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Abstract

A two-dimensional numerical study of natural convection flow in an air filled enclosure of aspect ratio A = 9 is investigated
in this Note. The numerical method is based on a second order finite volume scheme and a projection method. A full multigrid
technique is used to accelerate the convergence of the Poisson pressure equation. The multigrid procedure is briefly described and
the critical Rayleigh number above which the flow becomes unsteady is determined. To cite this article: N. Ben Cheikh et al.,
C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Écoulement de convection naturelle dans une longue cavité à l’aide d’une méthode multigrille. Nous présentons dans ce
papier une étude numérique de convection naturelle bidimensionnelle dans une cavité de rapport de forme A = 9, remplie d’air. La
méthode numérique est basée sur un schéma de type volumes finis du second ordre et une méthode de projection. Une approche
multigrille est utilisée pour accélérer la convergence de l’équation de Poisson. La méthode est brièvement décrite et le nombre de
Rayleigh critique au-delà duquel l’écoulement devient instationnaire est déterminé. Pour citer cet article : N. Ben Cheikh et al.,
C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Accurate solutions of the incompressible Navier–Stokes/Boussinesq equations (NSBE) are of considerable interest
in many industrial flows, such as speed aerodynamics and hydrodynamics. The application of computational fluid
dynamics methods in these areas shows that for sufficient accuracy, large grid sizes are needed for capturing thin
boundary layer properties, detecting high heat transfer spots or resolving small eddy regions. Because of that need,
procedures for solving the NSBE, in acceptable CPU times, are at the heart of large scale computations.
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So far, one of the most popular techniques for solving the unsteady NSBE may be the use of multigrid methods
(MG) [1]. The applications of MG methods have indeed shown nearly optimum convergence characteristics [2–4].
The computation times are directly proportional to the number of grid points, allowing very fine grids to be used and
therefore more accurate solutions to be obtained.

In this Note a finite volume, full multi-grid method (FMG) applied to natural convection flows is utilised. The
smoother used is the iterative red and black successive over relaxation scheme (RBSOR) [5]. In order to accelerate the
convergence, an acceleration parameter is implemented in the classical FMG procedure. It was indeed demonstrated
in Ref. [6] that convergence could be substantially improved by just multiplying the correction field in the FMG
procedure by some suitable factor Γ > 0 (AFMG method).

In the next section the numerical approach and the AFMG method are briefly described. Next, the implementation
of the AFMG algorithm is validated by a time dependent benchmark problem of natural convection in a tall cavity
of aspect ratio 8 [7,8]. The method is then applied to study natural convection in an enclosure of aspect ratio 9 and
to determine the critical Rayleigh above which the flow becomes unsteady. In the final section the most important
findings of this study are summarized.

2. Numerical approach

The non-dimensional governing equations for an incompressible flow, corresponding to the continuity, Navier–
Stokes and energy equations, under the Boussinesq approximation, are given by:
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where ui = (u, v), p and θ are the velocity, the kinematic pressure, and temperature, respectively. Here δij is the
Krönecker symbol. Eqs. (1)–(3) where obtained using the characteristic length W , velocity scale u0 = √

gβW�T ,
time scale t0 = W/u0 and pressure scale p0 = ρu2

0. ρ is the mass density, g the gravitational acceleration, and β

the isobaric coefficient of thermal expansion. The non-dimensional temperature θ is defined in terms of the wall
temperature difference and a reference temperature:

θ = T − Tr

Th − Tc

Th is the temperature of the hot wall, and Tc is that of the cold wall. The non-dimensional parameters are the Rayleigh
number (Ra) and the Prandtl number (Pr) defined as Ra = gβ�T W 3/(να) and Pr = ν/α , where ν is the kinematic
viscosity, α the thermal diffusivity, and �T = Th − Tc the temperature difference between the hot and cold walls.

The unsteady Navier–Stokes and energy equations are discretized by a second-order time stepping of finite differ-
ence type. Non-linear terms in Eq. (2) are treated explicitly with a second-order Adams–Bashforth scheme. Convective
terms in Eq. (3) are treated semi-implicitly and diffusion terms in both Eqs. (2) and (3) are treated implicitly.

In order to get round the difficulty that resides in the strong velocity-pressure coupling, we choose to use a projec-
tion method [9,10]. Using this method, the global algorithm consists of:

• solving at a first step Eq. (4) related to the energy equation:
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• the temperature field θn+1 permits the solution of the system of Eqs. (5) related to an intermediate velocity field
u∗

i that may not be divergence free:
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• the obtained intermediate velocity field permits to solve the Poisson equation:
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where φ is an arbitrary scalar field;
• once u∗

i and φ are obtained, the real velocity field and the pressure are updated by the following expressions:
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A second order finite-volume method [11] is used to discretize the Navier–Stokes and energy equations. Thus,
equations to solve are the equation of energy, the equation related to an intermediate velocity field and a Poisson
equation. The two first equations are solved using the red and black successive over-relaxation method (RBSOR) [5],
while the Poisson pressure correction equation is solved using an accelerated full multigrid method (AFMG) with
the RBSOR method as a smoother. The main idea of the multigrid method can be found in Refs. [1,2]. We have
implemented our multigrid procedure in a so-called full multigrid (FMG) fashion [2]. Indeed, before starting V-cycles,
the source term is calculated on the coarsest grid permitting the determination of an exact solution. This solution is
progressively interpolated from the coarsest to the finest grid, used there as a starting guess for the V-cycle procedure.
In order to optimize the number of V-cycles, it is demonstrated [6] that convergence can be substantially improved
by just multiplying the correction field in the multigrid procedure by some suitable factor Γ > 0 (AFMG method).
Several tests showed that for Γ = 3.75 and after a short time of integration, only one to two V-cycles are necessary to
satisfy the convergence.

3. Results and discussion

3.1. Code validation

As a test case we considered the time dependent solution for an 8:1 differentially heated cavity. The benchmark
description and the physical problem are well detailed in Ref. [7]. Thus, in this paragraph, results related to Ra =
3.4 × 105, Pr = 0.71 and A = H/W = 8 are presented. Here, H and W are the height and the width of the enclosure,
respectively. The number of control volumes applied on the finest grid is 96 × 480 corresponding to 6 levels in the
multigrid calculation. The coarsest grid level consisted thus of 3 × 15 number of control volumes. Cartesian grids
are uniform in the vertical direction and non-uniform in the horizontal direction with smallest cells near hot and cold
walls, respectively.

We ran the computations on three different grids with increasing refinement: 24 × 120 nodes (coarse), 48 × 240
nodes (medium) and 96 × 480 nodes (fine). Tests on a coarse and a medium grid, respectively, 24 × 120 and 48 × 240
(corresponding to 4 and 5 levels in the multigrid calculations), were first carried on to determine an optimal value of
factor Γ . On both grids, a mean value of Γ = 3.75 was obtained assuming that the value of Γ is grid independent.

According to the CFL criterion, time steps on grids 24×120, 48×240 and 96×480 were fixed at �t = 3.2×10−2,
�t = 1.6×10−2 and �t = 8×10−3, respectively. Computational results were obtained for each of the three grid types
and simulations were run until a non-dimensional time of t = 1500.

During the flow solution, time history data at point 1, i.e., (x = 0.181; y = 7.37), in the cavity were reported at
each time step. Table 1 provides a summary of the time-history data for the three grid resolutions. The table presents
information (at point 1) for the velocity in the x-direction (u1), the velocity in the y-direction (v1), the temperature (θ1)
and the Nusselt number (Nu). The corresponding fluctuating x-velocity, y-velocity, temperature, and Nusselt number
are �u1, �v1, �θ1, and �Nu. The period, τθ , is the period associated with the temperature oscillation at point 1.
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Table 1
Comparison of the time-averaged data and the corresponding fluctuations at point 1

Tableau 1
Comparaison des grandeurs moyennes et fluctuations correspondantes au point 1

Quantity Grid resolution

24 × 120 48 × 240 96 × 480

u1 5.01203 × 10−2 5.37072 × 10−2 5.61780 × 10−2

�u1 7.16083 × 10−4 3.59755 × 10−2 5.43379 × 10−2

v1 4.52762 × 10−1 4.59891 × 10−1 4.61412 × 10−1

�v1 1.12033 × 10−3 5.28620 × 10−2 7.67392 × 10−2

θ1 2.68107 × 10−1 2.66011 × 10−1 2.65582 × 10−1

�θ1 5.93518 × 10−4 2.88141 × 10−2 4.26336 × 10−2

Nu 4.61383 4.58802 4.58179
�Nu 1.70366 × 10−4 4.98058 × 10−3 7.10453 × 10−3

τθ 3.7440 3.4400 3.4160

In order to compare the performances of contributions to the benchmark problem, a number of metrics based
on some of the quantities shown in Table 1 were defined in Ref. [7]. The values obtained by each participant were
compared against the accepted values of Xin and Le Quéré [8], and the deviations from these latter values defined the
metrics. Hence, values as close to zero as possible are the ‘target’. Here, we present our performance, based on the
overall metric, E, defined by:

E = ε̄θ1 + ε̄u1 + ε̄Nu1 + ετθ + ε′
θ1

+ ε′
u1

+ ε′
Nu1

7
(9)

which represents the average of the errors computed in the period, mean velocity, temperature and Nusselt number,
and the corresponding error in the oscillation amplitudes. This metric has been calculated on the grid 96 × 480 for
1465.84 � t � 1500 (ten periods) and compared with some of the contributors to the MIT session (see Table 2). As
seen, our metric is ranked first, meaning that the numerical method is very efficient giving results very close to the
‘true’ solution provided by Xin and Le Quéré [8].

In order to reflect the computational cost required to obtain the solution, a normalized algorithm timing defined as:

ηAT =
(
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node.step
.

steps
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)
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was proposed in Ref. [7]. This normalized performance metric is scaled in a relative sense so that the minimum
value of ηAT is unity. Our metric measured on a Dell Dimension 4600 system, with a single 2.9 GHz processor
(specFP95 = 71), is presented in Table 3 and is compared with some of the contributors to the MIT session. As it can
be seen, the value is ranked fourth, meaning that the method is quite fast.

Table 2
Comparison of overall metric E

Tableau 2
Comparaison du métrique E

First author [7] E Rank order

Present study 0.2491 1 / (31)
Johnston 0.3352 2 / (31)
Davis 0.5631 3 / (31)
Armfield 0.9375 7 / (31)
Christon 0.9849 9 / (31)
Westerberg 2.7708 15 / (31)
Bruneau 9.5773 21 / (31)
Chan 21.266 27 / (31)

Table 3
Comparison of the normalized algorithm timing metric

Tableau 3
Comparaison du métrique du temps algorithmique normalisé

First author [7] ηAT Ranking

Johnston 1.00 1 / (26)
Christon II 1.31 2 / (26)
Christon III 1.35 3 / (26)
Pres. Study 2.11 4 / (26)
Matsumoto 2.34 5 / (26)
Bruneau 3.40 6 / (26)
Armfield 85.14 22 / (26)
Le Quéré 90.17 24 / (26)
Ingberg 2010.14 26 / (26)
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Fig. 1. Nusselt number versus Rayleigh.

Fig. 1. Nombre de Nusselt en fonction du Rayleigh.

Fig. 2. Vorticity isolines for: (a) Ra = 104, (b) Ra =
3.4 × 105 and (c) Ra = 106.

Fig. 2. Iso-vorticités pour : (a) Ra = 104, (b) Ra =
3.4 × 105 and (c) Ra = 106.

Fig. 3. (Amplitude)2 versus Rayleigh.

Fig. 3. (Amplitude)2 en fonction du Rayleigh.

3.2. Natural convection in a 9:1 heated enclosure

We here consider the problem of a differentially heated closed cavity of aspect ratio A = 9. The numerical re-
sults are obtained for Rayleigh numbers ranging from Ra = 102 to Ra = 106 and a Prandtl number of Pr = 0.71.
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A proportional number of control volumes according to the 8:1 heated enclosure case described above was applied,
i.e., 96 × 520 nodes. During the flow solution, time history data at point 2 of coordinate (x = 0.15; y = 7.75) were
reported at each time step.

The results showed that for Rayleigh numbers lower than Ra = 105, the flow was still steady and for Rayleigh
numbers somewhat greater than 2 × 105 the flow bifurcates to an unsteady periodic state, followed by a chaotic state
if Rayleigh number was till increased.

In Fig. 1 the average Nusselt number, Nu, is plotted versus the Rayleigh number. As expected, the Nusselt number
increases with Ra and for Raleigh numbers lower than 103, Nu is very weak and therefore diffusion is the principal
mode of heat transfer. For Ra greater than 5 × 104, the intensity of convection increases and in the range 5 × 104 �
Ra � 106, Nu can be expressed through the following correlation:

Nu = 0.178Ra0.252 (11)

Fig. 2 shows the instantaneous iso-vorticity features of the flow for three Rayleigh numbers related to a steady, a pe-
riodic and a chaotic state, obtained for Ra = 104, Ra = 3.4 × 105 and Ra = 106, respectively. As seen, by increasing
the Rayleigh number, a more complex solution is found and an increase of vortex dynamics is observed. Note that
the period of the flow at Ra = 3.4 × 105 has been calculated, and comparing to the 8:1 benchmark problem, a smaller
value of τθ = 3.120 was found.

The determination of the critical Rayleigh number, Rac , was determined using the same method as presented in
Ref. [12]. In fact, the solution of a supercritical Hopf bifurcation is proportional to

√
Ra − Rac . Hence, in Fig. 3, we

report amplitudes squared, (Amp)2, of quantities θ2, u2 and v2 at point 2 versus the Rayleigh number. By extrapolating
results at Amp = 0, we obtained an approximate value of Rac = 2.4 × 105. Comparing that value with proposed ones
related to the benchmark enclosure of aspect ratio A = 8 (Rac ∼ 3.0×105), a decrease of the critical Rayleigh number
may be observed by increasing the aspect ratio.

4. Conclusion

In this Note, a numerical method for solving the Navier–Stokes/Boussinesq equations has been investigated. The
numerical method is based on a finite volume approach, a projection method and an accelerated full-multigrid tech-
nique (AFMG). The performed test calculations demonstrated the potential of the method for enabling very accurate
solutions on very fine grids in acceptable CPU times. Tests showed that a mean value for acceleration parameter Γ of
3.75 was well appropriated for natural convection flows in differentially heated enclosures. Using the AFMG method,
a study in an enclosure of aspect ratio A = 9 was investigated. For Rayleigh numbers ranging from 104 to 106,
a correlation between Nusselt number and Rayleigh number has been reported. The supercritical solution was also
determined giving an approximate critical Rayleigh number of Rac = 2.4 × 105.
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