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Large-amplitude internal solitary waves in a two-fluid model
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Abstract

We compute solitary wave solutions of a Hamiltonian model for large-amplitude long internal waves in a two-layer stratification.
Computations are performed for values of the density and depth ratios close to oceanic conditions, and comparisons are made with
solutions of both weakly and fully nonlinear models. It is shown that characteristic features of highly nonlinear solitary waves such
as broadening are reproduced well by the present model. To cite this article: Ph. Guyenne, C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Ondes solitaires internes de grande amplitude dans un modèle à deux fluides. Nous calculons numériquement des solutions
en ondes solitaires d’un modèle hamiltonien décrivant les ondes internes longues de grande amplitude dans un milieu stratifié à deux
couches. Ces solutions numériques sont calculées pour des valeurs de rapports de densité et de profondeur proches des conditions
océaniques, et sont comparées avec les solutions de modèles faiblement et pleinement non-linéaires. Les résultats montrent que
le modèle reproduit bien les caractéristiques des ondes solitaires fortement non-linéaires telles que le phénomène d’élargissement.
Pour citer cet article : Ph. Guyenne, C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Internal solitary waves are ubiquitous in oceans, fjords and lakes. They are frequently observed in coastal regions
where strong tides and stratification occur over variable topography. They often exhibit very large amplitudes. General
properties of such waves have been described in detail; see, e.g., the review [1].

Models based on the full Euler equations have greatly contributed to our understanding of nonlinear internal wave
properties [2–7]. However, numerical simulations based on these models are usually computationally expensive. Re-
cently long wave models, combining both relative simplicity and full nonlinearity, have been developed and have been
found to compare well with experiments [8–10].
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Motivated by these works, Craig, Guyenne and Kalisch [11,12] recently derived a Hamiltonian model for large-
amplitude long internal waves in a two-layer configuration. To our knowledge, solutions of this model have never been
investigated before. We provide here the first numerical evidence of solitary wave solutions. These are computed for
parameters close to oceanic conditions, and are compared with solutions of both weakly and fully nonlinear models.

2. Hamiltonian two-fluid model

We consider two-dimensional wave motion of an interface between two immiscible ideal fluids of finite depth,
described by the Hamiltonian system [11,12]

∂tη = −∂xδuH, ∂tu = −∂xδηH (1)

with Hamiltonian

H = 1

2

∫
R

[
R0(η)u2 + g(ρ − ρ1)η

2 + R1(η)(∂xu)2 + (
∂xR2(η)

)
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(
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where η(x, t) is the interface displacement, u(x, t) is the jump of horizontal velocity across the interface, and g is the
acceleration due to gravity. The lower fluid is of density ρ and depth h, and the lighter, upper fluid is of density ρ1
and depth h1. Surface tension effects are neglected and rigid lid boundary conditions are imposed. Here R0(η), R1(η),
∂xR2(η) and R3(η) are rational functions of η. Their (cumbersome) expressions are not shown here for convenience
and the reader is referred to [11,12] for further details.

This model can be formally derived from the full Euler equations for two-layer potential flows. One assumes that the
typical wavelength of the internal waves is long as compared to the depths of the fluids, but no smallness assumption
on wave amplitude is made. A counterpart to (1) for small wave amplitudes is given by the Kaup–Boussinesq (KB)
equations, which are fully integrable and which admit solitary wave solutions of the form
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2
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and c denotes the wave speed.

3. Solitary wave solutions and numerical scheme

We look for solutions of (1) which are stationary in a reference frame moving at constant speed c and which decay
very fast at infinity. These correspond to fixed points of δ(H − c I), where I = ∫

R
ηudx is the momentum of the

system. We thus need to solve the following system of nonlinear, ordinary differential equations

0 = −cη + R0u − (R1u
′)′ − (R2)

′′u + R3(η
′)2u

0 = −cu + 1

2
(∂ηR0)u

2 + g(ρ − ρ1)η + 1

2
(∂ηR1)(u

′)2 − 1

2
(∂ηR2)

(
u2)′′ + 1

2
(∂ηR3)(η

′)2u2 − (
R3η

′u2)′ (5)

where the symbol ′ stands for differentiation with respect to x. Note that ∂ηR2 in (5) is related to ∂xR2 through the
chain rule ∂xR2 = ∂ηR2 ∂xη.

System (5) can be easily discretized using a pseudospectral method and assuming periodic boundary conditions
in x. Both η and u are expanded in truncated Fourier series with the same number of modes N . All operations are
performed using the fast Fourier transform, which yields high accuracy at relatively low cost. We solve the resulting
discretized system by an iterative procedure (Newton–Raphson’s method), and the bifurcation parameter in the prob-
lem is the wave speed c. Because small-amplitude waves of the KB equations are close approximations to those of
(1) in the weakly nonlinear regime, we use the KB solutions (3) as the initial guess in the iterative procedure, to find
solitary wave solutions of (1). We then gradually increase the parameter c (thus increasing the wave amplitude) and
repeat the procedure, using smaller-amplitude solutions as an initial guess to compute higher-amplitude solutions.
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4. Numerical results

Computations have been performed with a discretization N = 1024, for a domain of length L/h = 50. The domain
is specified long enough to ensure that the tails of the solitary waves are rapidly decaying at its ends and that periodicity
has no significant effect on the solutions. As determined by the initial guess (3), we look for solitary waves moving at
speeds c2 > c2

0 = αβ = ghh1(ρ −ρ1)/(ρ1h+ρh1) where c0 denotes the linear wave speed for two-layer flows. Fig. 1
shows the computed wave profiles for h1/h = 1/3 and ρ/ρ1 = 0.997; the solitary waves being of depression in this
case. This regime of parameters was chosen because it is representative of situations close to oceanic conditions [2].
The linear wave speed in this configuration is c0/

√
gh = 0.0274 (or c0/

√
gh1 = 0.0475). For comparison, solitary

Fig. 1. Comparison of wave profiles η for the KdV equation (dots), Gardner equation (triangles), fully nonlinear model of Grue et al. [5] (dashed line)
and present model (solid line). The parameters are h1/h = 1/3 and ρ1/ρ = 0.997. The different plots correspond to amplitudes (a) H/h1 = 0.064,
(b) H/h1 = 0.353, (c) H/h1 = 0.582, (d) H/h1 = 0.795, (e) H/h1 = 0.833, (f) H/h1 = 0.929.
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wave solutions of the Korteweg–de Vries (KdV) and Gardner equations [13,14] as well as those computed by the
fully nonlinear model of Grue et al. [5], with matching amplitudes, are also shown in the figure. The model of Grue
et al. [5] solves the full equations for two-layer flows using a boundary integral method. The KdV equation has a
family of well-known ‘sech2’ solitary wave solutions. For the Gardner equation (also known as the extended KdV
equation), the solitary waves (also called kink-antikink solutions) are of the form

η(x, t) = − α

α1

ν

2

[
tanh

(
x − ct



+ δ

)
− tanh

(
x − ct



− δ

)]
(6)

where

α = 3c1(h1 − h)

2hh1
, α1 = 3c1

h2h2
1

[
7

8
(h − h1)

2 − h3 + h3
1

h + h1

]
, c2

1 = ghh1(ρ − ρ1)

ρ(h + h1)
(7)


2 = −24α1β

α2ν2
, β = c1hh1

6
, c = c1 − α2ν2

6α1
, δ = 1

4
ln

(
1 + ν

1 − ν

)
(8)

and ν is a nonlinearity parameter with values 0 < ν < 1. Solitary waves of the Gardner equation are broader than their
KdV analogues, and they become more box shaped with flat crests (table-top solutions) as the amplitude increases
toward the limit α/α1 = 0.857h1 (hereafter we define the wave amplitude as H = |η|max).

As expected, for small amplitudes, the KdV wave profiles are close to those of (1) but the latter become significantly
broader as the amplitude increases. Broad internal solitary waves have also been observed by other authors, e.g.,
[15–17]. We see in Fig. 1 that the ‘computed’ profiles (i.e., of model (1)) are also broader than the Gardner and
fully nonlinear profiles for amplitudes up to H/h1 � 0.795; the fully nonlinear solutions lying between the Gardner
and computed ones. For H/h1 � 0.795, the computed, Gardner and fully nonlinear wave shapes almost coincide,
especially in the lower part around the wave crest. For higher amplitudes, as ν → 1, the picture is reversed; the
Gardner solitary waves flatten and become broader than the computed and fully nonlinear waves. Such differences in
wave shapes are further quantified in Fig. 2 which compares the width W (at mid-amplitude H/2) for the four types
of solitary waves. It can be clearly seen that the width for the KdV solution continuously decreases as H grows, while
that for the other three solutions increases past H/h1 � 0.45. Although the width of the Gardner solitary wave is
smaller than those of the computed and fully nonlinear waves for most amplitudes, it increases faster as H approaches
0.857h1 due to the flattening process.

Despite these noticeable differences in wave profiles, we see in Fig. 3 that the speeds of the computed, Gardner
and fully nonlinear solitary waves are quite close over almost the entire range of amplitudes considered. In fact, the
curves for the computed and fully nonlinear solutions are almost indistinguishable, while that for the Gardner solution

Fig. 2. Comparison of solitary wave widths W (at mid-amplitude H/2) for the KdV equation (dots), Gardner equation (triangles), fully nonlinear
model of Grue et al. [5] (dashed line) and present model (solid line).
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Fig. 3. Comparison of wave speeds c for the KdV equation (dots), Gardner equation (triangles), fully nonlinear model of Grue et al. [5] (dashed
line) and present model (solid line).

Fig. 4. Sequence of computed profiles of (a) η and (b) u. The different curves correspond to amplitudes H/h1 = 0.064, 0.131, 0.194, 0.269, 0.353,
0.453, 0.582, 0.689, 0.795, 0.833, 0.882, 0.929.

lies slightly below at large amplitudes. Their speeds exhibit a similar slow growth which seems to reach a maximum
around c/

√
gh1 � 0.055 (i.e., the conjugate flow limit; see below). This contrasts with the speed of the KdV solution

which grows linearly with the amplitude. It should be pointed out that the range of large amplitudes we are considering
here (i.e., H/h1 � 0.795 or so) is certainly beyond the regime of validity of both the KdV and Gardner equations.
Nonetheless, the similarities that we observe between the computed, Gardner and fully nonlinear solutions suggest
that the present model reproduces well characteristic features of large-amplitude internal solitary waves.

As shown in Fig. 1(f), we were able to compute solutions of (1) for amplitudes higher than 0.857h1, which cor-
responds to the maximum amplitude for Gardner solitary waves in the present configuration. This explains why the
comparison with the Gardner solution is not shown in the figure. The maximum wave amplitude and speed that our
computations could achieve are H/h1 = 0.929 and c/

√
gh1 = 0.0549, which are close to the limiting amplitude and

speed for conjugate flows as given by

Hmax = h
√

ρ1 − h1
√

ρ√ √ = 0.998h1, cmax =
√

g(h + h1)(ρ − ρ1)√ √ = 0.0548
√

gh1 (9)

ρ + ρ1 ρ + ρ1
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Evans and Ford [2] computed extremal forms of internal solitary waves very close to this limit for h1/h = 1/3
and ρ/ρ1 = 0.997, using an integral equation model based on the full Euler equations. Finally, Fig. 4(a) presents
a sequence of wave profiles, solutions of (1), which clearly shows that the width of the computed solitary waves
continuously grows with the amplitude. A similar behavior is observed for the profile of u in Fig. 4(b).

In conclusion, solitary wave solutions of system (1) have been computed in a parameter regime close to oceanic
conditions. The solitary waves are found to be significantly broader and slower than their KdV analogues; their width
increasing with the amplitude. The present model compares better than the Gardner equation with the fully nonlinear
model of Grue et al. [5] for large amplitudes. We were able to compute solutions for amplitudes up to H/h1 = 0.929,
which is close to the conjugate flow limit. It would be worthwhile to compare with experiments in the future. Finally,
the present study is focused on solitary wave solutions of (1), but problems of time evolution can also be considered.
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