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Abstract

We study the homogenization of the Dirichlet variational problem of a class of nonlinear elliptic equations with nonstandard
growth. Such equations arise in many engineering disciplines, such as electrorheological fluids, non-Newtonian fluids with thermo-
convective effects, and nonlinear Darcy flow of compressible fluids in heterogeneous porous media. We derive the homogenized
model by means of the variational homogenization technique in the framework of Sobolev spaces with variable exponents. This
result is then illustrated with a periodic example. To cite this article: B. Amaziane et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Homogénéisation d’une classe d’équations elliptiques non linéaires de croissance non standard. On étudie l’homogénéi-
sation du problème variationnel de Dirichlet d’une classe d’équations elliptiques non linéaires de croissance non standard. Ce
genre d’équations apparaît dans la modélisation de certains problèmes de l’ingénierie, comme par exemple les fluides électrorhéo-
logiques, les écoulements non Newtoniens thermoconvectifs, et les écoulements non linéaires de Darcy de fluides compressibles
en milieux poreux hétérogènes. On obtient le problème homogénéisé par la technique de l’homogénéisation variationnelle dans
le cadre des espaces de Sobolev avec des exposants variables. Enfin, on présente un exemple périodique pour illustrer le résultat
obtenu. Pour citer cet article : B. Amaziane et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this Note we study the homogenization of the following nonlinear Dirichlet variational problem:

−∂xi
Gε

uxi

(
x,uε,∇uε

) + Gε
u

(
x,uε,∇uε

) = 0 in Ωε (1)

where ε > 0, Ωε = Ω \Fε is a perforated domain in R
n, n � 2, Gε(x,u, ξ) satisfies some convexity assumptions and

its growth, with respect to u and ξ , is an oscillating function pε(x) satisfying some conditions which will be specified
in Section 3 and Gε

uxi
,Gε

u denote the partial derivatives of Gε .
In recent years, there has been an increasing interest in the study of such equations (in the case where there is

no dependence on the small parameter) motivated by their applications to the mathematical modeling in continuum
mechanics. These equations arise, for example, from the modeling of non-Newtonian fluids with thermo-convective
effects (see for instance [1]), the modeling of electrorheological fluids (see, e.g., [2]), and the motion of a compressible
fluid in a heterogeneous anisotropic porous medium obeying to the nonlinear Darcy law (see, e.g., [3]).

In this Note we deal with the Dirichlet variational problem corresponding to the nonlinear equation (1). The ho-
mogenization of the Dirichlet boundary value problem was studied for the first time in [4] and then it was revisited by
many authors (see [5–8] and the references therein). Here, problem (1) is stated in the framework of Sobolev spaces
with variable exponents which will be briefly described in the following section. Let us mention that the homoge-
nization of variational problems in Sobolev spaces with variable exponents has not been yet studied in the literature
except one special case where the growth pε is a piecewise constant function (see [9]). In [10], the homogenization of
a pε(x)-Laplacian equation was studied. In this Note, we extend these ideas to a class of nonlinear elliptic equations.

Following the approach developed in [6], instead of a classical periodicity assumption on the structure of the
perforated domain Ωε , we impose certain conditions on the so-called local energy characteristics associated with the
equation (1). It will be shown that the asymptotic behavior, as ε → 0, of the solution uε is described by the Dirichlet
variational problem with the integrand G0(x,u,∇u) + c(x,u), where G0 is a limit of the sequence {Gε} and c(x,u)

is calculated by the local energy characteristic of Ωε .
The proof of the main result is based on the variational homogenization technique which is nowadays widely used

in the homogenization theory (see, e.g., [8,9,11] and the references therein).

2. Preliminary results and notation

For the reader’s convenience, we recall some background facts concerning Sobolev spaces with variable exponents,
see for instance [12–15], and introduce some notation.

Let Ω be a bounded Lipschitz domain in R
n and a function p(x) satisfying the following conditions: 1 < p(−) =

infΩ p(x) � p(x) � supΩ p(x) = p(+) < ∞ with p(−) < n, and for all x, y ∈ Ω ,

∣∣p(x) − p(y)
∣∣ � ω

(|x − y|) with lim
τ→0

ω(τ) ln

(
1

τ

)
= 0 (2)

(1) Denote by Lp(·)(Ω) the space of measurable functions f such that Ap(·)(f ) = ∫
Ω

|f (x)|p(x) dx < ∞. The space

Lp(·)(Ω) equipped with the norm ‖f ‖Lp(·)(Ω) = inf{λ > 0: Ap(·)( f
λ
) � 1} is a Banach space.

(2) The space W 1,p(·)(Ω) is defined as follows: W 1,p(·)(Ω) = {f ∈ Lp(·)(Ω): |∇ f | ∈ Lp(·)(Ω)}. Under the assump-
tion (2), W

1, p(·)
0 (Ω) is the closure of the set C∞

0 (Ω) with respect to the norm of W 1, p(·)(Ω). If the boundary of

Ω is Lipschitz-continuous and p(x) satisfies (2), then C∞
0 (Ω) is dense in W

1, p(·)
0 (Ω). The norm in W

1,p(·)
0 is

defined by ‖u‖
W

1,p(·)
0

= ∑
i ‖Diu‖Lp(·)(Ω) + ‖u‖Lp(·)(Ω). If the boundary of Ω is Lipschitz and p ∈ C0(Ω), then

the norm ‖ · ‖
W

1,p(·)
0 (Ω)

is equivalent to the norm ‖̃u‖
W

1,p(x)
0 (Ω)

= ∑
i ‖Diu‖Lp(·)(Ω).

(3) If p ∈ C0(Ω), then W 1,p(·)(Ω) is separable and reflexive.
(4) Let p, q ∈ C0(Ω) and define the function p∗ in Ω as follows: p∗(x) = p(x)n

n−p(x)
for p(x) < n, p∗(x) = +∞ for

p(x) > n, and 1 < q(x) � supΩ q(x) < infΩ p∗(x), then the embedding W
1,p(·)
0 (Ω) ↪→ Lq(·)(Ω) is continuous

and compact.
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3. Statement of the problem and the main result

Let Ω be a bounded domain in R
n, n � 2, with a smooth boundary. Let Fε be a closed subset in Ω . Here ε is a

small parameter characterizing the scale of the microstructure. We assume that Fε is distributed in a asymptotically
regular way in Ω , i.e., for any ball V (y, r) of radius r centered at y ∈ Ω and ε > 0 small enough (ε � ε0(r)),
V (y, r) ∩Fε 	= ∅. We set Ωε = Ω \Fε .

Let pε = pε(x) be a continuous function defined in Ω . We assume that, for any ε > 0, it satisfies the following
conditions:

(i) pε is bounded, namely: 1 < p(−) � p
(−)
ε ≡ minx∈Ω pε(x) � pε(x) � maxx∈Ω pε(x) ≡ p

(+)
ε � p(+) � n in Ω ;

(ii) it satisfies condition (2);
(iii) pε converges uniformly in Ω to a function p0, where p0 satisfies the conditions (i) and (2);
(iv) pε satisfies: pε(x) � p0(x) in Ω .

Let Gε(x,u, ξ) be a function that is defined and continuous for x ∈ Ω,u ∈ R, ξ ∈ R
n. We assume that this function

has continuous partial derivatives Gε
u, Gε

ξi
and, for any ε > 0, satisfies the conditions:

(A.1) Gε is a convex function with respect to ξ : Gε(x,u, ξ) − Gε(x,u, η) − Gε
ξi
(x, u, ξ) (ξi − ηi) � 0;

(A.2) A1|ξ |pε(x) − A2|u|pε(x) � Gε(x,u, ξ) � A3[1 + |ξ |pε(x) + |u|pε(x)] with A1,A2,A3 > 0;
(A.3) |Gε(x,u, ξ) − Gε(x, v, η)| � A4(1 + |ξ | + |u|)pε(x)−1(|u − v| + |ξ − η|) with A4 > 0;
(A.4) Gε(x,0,0) = 0;
(A.5) Gε converges to a function G0 in the following sense: for any w ∈ C∞

0 (Ω)

lim
ε→0

∫
Ω

∣∣Gε(x,w,∇w) − G0(x,w,∇w)
∣∣dx = 0

where G0 is assumed to be defined and continuous for x ∈ Ω,u ∈ R, ξ ∈ R
n. It has continuous partial deriva-

tives G0
u, G0

ξi
and satisfies the condition (A.2) with the function p0.

A typical example of the integrand Gε is given in Section 5.
We consider the following variational problem:

J ε[uε] ≡
∫
Ωε

Gε
(
x,uε,∇uε

)
dx → inf, uε ∈ W

1,pε(·)
0

(
Ωε

)
(3)

The functional J ε[uε] is assumed to be bounded from below that is

J ε[uε] � Φ
(‖uε‖W 1,pε(·)(Ωε)

) − μ (4)

where Φ(t) is a continuous function such that Φ(t) → +∞ as t → +∞ and μ ∈ R.
It is known from [16–18] that, for each ε > 0, there exists a solution uε ∈ W 1,pε(·)(Ωε) of (3).
Let us extend uε in Fε by zero (keeping for it the same notation). Then we obtain the sequence {uε} ⊂ W 1,pε(·)(Ω).

We study the asymptotic behavior of uε as ε → 0.
Instead of the classical periodicity assumption on the microstructure of the perforated domain Ωε , we impose

certain conditions on the local energy characteristic of the set Fε . To this end we introduce Kz
h an open cube centered

at z ∈ Ω with length equal to h (0 < ε  h < 1) and we define a function of b ∈ R:

cε,h(z, b) = inf
vε

∫
Kz

h

{
Gε

(
x,0,∇uε

) + h−p(+)−γ
(|vε − b|pε(x) + |vε − b|p0(x)

)}
dx (5)

where γ > 0, and the infimum is taken over vε ∈ W 1,pε(·)(Kz
h) that equal zero in Fε . We make the following further

assumptions:
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(C.1) there exist a continuous function c(x, b) such that for any x ∈ Ω,b ∈ R, and a certain γ = γ0 > 0,

lim
h→0

lim
ε→0

h−ncε,h(z, b) = lim
h→0

lim
ε→0

h−ncε,h(z, b) = c(x, b)

(C.2) there exists a constant A independent of ε, γ such that, for any x ∈ Ω ,

lim
h→0

lim
ε→0

h−ncε,h(z, b) � A
(
1 + |b|p0(x)

)
The main result of the Note is the following:

Theorem 3.1. Let assumptions (i)–(iv), (A.1)–(A.5) and (C.1)–(C.2) hold. Then for any sequence of solutions of the
variational problem (3) there is a subsequence which converges weakly in W 1,p0(·)(Ω) to a solution of the following
variational problem:∫

Ω

{
G0(x,u,∇u) + c(x,u)

}
dx → inf, u ∈ W

1,p0(·)
0 (Ω) (6)

4. Sketch of the proof of Theorem 3.1

It follows from (A.4) and (4) that the solution of (3) satisfies the estimate ‖uε‖W 1,pε(·)(Ωε) � C with a constant C

independent on ε. We extend uε by zero to Fε and consider {uε} as a sequence in W 1,pε(·)(Ω). It is clear that
‖uε‖W 1,pε(·)(Ω) � C. Now the condition (iv) imply that ‖uε‖W 1,p0(·)(Ω) � C. This means that {uε} is a weakly compact

set in W 1,p0(·)(Ω). Hence, one can extract a subsequence that converges weakly to u ∈ W 1,p0(·)(Ω). We will show
that u is a solution of (6). The proof will be done in two steps.

Step 1. Upper bound. Let {xα} be a periodic grid in Ω with a period h′ = h − h1+γ /p(+)
(0 < ε  h  1). Cover

the domain Ω by the cubes Kα
h of length h > 0 centered at the points xα . We associate with this covering a partition

of unity {ϕα}: 0 � ϕα(x) � 1; ϕα(x) = 0 for x /∈ Kα
h ; ϕα(x) = 1 for x ∈ Kα

h \ ⋃
β 	=α K

β
h ;

∑
α ϕα(x) = 1 for x ∈ Ω ;

|∇ϕα(x)| � Ch−1−γ /p(+)
.

Let w be a smooth function in Ω such that w(x) = 0 on ∂Ω and let Kθ denotes a subset of the cubes Kα
h such

that |w(x)| > θ > 0 for any x ∈ Kα
h . We set bα = w(xα) for Kα

h ∈ Kθ and bα = 1 for Kα
h /∈ Kθ . For any Kα

h , we
define the set Bα(ε,h;ϑ) = {x ∈ Kα

h : vε
α(x) signbα � |bα| − ϑ} and the function V ε

α , V ε
α = vε

α(x) in Bα(ε,h;ϑ) and
V ε

α = bϑ
α ≡ (|bα| − ϑ) signbα in Kα

h \ Bα(ε,h;ϑ), where vε
α is a function minimizing (5) with b = bα and z = xα ,

0 < ϑ  θ/2  1. We set ϑ = h and introduce the function wε
h(x) = w(x) + ∑

α
w(x)

bϑ
α

(V ε
α (x) − bϑ

α )ϕα(x). Using the

condition (C.1) one can show that wε
h ∈ W

1,pε(·)
0 (Ωε). Therefore, we have that J ε[uε] � J ε[wε

h]. Estimating the right
hand side of this inequality we get:

lim
ε→0

J ε
[
uε

]
� Jhom[w] ≡

∫
Ω

{
G0(x,w,∇w) + c(x,w)

}
dx (7)

This inequality is obtained for w ∈ C∞
0 (Ω). It holds true for any w ∈ W

1,p0(·)
0 (Ω). This follows from the density of

C∞
0 (Ω) in W

1,p0(·)
0 (Ω) (see Section 2) and the continuity of the functional Jhom in W

1,p0(·)
0 (Ω).

Step 2. Lower bound. Let u ∈ W
1,p0(·)
0 (Ω) be a weak limit in W 1,p0(·)(Ω) of the sequence {uε} ⊂ W

1,pε(·)
0 (Ωε) ∩

W
1,p0(·)
0 (Ωε) (extended by zero in Fε) by a subsequence ε = εk . For any δ > 0, we introduce a function uδ ∈ C1

0(Ω)

such that ‖u − uδ‖W 1,p0(·)(Ω) < δ. One can show that there is a sequence {wε
δ } ⊂ W

1,pε(·)
0 (Ωε) ∩ W

1,p0(·)
0 (Ωε) and

wε
δ = 0 in Fε which converges weakly in W 1,p0(·)(Ω) to the function (u − uδ). We set uε

δ = uε + wε
δ and show that

limδ→0 limε=εk→0 ‖uε
δ − uε‖W 1,pε(·)(Ωε) = 0. Using this equality, the definition of uδ , and the continuity of Jhom in

W 1,p0(·)(Ω) we see that limδ→0 limε=εk→0 |J ε[uε
δ] − J ε[uε]| = 0 and limδ→0 Jhom[uδ] = Jhom[u]. These relations

imply that if we prove that limε=εk→0 J ε[uε
δ] � Jhom[uδ] (δ-lower bound) we immediately obtain the lower bound:

lim J ε
[
uε

]
� Jhom[u] (8)
ε=εk→0
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Let us prove the δ-lower bound. To this end we cover R
n by cubes Kα

h with nonintersecting interiors centered at xα

forming a periodic, with the period h, grid in R
n and denote: Ω±

θ = {x ∈ Ω | ±uδ > θ > 0}; Ω±
θ,h = {⋃α Kα

h | Kα
h ⊂

Ω±
θ }; Ωθ = Ω+

θ ∪ Ω−
θ ; Ωθ,h = Ω+

θ,h ∪ Ω−
θ,h; Oθ = Ω \ Ωθ ; Ωε

θ = Ωθ ∩ Ωε; Ωε
θ,h = Ωθ,h ∩ Ωε; Oε

θ = Oθ ∩ Ωε . We
rewrite J ε[uε

δ] as follows:

J ε
[
uε

δ

] =
∫

Ωε
θ,h

Gε
(
x,uε

δ,∇uε
δ

)
dx +

∫
Ωε

θ \Ωε
θ,h

Gε
(
x,uε

δ,∇uε
δ

)
dx +

∫
Oε

θ

Gε
(
x,uε

δ,∇uε
δ

)
dx (9)

Conditions (i), (iv), (A.1)–(A.5) and the fact that limh→0 meas [Ωθ \ Ωθ,h] = 0 imply the inequalities

lim
h→0

lim
ε=εk→0

∫
Ωε

θ \Ωε
θ,h

Gε
(
x,uε

δ,∇uε
δ

)
dx � 0; lim

h→0
lim

ε=εk→0

∫
Oε

θ

Gε
(
x,uε

δ,∇uε
δ

)
dx �

∫
Oθ

G0(x,uδ,∇uδ)dx

(10)

Finally, following the lines of [10] and using the definition (5), for any Kα
h ⊂ Ω+

θ (Kα
h ⊂ Ω−

θ ), we get

lim
ε=εk→0

∫
Kα

h ∩Ωε

Gε
(
x,uε

δ,∇uε
δ

)
dx �

∫
Kα

h

G0(x,uδ,∇uδ)dx + lim
ε=εk→0

cε,h
(
xα, bα

) + o
(
hn

)
as h → 0 (11)

Now we take the union in (11) over all cubes Kα
h ⊂ Ωθ,h and pass to the limit as h → 0. Then by (9), (10), and

condition (C.1) we obtain the δ-lower bound and, therefore, the lower bound (8).
Now it follows from (7) and (8) that Jhom[u] � Jhom[w] for any w ∈ W

1,p0(·)
0 (Ω). Thus, any weak limit of the

solution of (3), extended by zero to the set Fε , is a solution of (6). This completes the proof of Theorem 3.1.

5. A periodic example

As an application of the previous general result, we now give an example of a perforated medium, where the
distribution of the perforated domain and the growth function are specified.

Theorem 3.1 provides sufficient conditions for the existence of the homogenized problem (6). The goal of this
section is to prove that, for an appropriate example, all the conditions of Theorem 3.1 are satisfied and to compute
explicitly the functions G0 and c in the homogenized problem (6).

Let Ω be a bounded domain in R
3 with smooth boundary. Let Fε be a union of balls Fε

i (i = 1,2, . . . ,Nε)

periodically, with a period ε, distributed in the domain Ω . We assume that Fε
i is centered at the point xi,ε and of

radius rε = r ε3, where r > 0.
We define a function pε ∈ C1(Ω) as follows. Let Bi

ε/8 and Bi
ε/4 be the balls centered at the point xi,ε and of

radii ε/8 and ε/4, respectively. The function pε is a smooth ε-periodic function in Ω such that pε(x) = 2 in Bi
ε/8

and pε(x) = 2 + ε in Ω \ ⋃
i Bi

ε/4, where i = 1,2, . . . ,Nε and Nε → +∞ as ε → 0. It is clear that pε satisfies the
conditions (i)–(iv), and it converges uniformly in Ω to the function p0 ≡ 2.

The following result holds:

Theorem 5.1. Let uε be the solution of (3) with Gε(x,u, ξ) = 1
pε(x)

|ξ |pε(x)+ 1
pε(x)

|u|pε(x)−f (x)u, where f ∈ C1(Ω).

Then uε converges weakly in W 1,2(Ω) to a solution of (6) with

G0(x,u, ξ) = 1

2
|ξ |2 + 1

2
|u|2 − f (x)u and c(x,u) = 4πr|u|2
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