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Abstract

A method of splitting the thermodynamics and hydrodynamics in the model of two-phase compositional flow with phase tran-
sitions through porous media is proposed. This enables us to obtain effective solutions to flow problems along streamlines. The
split independent thermodynamic subsystem includes new thermodynamic differential equations responsible for the mass balance
in an open thermodynamic system. The split hydrodynamic subsystem contains only two flow equations with respect to pressure
and saturation. The model is validated numerically. To cite this article: S. Oladyshkin, M. Panfilov, C. R. Mecanique 335 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Découplage de la thermodynamique et hydrodynamique suivant les lignes de courant dans un écoulement gaz–liquide
compositionnel en milieux poreux. On propose une méthode de découplage de la thermodynamique et l’hydrodynamique dans
le modèle compositionnel diphasique avec transition de phases, ce qui permet d’obtenir des solutions efficaces semi-analytiques
des problèmes découlement suivant les lignes de courant. Le modèle thermodynamique découplé est indépendant et contient des
nouvelles équations différentielles thermodynamiques reponsables pour le bilan de masse dans un système thermodynamique
ouvert. Le modèle hydrodynamique découplé contient deux équations, pour la pression et la saturation. Le modèle est validé
numériquement. Pour citer cet article : S. Oladyshkin, M. Panfilov, C. R. Mecanique 335 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Many engineering applications concerning the subsurface flow in porous reservoirs deal with the so-called two-
phase gas–liquid compositional systems which consist of a large number of chemical components which determine
a continuous mass exchange between the phases due to a changing dissolution degree of each component in each phase

* Corresponding author.
E-mail address: Mikhail.Panfilov@ensg.inpl-nancy.fr (M. Panfilov).
1631-0721/$ – see front matter © 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crme.2006.12.001



8 S. Oladyshkin, M. Panfilov / C. R. Mecanique 335 (2007) 7–12
at various pressures and temperatures. The typical examples of such systems are the oil reservoirs with liberating gas,
gas-condensate reservoirs, miscible enhanced oil recovery, underground storages of CO2, methane, hydrogen and
helium in aquifers, coal beds saturated with methane and water, groundwater with liberating air, and so on.

The full mathematical model of a compositional flow consists of a great system of mass and momentum balance
equations coupled with the phase equilibrium and phase state relations, which global dimension is proportional to
the number of chemical components. Resolution of such a hydrodynamic system requires to solve simultaneously the
thermodynamic nonlinear high-order subsystem at each space point and at each time instant. The global algorithm
becomes so complex that frequently can not be realized in practice, when leading to a CPU memory/lack of time,
algorithm divergences or numerical instabilities. Various attempts to develop approximate simplified models may be
grouped in two tendencies.

The first consists in reducing the thermodynamic block by reducing the number of chemical components up to two
or three. The binary and ternary mixtures are frequently used in theoretical research, but are not very appreciated in
practical studies.

The second tendency concerns the flow equations and consists in using the steady-state solutions [1]. However
in [2], the steady-state solutions were shown to be unstable for compositional gas–liquid systems and were replaced
by a so-called semi-stationary model.

In the present Note we show that the general compositional model may be split into an independent thermodynamic
model and a significantly reduced hydrodynamic part. Due to such a splitting, we obtain an effective semi-analytical
solution to the two-phase compositional problem.

2. Compositional model of two-phase flow in porous media

Let us consider a mixture consisting of N chemical components which form two various thermodynamic phases
(gas and liquid) moving in porous medium.

According to the phenomenological approach [3], the general isothermal dynamic compositional model represents
N equations of mass balance for each chemical component and two equations of momentum balance for each phase
in a domain Ω :

εφ
∂ρ(k)

∂t
= div

(
Ψ (k)

g gradPg + ωΨ
(k)
l gradPl

)
, k = 1, . . . ,N

ρ(k) ≡ ρlc
(k)
l s + ρgc

(k)
g (1 − s), Ψ

(k)
i ≡ Kkiρic

(k)
i

μi

, Pi ≡ Pi + ρigz; i = g, l (1)

The momentum balance equations which are already substituted into (1) represent Darcy’s law for each phase (V is
the Darcy velocity):

Vl = −ω
Kkl

μl

gradPl , Vg = −Kkg

μg

gradPg

where superscript ‘k’ refers to kth chemical component (k = 1, . . . ,N ), indexes g and l to gas and liquid; φ is the
porosity; c

(k)
g or c

(k)
l is the mass concentration of kth component in gas or liquid [kg/kg]; s is the volume saturation

of pores by liquid; ρg and ρl are the phase densities; ρ(k) is the total partial density of the component k; kg and kl

are the relative permeabilities; μ is the phase viscosity; K is the absolute permeability; P is the phase pressures. The
components are assumed to be arranged in ascending order of the molecular weight, so that the component 1 is the
lightest, whilst the component N is the heaviest; z is the vertical coordinate, g is the gravity acceleration.

System (1) has a dimensionless form. The characteristic scales for the space coordinate, time, pressure, perme-
ability, porosity, gas and liquid viscosities and phase density are defined as: the domain size L, the characteristic
time of the process t∗, a characteristic pressure P 0, the mean permeability 〈K〉, the mean porosity 〈φ〉, the mean gas
and the mean liquid viscosities μ0

g and μ0
l , and the mean gas density ρ0

g respectively. Due to this two dimensionless
parameters arise in (1):

ε = t∗

t∗
and ω = ρ0

l μ0
g

ρ0μ0
(2)
g l
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where t∗ ≡ L2〈φ〉μ0
g/(〈K〉P 0) is the characteristic time of pressure stabilization in the overall domain, which is

an eigen intrinsic parameter of the system.
The system of N equations (1) is formulated with respect to N basic variables:

Pg, s, χ(j) = c
(j+1)
g (j = 1, . . . ,N − 2) (3)

The N − 2 independent concentrations χ(k) will be called ‘the concentration basis’. The selection of the interme-
diary components as the basic ones is arbitrary.

The closure relationships for system (1) describe the locally equilibrium thermodynamic behavior. They consist of
N equilibrium equations (4) for each chemical component, two equations of phase state (5), two normalizing relations
(5) and the equilibrium equation for phase pressures in the capillary field:

ν(k)
g

(
P, c(1)

g , . . . , c(N)
g

) = ν
(k)
l

(
P, c(1)

g , . . . , c(N)
g

)
, k = 1, . . . ,N (4)

ρi = ρi

(
P, c

(1)
i , . . . , c

(N)
i

)
,

N∑
k=1

c
(k)
i = 1, i = g, l; Pg − Pl = Pc(s) (5)

where ν
(k)
i is the chemical potential of kth component in ith phase; Pc(s) is the capillary pressure function. Equations

of state are written in a general form. Functions ν
(k)
g (P, . . .) are given.

We assume that the capillary pressure Pc may be neglected with respect to the characteristic pressure difference
over the domain, �P .

Subsystem (4), (5) does not contain saturation s, as the phase densities and concentrations are independent of s.
This system includes N + 4 equations with respect to 2N + 3 variables. The difference v = (2N + 3) − (N + 4) =
N − 1, determines the number of independent variables in the thermodynamic part. We select the pressure and N − 2
basic concentrations mentioned above as the set of the independent variables. Due to this, the phase densities and
other concentrations which do not enter in the basis (3) depend on P and N − 2 basic concentrations χ(q), which
constitutes the Gibbs rule of phase.

For a gas–liquid system, the relative phase mobility parameter ω is always small, of order 0.01–0.05. We will
examine also the processes where the pressure is a slow varying function in time, so that the characteristic process
time t∗ is much greater than the proper system time t∗. Due to this, both parameters (2) are small.

3. Canonical form of the compositional model

A system is called to be formulated in a canonical form, if the leader derivatives of each differential equation
describe the behaviour of one physical basic variable from the list (3) in such a way that all the equations describe
different variables.

The transformation of (1) into the canonical form is performed while transforming each equation step-by-step, by
excluding progressively the leading derivatives (or their main parts) from the preceding equations. The main part of
a derivative is that which does not contain the small factors.

At the first step, the sum of all the equations provides a total mass balance equation with a leading derivative with
respect to pressure:

εφ
∂ρ

∂t
= div

([ωΨl + Ψg]gradP
)

(6)

where ρ ≡ ρls + ρg(1 − s) is the total density. This equation will replace the first equation in (1).
At the second step, in all the remaining equations the main term of the second-order derivative with respect to

pressure div(Ψg gradP) is excluded while using (6):

εφ

[
∂ρ(k)

∂t
− c(k)

g

∂ρ

∂t

]
= ω�c(k) div(Ψl gradP) + ωΨl grad c

(k)
l gradP + Ψg grad c(k)

g gradP (7)

where �c(k) ≡ c
(k)
l − c

(k)
g , k = 2, . . . ,N .

At the third step, the leading derivative div(Ψl gradP) is excluded from the first N − 2 equations (7) by subtracting
the last equation taken at k = N :
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εφ
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where new functions are introduced, ζ
(k)
g and ζ

(k)
l , called the component neutralities and defined as:

dζ
(k)
l ≡ 1

�c(k)
dc

(k)
l , dζ (k)

g ≡ 1

�c(k)
dc(k)

g (9)

Such a function describes how much the concentration variation within a fixed phase is higher/lower than the
concentration variation between two phases. For a neutral component, the concentration variation in each phase is
equal to the concentration difference between the phases [4], so ζ tends to a constant value of order 1.

4. HT-splitting

Subsystem (8) describing the transport of the basic concentrations can be transformed into a thermodynamic one
along streamlines, if two conditions are satisfied: (i) the phases have a contrasting mobility, i.e. parameter ω is small;
this is always satisfied for gas–liquid systems; (ii) the process characterized by a slow pressure variation in time
is examined, i.e. parameters ω is small. Such a second condition is always satisfied for the processes of enhanced
oil recovery which objective is to maintain pressure at a fixed level, as well as for any long-term quasi-stationary
processes (with respect to pressure). In this case, subsystem (8) takes the form:

gradP·grad
(
ζ (k)
g − ζ (N)

g

) = 0, k = 2, . . . ,N − 1 (10)

Let us rewrite (10) along a streamline y (for each k = 2, . . . ,N − 1):

∂P
∂y

∂

∂y

(
ζ (k)
g − ζ (N)

g

) = 0 ⇒ ∂

∂y

(
ζ (k)
g − ζ (N)

g

) = 0 (11)

This means that each function Φ(k) ≡ (ζ
(k)
g − ζ

(N)
g ) (for each k) does not depend on y:

Φ(k)
(
P,χ(1), . . . , χ(N−2)

) = Φ
(k)
0 , k = 2, . . . ,N − 1 (12)

where Φ
(k)
0 are constant values which may depend on time as on a parameter. These values should be known a priori

from the boundary-value conditions imposed at a boundary point of each streamline. In the last relation we taken into
account that the neutrality functions do not depend on the saturation.

Eqs. (12) represent an algebraic system of N − 2 equations containing N − 1 basic variables P,χ(1), . . . , χ(N−2).
So this system determines all the basic concentrations as the functions of pressure only:

χ(q) = χ(q)(P ), q = 1, . . . ,N − 2 (13)

Therefore the limit compositional system is monovariant along each streamline. Using property (12), we can now
transform the transport equations (11) into thermodynamic differential equations:

0 = dΦ(k)
(
P,χ(1)(P ), . . . , χ(N−2)(P )

) = dΦ(k)

dP
dP,

dΦ(k)

dP
≡ ∂Φ(k)

∂P
+

N−2∑
q=1

∂Φ(k)

∂χ(q)

dχ(q)

dP
(14)

which yields the following thermodynamic differential subsystem in which the time and space variables are not present
explicitly:

d

dP

(
ζ (k) − ζ (N)

) ≡ 1

�c(k)

dc
(k)
g

dP
− 1

�c(N)

dc
(N)
g

dP
= 0, k = 2, . . . ,N − 1 (15)

which is called the ‘delta-law’. This system is a basic law which describes the mass balance in an open thermodynamic
system.

The system of differential thermodynamic equations (15) completed with the boundary values Φ
(k)
0 determines

the basic concentrations χ(k) as the functions of pressure. System (15) added to the thermodynamic relations (4)
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constitutes a closed thermodynamic model with an only free parameter—the pressure. So, if the pressure is given,
then this enlarged thermodynamic subsystem is totally independent of flow equations.

The remaining first two equations in the canonical form of the compositional model, (6) and (7) (taken for k = N )
represents the split hydrodynamic model with respect to two variables: P(x, t) and s(x, t):

εφ
∂ρ(P, s)

∂t
= div

([
ωΨl(P, s) + Ψg(P, s)

]
gradP

)
(16a)

εφ

[
∂ρ(k)(P, s)

∂t
− c(k)

g (P )
∂ρ(P, s)

∂t

]
= ω�c(k)(P )div

(
Ψl(P, s)gradP

) + ωΨl(P, s)grad c
(k)
l (P )gradP

+ Ψg(P, s)grad c(k)
g (P )gradP (16b)

which can be simplified, if necessary, while using the fact that ω and ε are small.

5. Numerical validation to the split model

To validate the delta-law (15) and the model (16), we have simulated the full non-split problem of radial flow
of a three-component gas-condensate system (methane–ethane–decane) to a production well by using the simulator
ECLIPSE. The system was discretized with the finite difference method, a fully implicit scheme, with refining the
numerical grid in the vicinity of the well. The classic thermodynamic subsystem was based on the Peng–Robinson
equation of state. The results obtained for pressure, saturation and concentrations along one streamline were treated

in terms of the functions c
(k)
g (P ) and c

(k)
l (P ). Using these functions we have calculated functions F1≡ 1

�c(k)

dc
(k)
g

dP
and

F2≡ 1
�c(N)

dc
(N)
g

dP
entering in the delta-law.

In Fig. 1(a) two curves correspond to functions F1 and F2 respectively. The equivalence between these two curves
is more than satisfactory, which justifies the validity of the limit thermodynamic model (15).

The similar radial 1D flow problem was also simulated in an other way, by using the split hydrodynamic model (16).
All the thermodynamic parameters of these two equations were calculated by using the split thermodynamic model
(4) and (15) as the functions of pressure. We applied the implicit discretization in time for the first equation, and
the explicit scheme for the second one. The spacial discretization was performed by volume elements with using
a logarithmic grid. The initial state of the reservoir was gaseous; the condensate appears when pressure decreases.

The liquid saturation along the radial coordinate (the flow is oriented from the right to the left) is presented in
Fig. 1(b) for one time instant. The comparison with the full compositional model (ECLIPSE-based simulation) illus-
trates a very satisfactory fit.

Fig. 1. Validation of the delta-law (a) and liquid saturation in the vicinity to a well (b): the full compositional model (dotted curve) and the split
model (solid curve).
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Due to HT-splitting we reach a significant gain in the simulation speed. In the examined case, the ratio between the
simulation time needed for the split model and that for the full model is 1:1500.
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