
C. R. Mecanique 335 (2007) 150–158

http://france.elsevier.com/direct/CRAS2B/

Discrete woven structure model: yarn-on-yarn friction

Bilel Ben Boubaker a,∗, Bernard Haussy a, Jean-François Ganghoffer b

a ESEO, 4, rue Merlet de la Boulaye, 49009 Angers cedex 01, BP 926, France
b LEMTA, UMR 7563, ENSEM, 2, avenue de la forêt de Haye, B.P. 160, 54504 Vandoeuvre cedex, France

Received 11 October 2005; accepted after revision 22 February 2007

Available online 2 April 2007

Presented by Évariste Sanchez-Palencia

Abstract

A discrete model of a fabric has been developed from an analogical description, using a mass-spring system of discrete elements.
An element of fabric is modeled by a set of grid nodes endowed with a mass and connected with flexional and stretching springs.
This model describes the mechanical behavior of a woven structure at a mesoscopic scale. As a novel contribution, the interactions
and the friction between yarns are introduced in the present work. An energy analysis of the discrete system of analogical elements
is performed, taking into account the compression strain energy of the yarns and the work of the reaction forces exerted between
yarns. A suitable discrete variational principle, accounting for the presence of the nonholonomic forces arising from friction, serves
as a basis for a numerical implementation. Simulations of uniaxial tractions are performed, that show the effect of the yarn–yarn
friction and yarn compressibility on the fabric response. To cite this article: B. Ben Boubaker et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Modèle discret de structures tissées – Prise en compte du frottement entre fils. Un modèle discret d’une structure tissée
d’armure toile a été développé, qui s’appuie sur une description analogique, mettant en œuvre un ensemble d’éléments masse-
ressort. Le modèle est construit à partir d’un réseau de nœuds dotés de masses et de rigidités en rotation, connectés par des barres
supposées élastiques. Le modèle décrit le comportement d’une nappe de fils à l’échelle mésoscopique. La nouveauté du présent
travail réside dans la considération de la compressibilité des fils, ainsi que des interactions de frottement entre fils. Une étude
énergétique du système discret est menée, en considérant l’énergie de compression des fils, ainsi que le travail des efforts de
réaction exercé par les fils. Un principe variationnel discret est établi, tenant compte des forces non holonomes dues au frottement.
Des simulations en traction uniaxiales mettent en évidence l’effet du frottement et de la compressibilité des fils sur la réponse du
tissé. Pour citer cet article : B. Ben Boubaker et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Nomenclature

Ωwa,Ωwe the set of warp and weft yarns, respec-
tively

Cei,Cbi extensional and bending spring rigidity,
respectively

Δ distance between two consecutive nodes
ui,wi extensional and vertical displacements,

respectively
ψi rotations of the connecting nodes
Lwe,Lwa length of the weft and warp yarns, respec-

tively
Nwa number of half-periods
Rwa/we reaction force
Lwa

p half-period length
Pwa,Pwe traction loads applied in the x and y direc-

tions, respectively
Pcr beam critical compressive load
αwe ratio between Pwe and P we

cr
(awa

n,k)n∈[1,Nwe], (awe
n,j )n∈[1,Nwa] Fourier series coeffi-

cients for the warp and the weft yarns, re-
spectively

ck abscissa of yarn summits
w̃we = Awe amplitude of the weft yarns
δwe
c and δwa

c vertical displacements of the weft and
warp under compression, respectively C1,

K1 (resp. C2, K2) Kawabata parameters for
the warp (resp. the weft)

Lc curvilinear length of a yarn portion defined
within a half-period

w
j
so-we,w

j
so-wa initial displacements of weft and

warp summits, respectively
w

j
s-wa displacements of warp summits

W
R

j
we/wa

,Wk
reaction forces,Wtraction,Wext work of the

reaction, traction, gravitational and external
forces, respectively

Nd number of discrete elements
Uk

wa strain energy of the warp yarn
V k

wa potential energy of the warp yarn
V potential energy
FT friction force
α,β material constants relative to the elastic and

plastic properties of the material
� effective contact length between the two

yarns
R radius of the considered fiber
Qnc

σ generalized non-conservative forces
rn,Fn

T displacement and non-conservative force
vectors, respectively

qσ generalized coordinates

1. Introduction

Although numerous studies have been performed on the mechanical properties and behavior of woven fabric rein-
forced composites, less work has been spent on dry fabrics, despite their wide range of applications, see [1–4] and the
references therein. The dry fabric behavior is quite peculiar, due to the ease of relative motion between yarns, which
becomes prohibited when the initially dry fabric is impregnated with a resin. The relative ease of motion between
yarns in turn determines the shape formed from the woven structure, and thus calls for a separate analysis [5]. As the
woven structure becomes stretched, the interaction between both sets of yarns (warp and weft) is mobilized, and one
should expect that the ability of the tissue to deform shall be accordingly hindered (due to a change of deformation
mechanisms): it is intuitively clear that the yarn mobility is reduced at the contact zone between both yarns, specially
in terms of rotation. This in turn affects the shape forming capacity of woven structures at the macroscopic scale. It is
therefore important to be able to describe and quantify in an accurate manner the interactions between yarns, including
friction.

A discrete model of fabric has been developed in [2,3], relying on a topological description of the yarns within a
certain unit cell, in connection with given assumed kinematics of the analogical elements (extensional, flexional and
torsional springs). Only the main ingredients of the model that are needed for the understanding of the subsequent
developments shall be recalled here.

Few works in the literature have been devoted to the analysis of the interactions between the yarns, notwithstanding
3D finite element analysis within a context of contact mechanics [6]. From this viewpoint, the main interest of the
mesoscopic approach is to incorporate the effect of the yarn interactions, without considering the three-dimensional
picture inherent to a microscopic view of the yarn contact problem. For that purpose, a more refined analysis of the
yarn motion is performed, whereby the yarn undulations are explicitly considered.
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Fig. 1. Discrete model of the woven structure.

Fig. 1. Modèle discret de structures tissées.

Considering the structure as being organized into two sets of intertwined yarns Ω (the warp and the weft), the
set Ω is decomposed into the assembly of two sub mechanical systems (Fig. 1), namely the set of warp yarns, Ωwa,
interacting with the set of weft Ωwe, here considered as an external (sub-mechanical) system.

The discretized yarn consists of a set of punctual masses mutually connected by extensional rigidities Cei = EA/Δ;
each node is given a rigidity in flexion Cbi = EI/Δ, see Fig. 1. Observe that the model takes into account dynamical
aspects in the general situation, due to the presence of punctual masses. However, at least in the present applications,
only a static behavior shall be considered.

The total potential energy associated to the warp yarns’ system, Ωwa, is first established, from a discrete description
of the warp yarn shape.

2. Yarn–yarn interactions accounting for yarn compressibility

One considers in the following the plane motion of a single yarn (the warp) subjected to traction at its extremities
and to the punctual contact reactions exerted by the transverse yarns (the weft), Fig. 1. The kinematics of the yarn is
described on Fig. 1, and consists of the vertical displacements wi and the rotations ψi of the connecting nodes. The
contact forces Rwe/wa exerted by each transverse yarn are first expressed, in terms of the mechanical and geometrical
yarns parameters, and the traction loads Pwa and Pwe applied in the x and y directions, respectively, involving the
Timoshenko beam theory [4].

At equilibrium, the deformed shapes of the fabric yarns are assumed to be periodic and expressed as the following
Fourier series:

w
j
we(y) =

Nwa∑
n=1

awe
n,j sin

(
(j − 1)π + n

πy

Lwe

)
; wk

wa(x) =
Nwe∑
n=1

awa
n,k sin

(
(k − 1)π + n

πx

Lwa

)

for a weft yarn of index j and a warp yarn of index k respectively, where Lwa and Lwe are the projected length of
the warp and weft yarns, respectively on the x- and y-axes, respectively, and the(awa

n,k)n∈[1,Nwe], (awe
n,j )n∈[1,Nwa] are the

Fourier series coefficients.
Using the Timoshenko’s beam theory, in the case of an elastic beam subjected to an axial load P and a lateral force

F exerted at a point of abscissa c, the equilibrium shape of the elastic beam is given by the Fourier development

w(x) = 2FL3

π4EI

N∑
k=1

1

k2(k2 + P
Pcr

)
sin

(
kπc

L

)
sin

(
kπx

L

)
(1)

with Pcr = π2EI/L2, the beam critical compressive load, L the projected beam length and EI the beam bending
rigidity.

Using the superposition principle, the equilibrium shape associated to a weft yarn, considered as an elastic beam
which is subjected to an axial load and periodic lateral forces, is defined by
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w
j
we(y) = 2Rwa/weL

3
we

π4EIwe

Nwa∑
n=1

Nwa/2∑
m=1

1

n2(n2 + αwe)

(
sin

(
nπ

Nwa

(
2m − 3

2

))

− sin

((
2m − 1

2

)
nπ

Nwa

))
sin

(
(j − 1)π + nπy

Lwe

)
(2)

with αwe = Pwe/P
we
cr and P we

cr = π2EIwe/L
2
we. At the interlacing points of abscissa y = ck ∀k ∈ [1,Nwa], the double

sum in (2) simplifies as∣∣∣∑∑∣∣∣ = 1

Nwa(N2
wa + αwe)

(3)

We then deduce, from Eqs. (2), (3), the expression of the reaction forces that the warp yarns exert on the weft yarns at
the interlacing points:

∀y = ck,
∣∣wwe(y)

∣∣ = w̃we = 2Rwa/we

π4EIwe

L3
we

Nwa(N2
wa + αwe)

⇐⇒ Rwa/we = π4

2

EIwe

(Lwe
p )3

(
1 + αwe

N2
wa

)
w̃we (4)

where w̃we = Awe is the amplitude of the weft yarns within the woven structure. This general framework shall be
involved in the following to analyze the behavior of the warp yarn system Ωwa, accounting for the interactions of the
transverse yarns.

Under the effect of the loads Pwa and Pwe applied in the warp and weft directions respectively (supposed to be
uniformly distributed along the edge nodes), a lateral compressive deformation of the yarns and an undulation transfer
due to the yarn–yarn interaction occur at the contact points; thus the undulation transfer process is followed by a
lateral displacement of the contact points. The displacement continuity occurring at the crossing points labeled by the
set of indices (j, k) then expresses as (Fig. 2(a)):

δwa
t = δwe

t ⇒ w
j,k
s-we = w

j,k
so-we + w

j,k
s-wa − w

j,k
so-wa − (−1)j

(
δwa
c + δwe

c

)
(5)

in which δwe
c and δwa

c , respectively, denote the vertical displacement of the weft and warp under compression
(Fig. 2(a)).

The deformation under compression of a warp, δwa
c , varies versus the contact force exerted by the transverse weft

according to the (in inversed form) compression law of Kawabata [7], relying on measurements:

δwa
c = C1

(
1 − e−K1|Rwe/wa|/Lwa

c
) ⇐⇒ |Rwe/wa| = −Lwa

c

K1
ln

(
1 − δwa

c

C1

)
(6)

with C1,K1 the two Kawabata parameters for the warp and Lc the curvilinear length of a yarn portion defined within
a half-period (Fig. 2(b)).

In the same way, the deformation under compression of a weft, δwe
c , varies versus the contact force exerted by the

warp according to

δwe
c = C2

(
1 − e−K2|Rwa/we|/Lwe

c
) ⇐⇒ |Rwa/we| = −Lwe

c

K2
ln

(
1 − δwe

c

C2

)
(7)

(a) (b)

Fig. 2. (a) Compression and undulation transfer between yarns; (b) compression law for a yarn [7].

Fig. 2. (a) Compression et transfert d’ondulation entre fils ; (b) loi de compression du fil.
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with C2,K2 the two Kawabata parameters of the weft. The parameter C can be interpreted as the limit value of the
compressive deformation δ, when the compressive force increases.

The parameter K therein provides information relative to the flexibility (inversely proportional to the rigidity) of
the yarn response during the compression motion. Actually, from an experimental point of view, the value of K is
shown to increase as the yarn compressive rigidity decreases.

According to the action/reaction principle valid at the contact points, viz. |Rwe/wa| = |Rwa/we|, the compression
displacements of both yarns are further related by the following relationship:

δwe
c = C2

[
1 −

(
1 − δwa

c

C1

)K2
K1

Lwa
c

Lwe
c

]
(8)

From the relations (4), (5) and (8) and using the action–reaction principle, the expression of the reaction force Rwe/wa
is further elaborated as

R
j,k
we/wa = −R

j,k
wa/we = −π4

2

(EI)we

(Lwe
p )3

(
1 + αwe

N2
wa

)

×
[
w

j,k
so-we + w

j,k
s-wa − w

j,k
so-wa − (−1)j

(
δwa
c,k + C2

[
1 −

(
1 − δwa

c,k

C1

)K2Lwa
c

K1Lwe
c

])]
(9)

The work of the reaction force R
j,k
we/wa, occurring at the interlacing point (j, k), then expresses as

W
R

j,k
we/wa

=
w

j,k
s-wa∫

w
j,k
so-wa

Rwe/wa dw =
w

j,k
s-wa∫

w
j,k
so-wa

−π4

2

(EI)we

(Lwe
p )3

(
1 + αwe

N2
wa

)

×
[(

w
j,k
so-we − w

j,k
so-wa

) + w − (−1)j
(

C2

[
1 −

(
1 − δwa

c,k

C1

)K2
K1

Lwa
c

Lwe
c

]
+ δwa

c,k

)]
dw (10)

Accordingly, the total work of the reaction forces exerted on a warp yarn of index k is given by

Wk
reaction forces =

Nwe∑
j=1

W
R

j,k
we/wa

(11)

The previous expressions show the influence of the transversal yarns characteristics EIwe, Lwe
p , wso-we, ws-we and of

the parameter αwe—which quantify the interactions between the two sub-mechanical systems Ωwa and Ωwe during
the loading—on the work of the reaction force exerted on the warp yarn.

The external work Wk
ext associated to the warp yarn of index k is defined by

Wk
ext = Wk

traction + Wk
gr + Wk

reaction forces (12)

in which the various contributions are:

• Wk
traction = Pwa(

∑Nd

i=1 Δ(cos(ψk
x,i) − cos(ψk

x,oi)) + uk
Nd+1)—the work of the traction loadPwa;

• Wk
gr = −∑Nd−1

i=1 mig(wk
i − wk

oi)—the work of the gravity load;

• Wk
reaction forces—the work of the reaction forces at the contact points (given in (11)).

The strain energy Uk
waof the same warp yarn is expressed in terms of the rotational, extensional and compressive

parameters (respectively the variables ψk
x,i , uk

i and δwa
c , see Fig. 1), thus giving

Uk
wa =

Nd−1∑
i=1

1

2
Ck

bi

(
ψk

x,i+1 − ψk
x,i

)2 +
Nd∑
i=1

1

2
Ck

ei

(
uk

i+1 − uk
i

)2 + Lwa
s

K1

[(
C1 − δwa

c,k

)
ln

(
1 − δwa

c,k

C1

)
+ δwa

c,k

]
(13)

representing the flexional, the extensional and the compressive deformation of the yarn successively.



B. Ben Boubaker et al. / C. R. Mecanique 335 (2007) 150–158 155
The potential energy V k
wa related to the warp yarn is then deduced as

V k
wa = Uk

wa − Wk
ext (14)

The total potential energy associated to the sub-mechanical system Ωwa is finally calculated as the sum of the potential
energies of all warp yarns, namely

V =
Nwa∑
k=1

V k
wa (15)

The summit index j that appears in (10) is further replaced by the global discretization index i, such that:

w
j
s-wa = wi with i = (2j − 1)Nd

2Nwe
and sin(ψx,i) = wi − wi−1

Δ
, ∀i ∈ [1,Nd ] (16)

For small rotations, the relation (16) linking the discrete parameters ψk
x,i and wk

i can be approximated by the following
expression

ψk
x,i ≈ (

wk
i − wk

i−1

)
/Δ (17)

where the discrete lateral displacements wk
i are obtained from the discretization of the continuous shape of the k-warp

yarn, given by the equation

wk
i = wk

wa(xi) =
Nwe∑
p=1

awa
p,k sin

(
(k − 1)π + pπ

Lwa
xi

)
with xi = iLwa

Nd

(18)

Substituting Eqs. (16), (17) into expression (15), the total potential energy V becomes a function of the Fourier coef-
ficients (awa

p,k)(p,k)∈[1...Nwe;1...Nwa], of the yarn nodal extensions (uk
2, u

k
3, . . . , u

k
Nd+1)k∈[1...Nwa] and of the compressive

parameters (δwa
c,k)k∈[1...Nwa] viz

V = V
(
awa

1,k, . . . , a
wa
i,k , . . . , awa

Nwe,k,, u
k
2, . . . , u

k
i , . . . , u

k
Nd+1

, δwa
c,k

)
k∈[1...Nwa] (19)

To highlight the effect of yarns compressibility on the mechanical response of the fabric under uniaxial loading, trac-
tion simulations are performed in the warp direction for different values of the yarns compression rigidity (expressed
by the Kawabata parameter K). The second Kawabata parameter C is supposed to keep the same constant value, for
the whole set of traction tests. Since the behavior of the structure is conservative, its equilibrium shape (in terms of
the set of arguments of V ) is given by the minimum of its total potential energy.

For this purpose, the following input parameters are used [8]: the mechanical properties of the warp and weft yarns
are taken respectively as EIwa = 1.47 e−7 N m; EIwe = 1.47 e−7 N m; EAwa = 13.72 N and C1 = C2 = 0.2 mm.
The rigidities in flexion/extension of the springs are then evaluated as Cb = EIwa/Δ and Ce = EAwa/Δ, respectively.
The geometrical parameters of the discretization are taken as: L = 0.1 m (initial projected length of the set of warp);
wso-wa = 0.5 mm; wso-we = 0.5 mm; Nwe = 16 and Nd = 224.

Fig. 3(a) shows that a decrease of the parameter K leads to an increase of the compression rigidity, thus to a stiffer
response of fabric under traction simulation. This is due to the increase of the reaction force exerted by the transversal
yarns (weft yarns) (Fig 3(b)).

In fact, when the yarns compression rigidity increases, the reaction forces increase in order to prevent the undulation
transfer between yarns. In addition, as shown by Eq. (10), the reaction force tends during the traction process toward
a limit value, which indicates that the yarns have exhausted their possibilities of undulation transfer which means that
no more lateral nodal displacement is possible. Note that the effect of yarn compression decreases with the ongoing
loss of undulation (Fig. 3(a)), as a result of the saturation of the reaction force (Fig. 3(b)).

3. Incorporation of yarn–yarn friction: variational principle and numerical simulations

Several models and empirical approaches of the friction phenomena in fabric have been developed in the literature
[7,9–13]. We adopt in the following, and as a matter of simplicity, the Gralen model [9,10], based on measurements
for nylon and wool, and that was established in the situation of two fibers in an elastoplastic contact, being twisted,
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(a) (b)

Fig. 3. (a) Uniaxial traction curve—effect of the yarns compressibility; (b) variation of the reaction force—effect of yarn compressibility.

Fig. 3. (a) Courbe de traction uniaxiale—effet de la compressibilité du fil ; (b) variation de la force de réaction—effet de la compressibilité du fil.

Fig. 4. Warp submitted to an external traction. Reaction and friction forces.

Fig. 4. Fil de chaîne soumis à une charge de traction. Forces de traction et de frottement.

and submitted to a compression load W . It relies on the following linear relation between the friction force and the
reaction effort:

FT = αRwe/wa + β�R (20)

with α,β two material constants relative to the elastic and plastic properties of the material, which are evaluated from
measurements, � the effective contact length between the two yarns, and R the radius of the considered fiber. The
friction forces FT exerted at the contact points vary versus the reaction force (normal force) exerted by the transverse
yarns on the warp; a picture clarifying the yarn–yarn interactions in terms of these forces is given in Fig. 4.

Substituting next the expression (9) of the reaction force in the previous expression (20), renders

F
j,k
T = −α

π4

2

(EI)we

(Lwe
p )3

[
w

j,k
so-we + w

j,k
s-wa − w

j,k
so-wa − (−1)j

(
δwa
c,k + C2

[
1 −

(
1 − δwa

c,k

C1

)K2Lwa
c

K1Lwe
c

])]
+ β�R (21)

It appears from this expression that the friction forces vary not only versus the material constants, but also versus the
vertical displacement of the summit nodes. During the traction process, the friction forces cause a loss of energy; this
introduces an irreversible motion due to a slip of one family of yarn relative to the other one, which in turn modifies
the equilibrium state of the structure. In the case of the yarn-on-yarn friction, one can remark that the friction force
does not modify the previous expression of the total potential energy, given in (15); the nonholonomic forces have
to be accounted for as an additional contribution on the right-hand side of the previous Euler–Lagrange equations
(resulting from the stationarity of V ).
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A static model of friction is considered in the following. The generalization of the d’Alembert postulate of static
equilibrium of motion accounting for the presence of the nonholonomic forces [14] is obtained, using the decompo-
sition of the generalized forces {Qα}α that intervene into the expression of the virtual work, δW = ∑n

α=1 Qαδqα ,
into the sum of conservative contributions Qc

σ = − ∂V
∂qσ

—in which V does not depend on the rate of the generalized
coordinates—and the nonholonomic forces (generalized non-conservative forces)

Qnc
σ =

Nd∑
n=1

Fn
T · ∂rn

∂qσ

(22)

with rn and Fn
T the displacement and the non-conservative force vectors of the node of index n, respectively. In (22),

the generalized coordinates (qσ )σ∈〈1,Nwe+Nd+1〉 have been introduced, such that:

qσ =
⎧⎨
⎩

awa
σ , ∀σ ∈ [1,Nwe]

uσ−(Nwe−1), ∀σ ∈ [Nwe + 1,Nwe + Nd ]
δwa
c , σ = Nwe + Nd + 1

One then obtains the differential identity

∂V

∂qσ

= Qnc
σ , σ ∈ 〈1,Nwe + Nd + 1〉 (23)

which characterizes the equilibrium shape of the yarn. The previous equation can be rewritten as

∂V

∂qσ

= Qnc
σ =

Nd∑
n=1

Fn
T · ∂rn

∂qσ

, σ ∈ [1,Nwe + Nd + 1] (24)

One obtains after projection in the Cartesian basis (
ex, 
ey):

Qnc
σ =

Nd∑
n=1

Fn
T · ∂rn

∂qσ

=
Nd∑
n=1

(−Fn
T · 
ex

) ·
(

∂un

∂qσ


ex + ∂wn

∂qσ


ey

)
=

Nd∑
n=1

−Fn
T

∂un

∂qσ

(25)

Assuming that the contact occurs only at the summit of the undulations, the friction forces are nil at other nodes, thus
the previous expression simplifies to

Qnc
σ =

Nd∑
n=1

−Fn
T

∂un

∂qσ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nwe∑
j=1

−F
j
T

∂uj

∂awa
σ

= 0 if σ ∈ [1,Nwe]

Nwe∑
j=1

−F
j
T

∂uj

∂uσ

=
{−F

j
T for summit nodes

0 otherwise

Nwe∑
j=1

−F
j
T

∂uj

∂δwa
c

= 0 if σ = Nwe + Nd + 1

σ ∈ [1,Nwe + Nd + 1] (26)

Accounting for the expressions (26), the equilibrium equations (23) then express as the following system of algebraic
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂awa
1

= · · · = ∂V

∂awa
i

= · · · = ∂V

∂awa
Nwe

= 0

∂V

∂ui

=
⎧⎨
⎩−F

j
T if i = (2j − 1)Nd

2Nwe
with j ∈ [1,Nwe] (index of summit nodes)

0 otherwise
∂V

wa = 0

(27)
∂δc
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Fig. 5. Uniaxial traction curve: effect of the yarn–yarn friction.

Fig. 5. Courbe de traction uniaxiale : Effet du frottement entre fils.

The non-nil tangential displacement ui on a summit node (Fig. 5) represents the local slip of the set of warp yarns,
relative to that of the transverse weft. Note that it gives an effective representation of slip, without explicitly describing
the relative slip (the nodes of both yarns are identified in the present model).

The effect of the friction on the fabric mechanical behavior is next assessed, from numerical simulations. A sim-
ulation without friction gives a reference comparison case to assess the importance of the yarn–yarn friction. For
this purpose, the above mechanical parameters of the warp and weft yarns are considered. In addition, the frictional
parameters of the woven structure are taken as: α = 0.2; � = 2 mm; R = 1 mm and β = 1 e3 N m−2 [9].

Fig. 5 shows that the consideration of the yarn-on-yarn friction leads to a stiffer response. This behavior can be
explained by the loss of energy due to the yarn-on-yarn friction. The importance of friction increases with ongoing
extension during the first stage of deformation (up to 0.005 m), and remains thereafter constant (both curves are nearly
parallel, Fig. 5), as the reaction forces increase, thus also does the friction force.

The results presented so far show that the friction and the compressibility effects are not negligible; the effect of
the yarn properties on the friction behavior shall further be assessed.

Future research in this direction will take into account the effective contact area between yarns, involving a distri-
bution of friction forces on the contact zone. Furthermore, a more accurate description of friction shall consist in a
decoupling of the set of nodes where friction occurs. Suitable experiments shall then be performed in order to identify
the present set of model parameters.
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