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Abstract

In this Note the method developed by Aider and Debiane (2004) for the calculation of nonsymmetric water waves on infinite
depth is extended to finite depth. The water-wave problem is reduced to a system of nonlinear algebraic equations which is solved
by using Newton’s method. Solutions are computed up to their limiting forms by decrementing the depth from the infinity to a
value of the depth-wavelength ratio h/λ less than 0.025. It is found that the waves become symmetric when the depth becomes
very small. Relations giving some integral properties are derived. To cite this article: R. Aider, M. Debiane, C. R. Mecanique 334
(2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une méthode de calcul des ondes de gravité–capillarité périodiques et non-symétriques en profondeur arbitraire. La mé-
thode développée par Aider et Debiane (2004) pour le calcul des ondes de gravité-capillarité non-symétriques en profondeur infinie
est étendue au cas d’une profondeur arbitraire. Les équations classiques des vagues sont réduites à un système d’équations algé-
briques non-linéaires, résolu par la méthode de Newton. Des solutions ont été calculées jusqu’à leur forme limite en décrémentant
le paramètre lié à la profondeur de la valeur infinie jusqu’à une valeur telle que le rapport h/λ, de la profondeur sur la longueur
d’onde, devient inférieur à 0,025. On a trouvé que les ondes deviennent symétriques lorsque la profondeur devient très faible. Les
relations donnant quelques propriétés intégrales ont été dérivées. Pour citer cet article : R. Aider, M. Debiane, C. R. Mecanique
334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

A wave is said to be symmetric when, if f (x) represents the profile of the wave, the origin of the horizontal axis
can be chosen such that f (x) = f (−x). The problem of symmetric periodic capillary–gravity waves has been the
subject of a substantial literature. However, much less work appears to have been done on the corresponding problem
when the profile is nonsymmetric. Zufiria [1,2] is the first to calculate nonsymmetric periodic water waves. He found
that for gravity waves on shallow and deep water, the symmetry can be broken via a spontaneous symmetry-breaking
bifurcation. He found that class 6 wave (six crests per period) is the minimum class to have symmetry-breaking. In
an other work, using a weakly nonlinear Hamiltonian model, Zufiria [3] found that for water of finite and uniform
depth, families of non-symmetric pure gravity waves are possible. They appear via spontaneous symmetry-breaking
bifurcation from families of symmetric waves. He concluded that the symmetric solutions are just a subset of the
solutions coming from the complex bifurcation structure of the Hamiltonian systems. Recently Aider and Debiane
[4] have given numerical evidence that, on deep water, a class 1 gravity wave (one crest per period) including very
weak surface tension could have asymmetric bifurcation when it is close to the limiting form. They also calculated
non-symmetric gravity–capillary waves on infinite depth. The method they used consists in determining the Fourier
coefficients in Stokes expansion through a set of integral relations derived by Longuet-Higgins [5] for gravity waves.
Then, following Debiane and Kharif [6], the term due to surface tension is reduced to a simple function of the slope of
the local tangent to the profile of the free surface. Finally a set of nonlinear algebraic equations is derived and solved
by Newton’s method. Motivated by the efficiency of this method, we develop here a similar method for the arbitrary
uniform depth problem.

2. Form of solutions

We consider periodic capillary–gravity waves on the surface of a frictionless liquid of arbitrary uniform depth h.
We assume that the flow is irrotational and the fluid is homogeneous and incompressible. Bidimensional waves propa-
gating at a constant phase velocity c without changing their form are considered. In frame of reference travelling with
the phase speed c these waves are steady. We choose axes with x horizontal and z vertically upwards and the origin
above a crest at such a distance that Bernoulli’s equation, at the free surface, can be written as

V 2 + 2η − 2κ
ηxx

(1 + η2
x)

3/2
= 0 (1)

where η(x) is the free surface level, V the particle velocity and κ is the dimensionless capillary number defined by

κ = k2τ
ρg

. Here g is the acceleration due to the gravity, k the wave number, τ and ρ are the surface tension and the
density of the fluid, respectively. The problem is considerably simplified if the potential function φ(x, z) and the
stream function Ψ (x, z) are used as independent variables. The stream function takes the values ψ = 0 at the free
surface and ψ = ψB at the bottom where z = zB . Then following a standard approach we may express the coordinates
of a 2π -periodic wave by Stokes expansion:

η = a0

2
+

∞∑
n=1

{
p̄n shnψB cos

(
n
Φ

c

)
− q̄n shnψB sin

(
n
Φ

c

)}
(2a)

x = −ϕ +
∞∑

n=1

{
−q̄n chnψB cos

(
n
Φ

c

)
− p̄n chnψB sin

(
n
Φ

c

)}
(2b)

Let ϕ = Φ
c
; a0 = p0; pn = p̄n shnψB; qn = q̄n shnψB; γn = cothnψB .

Eqs. (2) are rewritten as follows:

η = p0

2
+

∞∑
n=1

{pn cosnϕ − qn sinnϕ} (3a)

x = −ϕ +
∞∑

n=1

{−γnqn cosnϕ − γnpn sinnϕ} (3b)

If the wave is symmetric the coefficients qn are all equal to zero. In the case of infinite depth γn = 1.
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3. Calculation of the coefficients

Using the set of integral equations given by Longuet-Higgins:

Sj =
−2π∫
0

V 2(xϕ + iγjηϕ)e−ijϕ dϕ = 0 (j = 1,2,3, . . .) (4)

and proceeding in the same way as Debiane and Kharif [6], we derive a system of nonlinear algebraic equations solved
for the coefficients pn (n = 0,1,2, . . .) and qn (n = 1,2, . . .) by Newton’s method. Using (1) the integral Ij of Eq. (4)
can be written as

Sj = S
(1)
j + S

(2)
j (5a)

where

S
(1)
j = −2

−2π∫
0

η(xϕ + iγjηϕ)e−ijϕ dϕ (5b)

S
(2)
j = 2κ

−2π∫
0

ηxx

(1 + η2
x)

3/2
(xϕ + iγjηϕ)e−ijϕ dϕ (5c)

Using (3a) and (3b), S
(1)
j may be integrated easily. We get the following quadratic relation

S
(1)
j = π

⌊
R

(1)
j + iI (1)

j

⌋
(6)

with

R
(1)
j = −2pj +

∞∑
m=1

[−αmpmpm+j − αmpmpm−j − αmqmqm+j − αmqmqm−j

+ γj (mpmpm+j − mpmpm−j + mqmqm+j − mqmqm−j )
]

(7a)

I
(1)
j = −2qj +

∞∑
m=1

[−αmpmqm+j + αmpmqm−j + αmqmpm+j − αmqmpm−j

+ γj (mpmqm+j + mpmqm−j − mqmpm+j − mqmpm−j )
]

(7b)

where αm = mγm. In order to calculate the remaining integral S
(2)
j , we introduce the following development:

eiθ = 1 + iηx

(1 + η2
x)

1/2
= C0

2
+

∞∑
n=1

(Cn cosnϕ + Dn sinnϕ) + i

[
E0

2
+

∞∑
n=1

(En cosnϕ + Fn sinnϕ)

]
(8)

where θ(ϕ) = arctan(ηx) is the slope of the local tangent to the free surface. One can show that:

S
(2)
j = −2πjκ

{
γjCj + Fj + i(Ej − γjDj )

} = π
⌊
R

(2)
j + iI (2)

j

⌋
(9)

The resulting expression of Sj is then:

Sj = π
⌊
R

(1)
j + R

(2)
j + i

(
I

(1)
j + I

(2)
j

)⌋
(10)

Finally the integral equations (4) can be written as:

Sj = 0 (j = 1,2,3, . . .) (11)

After the separation of the real and imaginary parts we obtain the following algebraic system:
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�j = −2pj +
∞∑

m=1

[−αmpmpm+j − αmpmpm−j − αmqmqm+j − αmqmqm−j

+ γj (mqmqm+j − mqmqm−j + mpmpm+j − mpmpm−j )
]

− 2jκ(γjCj + Fj ) = 0, j = 0,1,2, . . . (12a)

�j = −2qj +
∞∑

m=1

[−αmpmqm+j + αmpmqm−j + αmqmpm+j − αmqmpm−j

+ γj (mpmqm+j + mpmqm−j − mqmpm+j − mqmpm−j )
]

− 2jκ(−γjDj + Ej) = 0, j = 0,1,2, . . . (12b)

The series (3a) and (3b) are truncated to the order N , therefore the number of unknowns is limited to 2N + 1. The
summation in Eqs. (12a) and (12b) are also limited to N . Thus we construct a system of algebraic equations, where
the first N equations correspond to:

�j = 0, j = 1,N (13a)

and the following N are:

�j = 0, j = 1,N (13b)

These equations could be supplemented by introducing a parameter such as the dimensionless mean depth

H = −zB + η̄ = d + 1

2

∞∑
n=1

αn

(
p2

n + q2
n

)
(13c)

Here zB is the value of z at the bottom, η̄ the mean level and αn = nγn.
The system of nonlinear equations (13a), (13b) is solved by a process of Newtonian iteration.

4. Integral properties

The solutions given by the previous method may be used to provide several integral properties of the motion such
as phase velocity and kinetic and potential energies:

c2 = −2η(0)
(
x2
ϕ + η2

ϕ

)
ϕ=0 + 2κ

∣∣xϕ(0)
∣∣(x2

ϕ + η2
ϕ

)−1/2
ϕ=0

[
ηϕϕxϕ − ηϕxϕϕ

x3
ϕ

]
ϕ=0

(14)

the kinetic energy can be calculated in the form

T = 1

2
c2

[
1

2

∞∑
n=1

nγn

(
p2

n + q2
n

)]
(15)

The gravity and capillary components of the potential energy are respectively Vg and Vτ , are given by:

Vg = 1

4
ς0 + 1

4

∞∑
m=1

αmpmςm (16)

Vτ = κ

2

{
C0 +
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n=1

[αnpnCn − αnqnDn + nqnEn + npnFn] − 2

}
(17)

ς0 = 2b2
0 +
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n=1

(
p2

n + q2
n

)
where
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ςm = −b0pm + 1

2

∞∑
n=1

pn(pm+n + p|m−n|) + 1

2

∞∑
n=1

qn(qm+n + qn−m)

b0 = 1

2

∞∑
n=1

αn

(
p2

n + q2
n

)

5. Results

In a previous work (Aider and Debiane [4]), we have calculated a nonsymmetric gravity–capillary wave on infinite
depth with κ = 1/12 (Fig. 1). This solution is used to initialise the iterative Newton process for finite depth; afterwards
the resolution of the system (13) is performed by decreasing gradually the mean depth H until the ratio h/λ reaches
the value 0.024, corresponding to the Bond number B = τ

ρgh2 varying from 0 to 3.6. The Fourier coefficients in (8), are
calculated by the use of Fast Fourier Transform (F.F.T.) which requires a number M , of intervals of the sampling of the
variable ϕ, equal to a power of 2. Integer N is increased until convergence of the solutions is reached and is chosen as
small as possible provided, that further increase in its value will not significantly change the solutions. The bulk of the
computations has been carried out using N = 150 and M = 4096. Different families of steady nonsymmetric periodic
waves are produced and are computed until their maximum height, without any trouble. For high wave steepness 6 to
10 iterations are required to satisfy the system of equations with an error less than 10−12. Fig. 2 displays profiles of

Fig. 1. Profile of periodic and nonsymmetric grav-
ity–capillary wave on infinite depth.

Fig. 1. Profil d’une onde de gravité–capillarité périodique
et non-symétrique en profondeur infinie.

Fig. 2(a). Limiting profile of periodic and nonsymmet-
ric gravity–capillary wave for h/λ = 0.2.

Fig. 2(a). Profil limite d’une onde de gravité–capillarité
périodique et non-symétrique pour h/λ = 0,2.

Fig. 2(b). Limiting profile of nonsymmetric gravity–capil-
lary wave for h/λ = 0.1.

Fig. 2(b). Profil limite d’une onde de gravité–capillarité
non-symétrique pour h/λ = 0,1.

Fig. 3. Evolution of the shape of the wave with the depth;
Solid line h/λ = 0.5: dashed line: h/λ = 0.1.

Fig. 3. Evolution du profil de l’onde avec la diminution de
la profondeur. En trait plein : h/λ = 0,5 ; en pointillés :
h/λ = 0,1.
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Fig. 4. Limiting profile of the symmetric wave for
h/λ = 0.0899.

Fig. 4. Profile limite de l’onde symetrique pour
h/λ = 0,0899.

Fig. 5. Profile of the symmetric wave for h/λ = 0.08.

Fig. 5. Profile de l’onde symetrique pour h/λ = 0,08.

limiting waves, that is to say two adjacent crests are joined to enclose a bubble in the trough, obtained for h/λ = 0.2
and 0.1, where h and λ are the depth and the wavelength respectively. As the depth decreases the profiles undergo
modifications and the difference of level between two neighbouring crests decreases and the coefficients qi become
smaller and smaller (Fig. 3). When h/λ reaches the value h/λ = 0.09 (B = 0.26) these modifications give rise to
symmetric waves of wavelength π in which the crests are unequal whereas the troughs are at the same depth (Fig. 4).
The symmetries are about principal crests and the troughs located between two secondary crests. As we pursue the
decrement of the depth, the difference of level between all crests becomes smaller and smaller and eventually for
h/λ ∼ 0.08 (B = 0.33), the coefficients qi are all null and the wave becomes symmetrical about all the troughs and
all the crests which are now equal (Fig. 5). For h/λ less than 0.08 (B > 1/3) the wave remains symmetric, and no
topological changes in the profile were noted. This behaviour, i.e., the bifurcation leading to the disappearance of the
asymmetry for B greater than 1/3, is expected and could be explained by the fact that the nonlinear effects, which
are responsible for the symmetry-breaking leading to no symmetric waves, decrease as h/λ diminishes and become
insignificant when the depth becomes very small.
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