r
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The mode I stress intensity factor is determined from Eq. (A.16),

KI = lim
r→a+

√
2π(r − a)σzz = 2p√

πa

√
a2 − c2 (A.20)

The displacement inside the crack is found from Eqs. (A.15), (A.5) and (3f)

uz = 2(1 − ν)

πμ
p

a∫
max(r,c)

√
t2 − c2

t2 − r2
dt (z = 0, r < a) (A.21)

The integral in the above equation may be expressed as functions of elliptic integrals, whose details are given in [23].

A.2. Constant pressure inside the crack

A special yet important case is that when constant pressure p0 is applied inside the entire crack. The solution to
this problem can be readily deduced by substituting c = 0 into the above results of the previous section, which yields

σzz =

⎧⎪⎨
⎪⎩

−p0, r < a

2

π
p0

[
a√

r2 − a2
− sin−1(a/r)

]
, r > a

(A.22)

σθθ =

⎧⎪⎪⎨
⎪⎪⎩

−p0

(
1

2
+ ν

)
, r < a

2

π
p0

[
λa

θ

a√
r2 − a2

−
(

1

2
+ ν

)
sin−1(a/r)

]
, r > a

(A.23)

σrr =

⎧⎪⎪⎨
⎪⎪⎩

−p0

(
1

2
+ ν

)
, r < a

2

π
p0

[
λa

r

a√
r2 − a2

−
(

1

2
+ ν

)
sin−1(a/r)

]
, r > a

(A.24)

where λa
θ and λa

r in the above Eqs. (A.23), (A.24) are given by Eq. (A.19).
The mode I stress intensity factor is

KI = 2

π
p0

√
πa (A.25)

The problem of a penny-shaped crack under remote tension which is uniformly applied at infinity can be reduced to
the above pressurized crack problem, according to the superposition principle.

A.3. Penny-shaped Dugdale crack

When the uniform tension T is applied at infinity, a ring-shaped plastic zone is accumulated in the region, c <

r < a, where a closure stress equal to σY is applied to remove the singularity at the crack tip r = a. To simplify
the calculation, the problem is handled by superposing two solutions: a penny-shaped crack under remote tension T ,
whose SIF can be deduced by Eq. (A.25), and a penny-shaped crack under constant closure stress of Eq. (2a) at the
tip, whose SIF can be determined by (A.20). The SIF for the resultant problem must vanish, therefore,

2

π
T

√
πa − 2σY√

πa

√
a2 − c2 = 0 (A.26)

From the above equation, the relationship between the length of the plastic zone and the applied load is determined:

T

σY

=
√

1 −
(

c

a

)2

(A.27)
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