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Abstract

Numerical simulations of the three-dimensional fluid flow in a two-sided non-facing lid-driven cubical cavity are presented.
Computations have been carried out for several Reynolds numbers from a low value to 700. At low Reynolds numbers the flow
is steady. The three dimensional flow characteristics are analyzed at Re = 500. An analysis of the flow evolution shows that,
when increasing Re beyond a certain critical value the flow becomes unstable and bifurcates. It is observed that the transition to
unsteadiness follows the classical scheme of a Hopf bifurcation. The time dependent solution is studied and the critical Reynolds
number is localized. To cite this article: B. Ben Beya, T. Lili, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Écoulement tridimensionnel de fluide incompressible dans une cavité cubique doublement entrainée par des faces adja-
centes. Nous présentons dans cette Note une étude numérique de l’écoulement tridimensionnel de fluide dans une cavité cubique
doublement entrainée par des faces adjacentes. Les calculs ont été menés à plusieurs valeurs du nombre de Reynolds depuis des
valeurs faibles jusqu’à 700. A faible nombre de Reynolds l’écoulement est stationnaire. Les caractéristiques de l’écoulement tri-
dimensionnel ont été analysées à un nombre de Reynolds Re = 500. L’analyse de l’évolution de l’écoulement montre qu’avec
l’augmentation du Re au-delà d’une certaine valeur critique l’écoulement devient instable et subit une bifurcation. Il a été observé
que la transition vers l’instationnarité s’effectue par une bifurcation de Hopf. Le nombre de Reynolds critique au-delà duquel
l’écoulement devient instationnaire est déterminé. Pour citer cet article : B. Ben Beya, T. Lili, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The lid-driven cavity (LDC) flows of a Newtonian fluid are regularly the object of researches. Similar flows arise
in large variety of natural, industrial and biomedical applications [1]. In addition, the LDC flow is one of the most fre-
quently employed numerical benchmark problems for 2D and 3D [2–6] Navier–Stokes solvers. The majority of papers
dealing with the numerical solution of the lid-driven cavity problem have been concerned with the two-dimensional
problem.

Papers for the two-dimensional problem incorporating more than one lid-driven have also appeared in the recent
literature [7,8]. Recently, Wahba [9] has considered the case of a two sided non-facing lid-driven (TSNFL) cavity in
which the flow is driven by two non-facing walls and the four-sided lid driven cavity.

However, despite their apparent simple geometry, a lid-driven cavity flow is known to contain high degrees of
complexity, revealing 3D flow structure even at a large spanwise aspect ratio. It exhibits almost all phenomena that
can possibly occur in incompressible flows, such as complex 3D patterns, instabilities, transition and turbulence.
According to the 2D-LDC, Auteri et al. [10] have localized the critical Reynolds number for the first Hopf bifurcation
in the interval (8017.6, 8018.8) using a second-order spectral projection method. Bruneau et al. [4] have situated the
critical Reynolds number between 8000 and 8050 within less than 1% of error.

The three-dimensional transport phenomena often differ from the two-dimensional cases under the same boundary
conditions due to the three-dimensionality effects.

Three-dimensional structures, called Taylor–Gortler (TG) vortices can be found in most of real flows. For example,
the instability problem of transient Couette flow in a cylinder is closely related with that of TG vortices [11]. To study
flow characteristics during 3D-LDC flow, numerical and experimental studies have been conducted. Koseff and al.
[12] performed experiments and observed TG vortices in a plane normal to the main flow.

Very recently, J. Chicheportiche et al. [13] studied instabilities in the 3D-LDC flow with span wise periodic
boundary-conditions (to suppress the role of the end walls) at Re = 1000. The authors identified by DNS and global
linear stability the mechanisms of transition and found a 3D steady TG flow. This means that the rigid end-walls
suppress TG vortices in driven cavities with low span length.

Three-dimensional cavity flow with more than one moving wall does not appear in the literature and, certainly, no
attention has been paid to the 3D-TSNFL cavity problem.

The purpose of this paper is to extend the 2D-TSNFL cavity flow which were developed in [9] in three dimensions.
The top wall is moving to right, while the left vertical wall is moving down with the same constant velocity. All
computations will be made on a grid of 643 nodes with the help of an accelerator multigrid solver.

The three-dimensional two-sided non-facing lid (3D-TSNFL) flow structure is first analyzed in the steady case. The
further evolution of the flow is qualitatively investigated. According to [13], we believe that the bifurcation reported
in this study for the 3D-TSNFL with no-slip end walls in the span wise direction cannot leads to TG vortices. This
question remains uncertain at the present time and perhaps a fully linear stability analysis is needed to clarify this
matter.

2. Physical model and formulation

We consider the three-dimensional two-sided non-facing lid-driven (3D-TSNFL) cubical cavity with sides of
length H , as depicted in Fig. 1. The top wall is moving to right, while the left vertical wall is moving down with
the same constant velocity. The cavity is filled with a Newtonian fluid with constant viscosity v and constant den-
sity ρ. The dimensionless governing equations written in Cartesian coordinates (i, j, k = 1,2,3) are given by:

∂ui

∂xi

= 0 (1)

∂ui

∂t
+ ∂(ujui)

∂xj

= − ∂p

∂xi

+ 1

Re

∂2ui

∂xj ∂xj

(2)

The dimensionless quantities xi = (x, y, z), ui = (u, v,w), p and t denote the coordinate space, velocity compo-
nent in the xi direction, hydrodynamic pressure and time, respectively. The scales used for the dimensionalization
are H , v/H , ρv2/H 2, and H 2/v respectively. The Reynolds number Re is based on the cavity length H and the lid
velocity u0 as: Re = u0H/v.
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Fig. 1. The geometric model of the two sided non-facing lid driven cubical cavity.

Fig. 1. Modèle géométrique de la cavité cubique doublement entrainée en des faces adjacentes.

Velocity boundary conditions (see Fig. 1) take the following form:

At z = 1: (moving wall) u = 1, v = 0, and w = 0,
At x = 0: (moving wall) u = v = 0, and w = −1,
At x = 1, y = 0, y = 1, and z = 0: u = v = w = 0.

3. Numerical method

Because we are interested in the transition to unsteadiness in which the time accuracy is of great importance, we
have chosen to use a second order stepping scheme. This second order scheme is based upon two main ingredients:

(i) The time derivative in the momentum equations is approximated by a second order Euler backward scheme:(
∂f

∂t

)n+1

= 3f n+1 − 4f n + f n−1

2�t
+ σ

(
�t2)

where f = u, v or w.
(ii) The linear terms are evaluated at time (n + 1)�t whereas the non-linear part N is explicitly evaluated at time

(n + 1)�t by means of an Adams–Bashforth extrapolation:

Nn+1 = 2Nn − Nn−1.

The velocity-pressure coupling present in the continuity and the momentum equations is handled by using the projec-
tion method [14]. At each time, the momentum equations for a provisional velocity field that may not be divergence
free, are solved. A Poisson equation with homogeneous boundary conditions is then solved and leads to update pres-
sure and free divergence velocity fields. A finite volume method [15] on a staggered grid system is employed to
discretize the system of equations to be solved. The QUICK scheme of Hayase et al. [16] is employed to minimize
the numerical diffusion for the advective terms.

The discretized equations are solved using the red and black point successive over-relaxation method with optimum
relaxation factors, except the Poisson equation which is solved using an accelerated full multigrid method (FMG) [17].
Results provide the superiority of the FMG multigrid method against single grid calculations using the so-called
V-cycle and optimal relaxation parameters. The global convergence was guaranteed by controlling the L2-residuals
norm of all equations to be solved by setting its variation to less then 10−7.
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4. Results and discussion

The 3D-TSNFL cubical cavity is examined. Firstly, computations were performed at low Reynolds numbers from
Re = 100 and steady solutions was established. The fluid is taken initially at rest.

The steady state was considered as achieved according to the following criterion:

max︸︷︷︸
ijk

(∣∣∣∣u
n+1
ijk − un

ijk

un
ijk

∣∣∣∣,
∣∣∣∣v
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∣∣∣∣,
∣∣∣∣w

n+1
ijk − wn

ijk

wn
ijk
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)

� 10−4

where the superscript n denotes the iteration time levels, and (i, j, k) refers to the index nodes. This condition requires
a dimensionless final time of about 600.

Because of the presence of large gradients near the walls, we generate a centro-symmetric grid with clustering near
the walls using following grid point distribution:

xi = 1

2

(
1 + tanh[γ (2i/N − 1)]

tanh(γ )

)

where γ = 1.25 and 1 � i � N . Similar grid point distribution has been used in the three directions of the cavity.
Accurate numerical solutions for the three-dimensional lid-driven cavity flows at Re = 1000, using spectral meth-

ods has been performed by Albensoeder and Kuhlmann [2], and our intention here is to compare our solutions with
theirs. A systematic grid refinement test has been done using non-uniform staggered grids of 323, 483 and 643 at
Re = 1000. The extrema of the u-, v- and w-velocity components as well as their locations have been reported in
Table 1. Plots of the u- and w-velocity components along the vertical and horizontal centerlines on the symmetry
plane are shown in Fig. 2, together with the results from the pseudo-spectral calculations of [2]. It can be seen from
Table 1 and Fig. 2 that the results from our 3D-code agree reasonably well with whose of [2], and deviation from
Albensoeder et al.’s results is about 1%. Our results seem to be better than those of Refs. [5] and [6].

It also can be concluded from Table 1 that a grid of 643 nodes with clustering towards the cavity walls produces
grid independent solution. Thus, all the computations are carried out using a 643 grid size with a time step of 0.01.

The 3D flow structure in a one sided lid driven cavity [2–4] presents a large primary eddy which occupies the core
of the flow and two secondary eddies at the vertical central plane. We do not show them here, instead we plot in Fig. 3
isosurfaces of absolute velocity |�v| = √

u2 + v2 + w2 = 0.15 at Reynolds number Re = 1000. It can be seen, that only
the speed core of the fluid is high. Hence energy is transferred from the top moving wall to the core of the cavity and
regains the top wall by accelerated motion.

The steady flow structure obtained numerically for the 3D-TSNFL at Re = 500 is analyzed in the following. As
initial conditions for the simulations, the fluid is considered at rest. Fig. 4 shows the stream traces at the mid-plane
(y = 0.5) of the 3D-TSNFL cavity flow at Re = 500. Two primary and two secondary vortices are formed with a per-
fectly symmetric patterns about the diagonal cavity. Thus, the 3D-TSNFL flow structure exhibits the same qualitative
eddy structures as its 2-D counterpart about the central plane. This figure agrees qualitatively with the pictures pre-
sented by Wahba [9] according to the 2D-case. We also performed simulations according to the 2D-TSNFL cavity flow

Table 1
Grid independence at Re = 1000 for the lid-driven cubical cavity and comparison of our results with those of Albensoeder et al. [2], Lo et al. [5],
and Ding et al. [6].

Tableau 1
Indépendance de la grille à Re = 1000 pour la cavité cubique entrainée et comparaison de nos résultats avec ceux de Albensoeder et al. [2], Lo et
al. [5], et Ding et al. [6].

Ref. Grid umin zmin wmin xmin wmax xmax

Present work 323 −0.2670297 0.1287 −0.4133509 0.9214 0.2351729 0.1023
Present work 483 −0.2744732 0.1239 −0.4294606 0.9100 0.2416644 0.1063
Present work 643 −0.2769995 0.1227 −0.4295692 0.9041 0.2438928 0.1084

(1.2%) (1.2%) (1.25%) (0.6%) (1.11%) (0.6%)

Ref. [2] 96 × 96 × 64 −0.2803833 0.12419 −0.4350186 0.90957 0.2466511 0.10913
Ref. [5] 1013 −0.26714 0.12 −0.41534 0.92 0.23647 0.12
Ref. [6] 493 −0.258 0.12 −0.414 0.92 0.225 0.12
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Fig. 2. Velocity profiles along centerlines of the lid-driven cubical cavity at Reynolds number (Re = 1000) compared with those of Ref. [2].

Fig. 2. Profiles de vitesse à la ligne centrale de la cavité cubique entrainée comparés à ceux de la référence [2].

Fig. 3. Isosurface of magnitude of velocity |�v| = 0.15 of the lid-
driven cubical cavity at Reynolds number (Re = 1000).

Fig. 3. Iso surfaces du module de la vitesse |�v| = 0.15 en cavité
cubique entrainée et à un nombre de Reynolds (Re = 1000).

Fig. 4. Stream traces at the mid-plane (y = 0.5) of the 3D-TSNFL cavity
flow at Reynolds number (Re = 500).

Fig. 4. Trajectoires de particule au plan médian (y = 0.5) de la cavité
doublement entrainée à un nombre de Reynolds (Re = 500).

on a non-uniform 2562 grid (results were submitted in the present revue). It has been observed that the 3D-TSNFL
almost reproduces the 2D-TSNFL at the mid-plane y = 0.5 for Re = 500.

The u- and w-contours are shown in Fig. 5(a), (b) in the horizontal and vertical mid-planes of the cavity. For each
component, three rolls are observed in the x–z plane: a central large clockwise/anticlockwise roll and two asymmetric
clockwise/anticlockwise rolls close to the walls.

Fig. 6 presents iso surfaces of |�v| = 0.15 and reveals similar behavior of the topology flow seen in Fig. 4. The
steady 3D-TSNFL flow obtained at Re = 500 is also shown in Fig. 7 in terms of both isosurfaces and isocontours of
the velocity gradient tensor component. A high velocity gradient is observed in the spanwise direction close to the
two primary vortices.

Since the 3D-TSNFL flow has never been computed previously, we shall provide benchmark data for Re = 500.
We report in Table 2 our benchmark solutions obtained with our finite volume multigrid code. The table summarizes
the u- and w-components at the mid-plane y = 0.5 versus z and x coordinates respectively. The corresponding plot



868 B. Ben Beya, T. Lili / C. R. Mecanique 336 (2008) 863–872
Fig. 5. Velocity component contours of (a) u and (b) w at Re = 500.

Fig. 5. Iso-contours des composantes de la (a) u (b) w à Re = 500.

Table 2
Benchmark solutions on the 3D-TSNFL cavity flow at Re = 500.

Tableau 2
Solutions benchmark de l’écoulement 3D-TSNFL à un nombre de Reynolds Re = 500.

x or z u w x or z u w

0.00000000 0.00000000 −1.00000000 0.51150640 −0.24202710 0.22246850
0.00333708 −0.00094761 −0.95094250 0.53448410 −0.25677480 0.19982570
0.01023669 −0.00116989 −0.84643550 0.55735710 −0.26450030 0.17500610
0.01759887 0.00045987 −0.73668400 0.58005720 −0.26383170 0.14781820
0.02544694 0.00417619 −0.62673680 0.60251790 −0.25467630 0.11782950
0.03380427 0.01019511 −0.52180040 0.62467590 −0.23811580 0.08507096
0.04269404 0.01869448 −0.42650420 0.64647110 −0.21593530 0.05016490
0.05213903 0.02978594 −0.34418050 0.66784780 −0.19009710 0.01409022
0.06216134 0.04347661 −0.27635530 0.68875470 −0.16235560 −0.02204059
0.07278213 0.05962002 −0.22263380 0.70914570 −0.13406520 −0.05707803
0.08402129 0.07785931 −0.18104040 0.72897970 −0.10614600 −0.08982712
0.09589712 0.09757143 −0.14869430 0.74822150 −0.07914296 −0.11906060
0.10842590 0.11782870 −0.12256420 0.76684110 −0.05331957 −0.14356270
0.12162170 0.13740020 −0.10004470 0.78481440 −0.02875045 −0.16222750
0.13549560 0.15481690 −0.07922164 0.80212240 −0.00539329 −0.17420630
0.15005570 0.16851030 −0.05885839 0.81875170 0.01686394 −0.17906680
0.16530640 0.17701110 −0.03822671 0.83469360 0.03818667 −0.17691270
0.18124830 0.17916390 −0.01691143 0.84994430 0.05882512 −0.16841310
0.19787760 0.17429990 0.00533776 0.86450440 0.07919434 −0.15472340
0.21518560 0.16231640 0.02868646 0.87837830 0.10002250 −0.13731270
0.23315890 0.14364620 0.05324699 0.89157410 0.12254620 −0.11774900
0.25177850 0.11913900 0.07906218 0.90410290 0.14867950 −0.09750067
0.27102030 0.08990133 0.10605820 0.91597870 0.18102820 −0.07779796
0.29085430 0.05714921 0.13397270 0.92721790 0.22262380 −0.05956808
0.31124530 0.02210986 0.16226230 0.93783870 0.27634780 −0.04343366
0.33215220 −0.01402209 0.19000850 0.94786100 0.34417570 −0.02975133
0.35352890 −0.05009776 0.21585870 0.95730600 0.42650250 −0.01866743
0.37532410 −0.08500518 0.23805920 0.96619570 0.52180150 −0.01017477
0.39748210 −0.11776540 0.25464740 0.97455310 0.62674010 −0.00416171
0.41994280 −0.14775460 0.26383550 0.98240110 0.73668830 −0.00045046
0.44264290 −0.17493970 0.26453660 0.98976330 0.84643940 0.00117500
0.46551590 −0.19975310 0.25683700 0.99666290 0.95094430 0.00094914
0.48849360 −0.22239020 0.24210350 1.00000000 1.00000000 0.00000000
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Fig. 6. Isosurface of magnitude of velocity |�v| = 0.15 of the
3D-TSNFL cavity at Reynolds number (Re = 500).

Fig. 6. Iso surfaces du module de la vitesse |�v| = 0,15, en
cavité 3D-TSNFL à un nombre de Reynolds (Re = 500).

Fig. 7. Iso contours and iso surfaces of the tensor gradient velocity com-
ponent (dV dy).

Fig. 7. Iso contours et iso surfaces de la composante du tenseur de gra-
dient de vitesse (dV dy).

Fig. 8. u- and w-velocity components at the centerline y = 0.5 for
Re = 500.

Fig. 8. Composantes de vitesse u et w au plan médian y = 0,5 et
Re = 500.

Fig. 9. Spanwise velocity component v (0.5, y,0.5).

Fig. 9. Composante de vitesse transverse v (0,5, y,0,5).

(Fig. 8) shows a perfectly symmetry about the cavity center. The transverse v-component is depicted in Fig. 9. One
can clearly see that the v-velocity component reduces to near zero in the enclosure central region (between x = 0.35
and x = 0.65) and the fluid flow is confined adjacent to the end walls.

Calculations were performed for several Reynolds numbers from Re = 500 to 700, taking as initial conditions the
converged solution obtained at Re = 500. With the increase of Re beyond a certain critical value the 3D-TSNFL flow
becomes unstable and bifurcates. Representatives profiles at the position x = 0.25, y = 0.5 and 0.25 of the cavity, for
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Fig. 10. Periodic behavior of the 3D-TSNFL flow at Re = 600 of the u, v, w-components at the monitoring point A (0.25,0.5,0.25).

Fig. 10. Comportement périodique de l’écoulement tridimensionnel, composantes u, v et w, de la cavité doublement entrainée à Re = 600 au point
de contrôle A (0,25,0,5,0,25).

Fig. 11. Phase diagrams (v,w) for different Re numbers at the mid-plane y = 0.5.

Fig. 11. Diagrammes de phase (v,w) à différents nombres de Re au plan médian y = 0,5.

u-, v-, and w-velocity component velocity for various Re number were obtained but not presented here. An example
to illustrate the time-dependent solution of the 3D-TSNFL flow is shown in Fig. 10. It can be seen that all the velocity
components are periodic with the same period. The frequency of oscillation was found to be 0.101.

The Re has been increased in step of 10. To verify the periodic behavior of the flow, a phase plot of v-velocity
against w-velocity at the above located point for different Re is shown in Fig. 11.
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Fig. 12. Square of the u-velocity component magnitude fluctuation versus the Reynolds number.

Fig. 12. Carré de la fluctuation de l’amplitude de la composante u de la vitesse en fonction du nombre de Reynold.

It is known for the Hopf bifurcation [18,19] that the amplitude of the solution grows with the square-root of the
bifurcation parameter. This means that the square of the u-velocity fluctuation amplitude Amp2 should be proportional
to the difference of the Re and the critical Rec number after the bifurcation has taken place. It should be noted
that the u-velocity fluctuation amplitude Amp is defined as: Amp = |u1 max(A, t) − u1 min(A, t)|/2, where A is the
monitoring point of coordinates (0.25,0.5,0.25). Thus, we plot in Fig. 12 Amp2 as a function of Re, where the symbols
and the solid lines denote our numerical data and the lines of best fit, respectively. This line can be extrapolated to
where it crosses the zero axis to approximate the bifurcation point, which gives a critical value of approximately
Rec = 540 ± 2%.

5. Conclusion

Simulations of the 3D-TSNFL cavity flow have been performed for various Reynolds numbers. Multigrid is used
as convergence accelerator to provide solutions on a non-uniform staggered grid of 643 grid nodes. According to the
steady regime, it is found that the 2D-TSNFL approximation can present the flow in the vertical mid-plane of the
3D-TSNFL cavity. The numerical experiments reveal that the first Hopf bifurcation takes place at Rec = 540 ± 2%,
and a periodic solution is described at Re = 600 with a frequency of about 0.101 dimensionless time. Furthermore,
the transition of flow occurs earlier, at lower Re, for the 3D-TSNFL relative to the 2D-LDC flow.
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