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Abstract

For beam bending problem, the reciprocal theorem and P-N solution are applied in a novel way to obtain the appropriate stress
and mixed boundary conditions accurate to all order. Through generalizing the method proposed by Gregory and Wan, a set of
necessary conditions on the edge-data for the existence of a rapidly decaying solution is established. When stress and mixed
conditions are imposed on the beam edge, these decaying state conditions are derived explicitly, and they are used for the correct
formulation of boundary conditions for the interior solution. For the stress data, our boundary conditions coincide with those
obtained in conventional forms of beam theories. More importantly, the appropriate boundary conditions with two different sets of
mixed edge-data are obtained for the first time. 7o cite this article: Y. Gao et al., C. R. Mecanique 335 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Conditions aux limites pour une flexion élastique des poutres. Dans le probleme de la flexion des poutres nous utilisons le
théoreme de réciprocité et la solution de Papkovich—Neuber pour trouver, de maniere inédite, les conditions mixtes de tension aux
limites avec une exactitude appropriée a tous les ordres d’approximation. En généralisant la méthode proposée par Gregory et Win,
on établit I’ensemble des conditions nécessaires pour les données sur les cotés assurant I’existence des solutions évanescentes.
Dans le cas ol les conditions sur les tensions mixtes sont imposées sur le coté d’une poutre, les conditions assurant 1’apparition
d’états évanescents sont dérivées explicitement. Nous les utilisons par la suite dans une formulation correcte des conditions aux
limites pour la solution intérieure. Nos conditions sur les tensions coincident avec celles obtenues par la théorie de la flexion des
poutres usuelle. Le résultat le plus important est 1’obtention, pour la premicre fois, des conditions aux limites appropriées avec
deux ensembles différents des données mixtes sur le bord de la poutre. Pour citer cet article : Y. Gao et al., C. R. Mecanique 335
(2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Version francaise abrégée

Il est bien connu que la solution exacte d’un probleme d’élasticité statique pour des poutres minces et plates est
composée de deux parties, la composante intérieure et la composante dans la couche extérieure (sous forme évanes-
cente). La détermination de la composante extérieure nécessaire pour satisfaire les conditions aux limites, s’avere
souvent tres difficile, sauf les cas particuliers d’une symétrie prononcée ou une géométrie tres simple.

En appliquant le théoreme de réciprocité de Betti-Rayleigh, Gregory et Wan ont développé une technique d’analyse
permettant de trouver la solution intérieure explicite griace a une formulation correcte des conditions aux limites pour
les données sur le bord arbitraires [1-8]. Ils ont aussi démontré que le principe de Saint-Venant ne pourrait étre
appliqué que pour le terme dominant dans la solution extérieure, c’est-a-dire dans le cadre de la théorie classique
des plaques uniquement. Nous examinons une formulation des conditions pour les poutres élastiques permettant les
applications aux problémes plus généraux.

Nous prenons pour point de départ les équations d’équilibre d’élasticité statique reliant les déplacements uy et u,
au tenseur des contraintes o;; :

V2, 4 (14 v) /(1 = v)dy (Bt + d;u;) =0, V2 + (14 v)/(1 = 1) (Beuy + ;) =0

Ces équations décrivent les déformations d’une poutre mince et longue d’une épaisseur unitaire le long de ’axe y.
Ensuite nous généralisons la méthode proposée par Gregory et Wan [2] et, en invoquant la solution de Papkovich
et Neuber (P-N), les conditions nécessaires a 1’existence des solutions rapidement évanescentes sont exprimées par
un ensemble des conditions aux limites imposées sur les bords de la poutre.
Le théoréeme de réciprocité pour une poutre mince peut étre exprimé par 1’intégrale sur la surface :
ﬁ(a,.ymgﬂ —0Pu)n; ds =0
N
A partir de cette intégrale, en la transformant selon I’exemple de Gregory et Wan, nous établissons les conditions
nécessaires assurant I’existence des solutions évanescentes dans quatre cas différents correspondant aux situations
géométriques différentes. Ensuite, les solutions intéreures peuvent étre déterminées de fagcon unique pour chacun de
ses cas particuliers.

1. Introduction

It is generally known that the exact solution of linear elastostatic problems for slender and thin elastic bodies
consists of an interior component and a boundary layer component (in a decaying form). Near a lateral edge, the
interior solution is supplemented by boundary layer solution component which becomes insignificant away from the
edge. The admissible boundary conditions can be satisfied only by a combination of these components. However,
the boundary layer solution, even just a leading term approximation, needed to fit the edge-data is rather intractable
except for cases with simple geometries and load symmetries. This and the fact that the solution behavior near the
edges is often not needed from practical viewpoint have driven people to take efforts to formulate the interior solution,
by assigning an appropriate portion of the prescribed edge-data to it, without any reference to the boundary layer
solution.

By an application of the Betti-Rayleigh reciprocal theorem, Gregory and Wan developed a decay analysis technique
determining the interior solution successfully and effectively and provided the results for several plate problems, and
derived a set of correct boundary conditions for arbitrarily prescribed admissible edge-data [1-8]. From these results,
they have now explicit examples showing that the higher order accuracy offered by the governing differential equations
of a higher order plate theory may not be attained unless commensurate boundary conditions are developed and used
for these equations. These general results also show that, to be strictly correct, Saint-Venant’s principle should be
applied only to the leading term outer solution, i.e. the classical plate theory.

Otherwise, relevant boundary conditions for elastic beam have not been attempted. Due to its importance, a parallel
development of boundary conditions for elastic beam which are formulated in the present paper should be allowed
for applications to a broader class of problems. In the following sections, we obtain a set of necessary conditions
on the edge-data for the existence of a rapidly decaying solution of the beam problems. Through generalizing the
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method brought forward by Gregory and Wan [2] and by invoking Papkovich—-Neuber (P—N) solution, these necessary
conditions are then translated into the desired set of boundary conditions for the interior expansion.

Our results extend the known results to beam problems, which enable us to formulate the correct edge conditions
for one-dimensional beam theories with stress and mixed edge-data. For the stress data, our boundary conditions on
edge-data for a decaying state are consistent with conventional boundary conditions of beam theories. For the mixed
edge-data, the appropriate edge conditions for the interior solution, not previously known in the literature, are also
obtained for two different sets.

2. Necessary conditions for a decaying state

Let us consider a homogeneous, isotropic and linearly elastic beam as a plane stress problem. In a fixed rectangular
coordinate system, z is the coordinate normal to the neutral surface (x—y plane) of the beam. We assume the beam
length in x-direction is /, beam width in y-direction is assumed 1, beam height in z-direction is 24 , and [ >> 2h > 1.
In the absence of body force, the equilibrium equations of elasticity plane stress problem expressed by displacements
uy and u, are

Vz“x + A +v)/(1 =)oy (Oxuy + d;uz) =0, Vz“z + (T +v)/(1 =)0, (yuy + dzu;) =0 (D

where V2 = 83 + 822 is two-dimensional Laplacian operator, v, E and u are Poisson’s ratio, the Young’s modulus
and the shear modulus, respectively. By taking advantage of P-N solution for beam problem, the expressions of
displacements and stresses can be obtained as

uy = Py — (1+v)/40 e, u;, =Pz — (1+v)/40;e
Oxx :u[(2+v)8xP1 +v0; P3 —(l+v)/28fe], GXZ:M(BZPl +8xP3—(1+v)/28xaze) 2)
0z = p[Vdy P + 2+ 1)3, P3 — (1 +v)/28%¢]
where ¢ = Py + x P + zP3, Py, P; and P3 are harmonic functions.
The top and bottom faces of the beam are taken to be traction free, so that
oy, =0,,=0 (z==h) 3)

The presence of any body or surface loads may be removed by a particular solution. Then the only forcing terms in
the problem are prescribed on the end x = 0 in terms of stress or displacement edge-data in the form of one of the
following four admissible combinations,

Case (A): 05x(0,2) =61 (2),  042(0,2) =612 (2) )
Case B): u(0,2) = iix(2), 0x2(0,2) =x:(2) 5)
Case (C): 0yx(0,2) =0xx(2), u(0,2) =1u;(z) (6)
Case (D): u,(0,z) =uy(z), u;(0,2)=u.(z) 7

In generalization of analogous statements for elastic plates [2], we introduce two definitions for two equilibrium
states as follows:

Definition 1. The displacement fields u and stress fields o induced by the prescribed edge-data are said to give rise to
a decaying state within the beam if they satisfy the condition

{u,a}:O(Mle_Vd/h) ash —0 (8)

where d is the minimum distance of the observation point from the edge of the beam, M are the maximum modulus
of the prescribed edge-data for the decaying state, M and y are positive constants.

Definition 2. The displacement fields # and stress fields o are said to be a regular state within the beam if they satisfy
the condition

{u,0}=0(Mh*) ash—0 )

where M, are the maximum modulus for the regular state, M, > 0 and « > 0. That means the fields have at most an
algebraic growth as &7 — 0.
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Supposing that the stress data does give rise to the decaying state in the beam, we now apply the reciprocal theorem
for a beam, which takes the form
@ @ @ 1)
ﬂ(oij Ui — o u; )nidSzO (10)
S

where S is the surface of the beam which consists of two end planes and a lateral surface, n; is the direction cosine
of the outward normal to S. With the foregoing two definitions in mind, now we take the state with a superscript
“(1)” to be the exact solution of beam bending problem, and the decaying state induced by the prescribed edge-data
Oxx» Oxz, Uy, Uz. For the auxiliary state, denoted by a superscript “(2)”, we take any regular state which fulfills load-
free conditions on S. Similar to the derivation of necessary conditions for a decaying state in the plate, generalizing
Gregory and Wan’s decay analysis technique to a beam, we finally obtain the necessary conditions for a decaying state

h
Case (A): / 2 (Qu® + 6xz(z)u§2)]x=0 dz=0 (11)
—h
h
Case (B): / [ix ()03 = 6x:(@uiP] _ dz=0 (12)
—h
h
Case (C): / [i:(2)02 — e (@uP] _,dz=0 (13)
~h
h
Case (D): / [ix ()03 +ii-(2)0 2], dz=0 (14)
~h
These necessary conditions for the edge-data to induce only a decaying elastostatic state will be translated into appro-
priate boundary conditions for the beam later in next section.

3. Boundary conditions for the beam

The main difficulty in performing the preceding process lies in obtaining suitable regular states which satisfy the
appropriate boundary conditions. However, for the case of elastic beam bending, the necessary regular states can be
explicitly determined as follows, at least for edge-data in Cases (A), (B) and (C).

3.1. Case (A)

Our main task lies in obtaining accurate solutions for these regular states. We can take a rigid body translation in
the z-direction as the first auxiliary regular state. Then u)(cz) =0 and u§2) = constant so that Eq. (11) gives the first
condition for the stress data

h

/&xz dz=0 (15)
—h

Now we look for the second auxiliary regular state with the use of P-N solution for beam problem. According to
the characteristics of bending problem, we assume

Py=Ci(? —3x%2) + Coxz,  P1=0,  P3=C3(z% —x%) +Cax (16)

where C; (i =1, 2, 3, 4) are unknown constants to be determined later.
As the procedure in the preceding section indicates, any candidate for regular state (2) must meet the requirements
stipulated below

a)g) = azg) =0 (z==h), O’)g) = 0)5)2() =0 (x=0) 17
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On substituting Eq. (16) into Eq. (2), then the results into Eq. (17), we can determine the relationship among these
unknown constants as

Ci=C3=0, C=0-v)/(0+v) -C4 (18)

which corresponds to a rigid body rotation. Inserting this auxiliary regular state (16) into Eq. (11) with the use of
Eq. (15), after taking account of the relationship (18), we obtain the second necessary condition for a decaying state
when oy, is prescribed

h

/5xedZ=O (19)
—h

The necessary conditions (15) and (19) are conventional forms of elastic beam theories [9], although they are formu-
lated explicitly by an application of the reciprocal theorem and PN solution.

3.2. Case (B)

As in Case (A), selecting a rigid body translation as the first auxiliary regular state, we certainly must have the
corresponding necessary conditions

h
Jaaz=o 20)

—h
To obtain the second auxiliary regular state, the regular state (2) must meet the requirements stipulated as follows
0l =0 =0 G=%n), o07=0, ux=0 (x=0 @1)

Taking the potential functions Py, P; and P3 in Case (B) to be of the same form in Case (A), after using the condi-
tion (21) leads to

Ci=0-v)/[304+v)]-Cs, Cr=C4=0 (22)

With the help of Egs. (20) and (22), the second necessary condition for a decaying state is obtained from Eq. (12)
when i, and oy, are prescribed

h
/aﬂ+l@%2@=o 23)
2F
h

3.3. Case (C)

Similar to Case (A), we take the regular state (2) as a rigid body rotation, then obtain

h
/5xxzdz=0 24)
—h

With the features of bending problem, we take the harmonic functions as
Py=0, P =Di(z =3x%2)+Dyz,  P3=D3(x’ —3x2%) + Dux (25)
where D; (i = 1,2, 3,4) are unknown constants yet to be determined. By noting that
0@ =0P=0 z=%xn, cP=0 uP=0 (x=0) (26)
we have the relationship among these unknown constants

Di=—(1—-v)/(1+3v)-D3,  Dy+ Ds=—[24v(1 +v)A*]/[(1 —v)(1 +3v)] - D3 (27)
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On substituting the expressions (25) into Eq. (13), we obtain, after using Eqs. (24) and (27)

h
- 24v_
f |:uz(h2—Z2)+ 3E"oxxz3} dz=0 (28)

4. Discussion and conclusions

These aforementioned necessary conditions for a decaying state (boundary layer solution) can then be converted
into a set of boundary conditions appropriate for the interior solution or its various approximate beam theories, which
do not involve the boundary layer solution components. As the preceding discussion in Introduction, the difference
between the exact solution and the interior one is a decaying state. Then the above necessary conditions applied to the
edge-data at x = 0 of a beam

- I = 1 = 1 = !
Uy = [Mx o uX]x:O’ Uz = [uZ o uz]x:O’ Oxx = [Gxx o UXX]X:O’ Oxz = [UXZ o UXZ]X=O (29)
where ul, u!, 0! and o/, are interior solutions, give
h h h h
1 A i A
/ [ze]xzo dz = /ze dz, / [Uxe]x=0 dz = / Oxxz2dz
—h —h —h —h
h
I V 1.2 n V.
uyZ+ =——0,.2 dz= | |z + z70x:2” |dz (30)
/ [ TO2ET i|x:0 / |: TU2ETE
—h —h

h h
2+V . 2+V,\
/[ug(lﬂ_zz)-i- 3E U)chZ3j| OdZZ/[uZ(hz_Z2)+ 3B O_XXZS] dZ
x=
—h

where iy, ii;, 0y and 0y, are the actually prescribed edge-data. The first two conditions in Eq. (30) are for Case (A),
the first and third ones for Case (B), while the second and fourth ones correspond to Case (C). By superposition, the
boundary conditions for bending deformation of the beam are formed. Thus a portion of the edge-data is effectively
allocated to the interior solution, which is analogous to the assignment of edge-data in the form of resultant force
and moment by Saint-Venant’s principle. Similar as those pointed out by Gregory and Wan [2], the results reveal that
indiscriminate extension of Saint-Venant’s principle is not justified in general, which may lead to erroneous solution
for the beam’s deformation even away from the beam edge.

The results of the present paper extend the known results to beam problems, which enable us to establish a set of
correct boundary conditions with stress and mixed edge-data. However, attempts to derive similar results on boundary
conditions for pure displacement edge-data case have not been successful.
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