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Abstract

We consider a linear model of a rotating Timoshenko beam, which is clamped at one end to a disk the other being free. The
motion of the beam is controlled by the angular acceleration of the disk. We study the minimization problem of mean square
deviation of the Timoshenko beam from a given position. For the minimization problem of the first mode we prove that optimal
control is the chattering control, i.e., it has an infinite number of switches in a finite time interval. We construct a suboptimal control
with a finite number of switches. To cite this article: M.I. Zelikin, L.A. Manita, C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Contrôle optimal d’une barre de Timoshenko. On considére une barre de Timoshenko en rotation, dont une extrêmité est reliée
à un disque et l’autre est libre. Son mouvement est controlé par l’accéleration angulaire du disque. Nous étudions le problème de la
minimisation de la moyenne quadratique de la deviation. Pour le problème de la minimisation du premier mode, nous démontrons
qu’un contrôle optimal a une infinité de points de discontinuité en temps fini. Nous proposons une procédure pour construire d’un
contrôle sous-optimale qui a un nombre fini de points de discontinuité. Pour citer cet article : M.I. Zelikin, L.A. Manita, C. R.
Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

We consider a Timoshenko beam, which is clamped at one end to a disk and free at the other [1]. We suppose that
the beam motion is controlled by the angular acceleration of the disk. The equations of the Timoshenko beam can be
transformed into a system of partial differential equations of second order with a single real parameter γ > 0 [2]

* Corresponding author.
E-mail addresses: mzelikin@mtu-net.ru (M.I. Zelikin), lmanita@mech.math.msu.su (L.A. Manita).
1631-0721/$ – see front matter © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2006.03.011



M.I. Zelikin, L.A. Manita / C. R. Mecanique 334 (2006) 292–297 293
∂2w(x, t)

∂t2
− 1

γ

∂2w(x, t)

∂x2
+ 1

γ

∂ξ(x, t)

∂x
= −θ̈ (t)(r + x)

∂2ξ(x, t)

∂t2
− ∂2ξ(x, t)

∂x2
+ 1

γ
ξ(x, t) − 1

γ

∂w(x, t)

∂x
= −θ̈ (t) (1)

Here the X-axis coincides with the beam when at rest, w(x, t) is the displacement of the center line of the beam in the
direction perpendicular to the X-axis and ξ(x, t) is the rotation angle of the cross-section area at the location x ∈ [0, l]
and time t ; θ(t) is the rotation angle of the disk, r is the radius of the disk, l is the beam length. In the following, we
assume that l = 1, γ = 1. The boundary conditions are

w(0, t) = ξ(0, t) = 0, wx(l, t) − ξ(l, t) = 0, ξx(l, t) = 0 (2)

The initial state of the beam is

w(x,0) = w0(x), wt (x,0) = w1(x), ξ(x,0) = ξ0(x), ξt (x,0) = ξ1(x), x ∈ [0, l] (3)

The control problems of slowly rotating beams were studied in [2–4]. The controllability of the beam from a position
of rest into a position of rest under a given angle within a given time T (for sufficiently large T ) was proved in [3],
with a method of construction of a piecewise constant control solving the problem. The control allowing to stabilize
the system (the beam plus the disk) in a position of rest was constructed in [4]. It was shown that there exists at most a
countable set of singular values of the disk radius such that the system is not controllable. For non-singular r a control
solving the problem of controllability was constructed. In this Note we consider an optimal control problem for a
rotating uniform Timoshenko beam. We prove that optimal trajectories for the minimization problem of the first mode
of the beam have an infinite number of control switches in a finite time interval. We construct a suboptimal control
with a finite number of switches.

2. The optimal control problem of the Timoshenko beam

Consider the minimization problem of mean square deviation of the Timoshenko beam:
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Define a linear operator A :D → H by A
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Then the problem (1), (4) takes on the following form: minimize the functional
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subject to the control system

∂2
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ω(·,t) + Aω(·,t) = u(t)g(·), t > 0 (6)

Here u(t) = θ̈ (t) is a scalar control. We assume that −1 � u � 1.
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The properties of the spectrum of A were studied in [2,3]. It was proved that the operator A is self-adjoint in H

and positive. A has an orthonormal sequence of eigenfunctions hj (x) = (yj (x)

zj (x)

)
(j ∈ N) and a corresponding sequence

of eigenvalues {λj ∈ R} such that 1 < λj ↑ ∞ as j → ∞. The eigenvalues λj solve the equation [5]
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It was proved that for any sufficiently large k there exist two close eigenvalues λ−
k and λ+

k of the operator A such that
λ−

k < (π(2k − 1)/2)2 < λ+
k and λ−

k − λ+
k → 2 cos(1/2) as k → ∞.

Since the eigenfunctions (hj (x))∞j=1 of the operator A form complete orthonormal system, let us expand the
solution of Eq. (6) and the right-hand side of this equation as follows:

ω(x, t) =
∞∑

j=1

sj (t)hj (x), g(x) =
∞∑
i=1

Cjhj (x) (7)

where sj (t) = 〈ω(x, t),hj (x)〉H , Cj = 〈g(x),hj (x)〉H . If Cj = 0 for some j , then the value r is called singular. It was
proved [4] that there exists, at most, a countable set of singular values of the disk radius. In the sequel we assume that
r is non-singular, i.e. Cj �= 0 ∀j ∈ N. On substituting (7) into (6) we get

∑∞
j=1[s̈j (t) + λj sj (t) − Cju(t)]hj (x) = 0.

Hence we have a countable system of ordinary differential equations s̈j (t) + λj sj (t) = Cju(t), j ∈ N. Using the
Parseval identity, we see that the functional (5) can be written in the form

∫ ∞
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we obtain the initial conditions for the functions sj (t): sj (0) = τ 0
j , s′

j (0) = τj . Thus, we reduce the problem (1)–(4)
to the following problem:
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Since usually the main part of vibration energy is concentrated in the first mode of the beam, in the following
section we consider the minimization problem of the first mode of the beam. We prove that the optimal trajectories in
this problem are the so-called chattering trajectories.

3. Singular regimes and chattering trajectories

Consider the optimal control problem

T∫
0

(
ϕ0(x) + uϕ1(x)

)
dt → min, ẋ = f0(x) + uf1(x)

with x(0) ∈ B0 ⊂ R
n, x(T ) ∈ BT ⊂ R

n. Here x is a state variable, u is a scalar control, |u| � 1. ϕi : Rn → R, fi : Rn →
R

n, i = 0,1, the functions ϕi , fi are smooth enough, B0, BT are smooth manifolds. The admissible controls u(t)

need to be measurable, the admissible trajectories x(t) are assumed to be absolutely continuous. Let us consider
Pontryagin’s maximum principle with the Hamiltonian H = H0(x,ψ) + uH1(x,ψ), where H0(x,ψ) = f0(x)ψ −
1
2ϕ0(x), H1(x,ψ) = f1(x)ψ − 1

2ϕ1(x). We have the following Hamiltonian system:

ẋ = ∂H

∂ψ
, ψ̇ = −∂H

∂x
(8)

The maximum condition yields: u = +1 for H1 > 0, u = −1 for H1 < 0. The surface H1 = 0 is a discontinuity
surface of the Hamiltonian system. An extremal (x(t),ψ(t)), t ∈ (t0, t1) is called singular if H1(x(t),ψ(t)) = 0 for
t ∈ (t0, t1). This means that singular extremals lie on the zero-level surface of the function H1. To find the value of
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optimal control on a singular trajectory one has to differentiate the identity H1(x(t),ψ(t)) = 0 along a solution of the
system (8) with respect to t . It is known that the non-zero coefficient of u can arise for the first time only at even step
of differentiation 2q . The number q is called the order of the singular trajectory. More precisely, we say that a number
q is the order of a singular trajectory (intrinsic order) iff

adH1adi
H0

H1 = 0, i = 0, . . . ,2q − 2, adH1ad
2q−1
H0

H1 �= 0 (9)

in some open neighborhood of the singular trajectory (x(t),ψ(t)). If conditions (9) are valid only at points of the
trajectory (x(t),ψ(t)), t ∈ (t0, t1) we say that q is a local order of singular trajectory. The necessary condition for
optimality of singular trajectory is the following Kelley’s condition:

(−1)q
∂

∂u

d2qH1

dt2q
� 0

It is known that the conjugation of a piecewise smooth trajectory with a singular arc of even order is non-optimal.
Therefore, for optimal trajectories a singular arc is joined with a chattering trajectory. A chattering trajectory is a
trajectory with infinite number of control switchings in a finite time interval. In [6] a complete theory of chattering
trajectories of the second order was constructed.

4. Problem of controlling an oscillator

Consider the minimization problem for the first mode of the Timoshenko beam

∞∫
0

s2(t)dt → min (10)

s̈(t) + λs(t) = Cu(t), s(0) = τ 0
1 , ṡ(0) = τ1 (11)

Here s is a state variable, u is a scalar control, −1 � u � 1.

Theorem 4.1. The origin (s, ṡ) = (0,0) is a singular trajectory of second order. There exists a neighbourhood Uε of
the origin such that the following statements hold:

(a) For any (τ 0
1 , τ1) ∈ Uε there exists an optimal trajectory (s∗(t), ṡ∗(t)), (s∗(0) = τ 0

1 , ṡ∗(0) = τ1). The trajectory
(s∗(t), ṡ∗(t)) reaches the origin in a finite time with an infinite number of control switchings.

(b) In Uε the optimal switching curve has the form

Γ =
{

s = μ1(ṡ)ṡ
2, ṡ > 0

s = μ2(ṡ)ṡ
2, ṡ < 0

where μi(ṡ) ∈ C1, μ1(0) ∈ (−1/2C,0), μ2(0) ∈ (0,1/2C). The optimal feedback control ũ(s, ṡ) = −C on the
right-hand side of the curve Γ , and ũ(s, ṡ) = C on its left-hand side (see Fig. 1).

Proof. We show that the origin is a singular trajectory of order 2. We write the Pontryagin function and use Pon-
tryagin’s maximum principle:

H = ϕv + ψ(−λs + Cu) − 1

2
s2 = H0 + uH1

where

H0 = ϕv − λψs − 1

2
s2, H1 = Cψ and uopt =

{−1, H1 > 0
1, H1 < 0

The system of adjoint equations has the form ϕ̇ = − ∂H
∂s

= s + λψ , ψ̇ = − ∂H
∂v

= −ϕ. Let find singular trajectories,
i.e., trajectories on which the coefficient of control u in the Pontryagin function equals zero. We have:

H1 = ψ = 0 ⇒ ϕ = 0 ⇒ s = 0 ⇒ v = 0 ⇒ u = 0.
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Fig. 1. Optimal feedback control.

Thus, the origin (s = 0, v = 0, ϕ = 0,ψ = 0) is a singular trajectory and the singular control equals zero. Let us
calculate the order of the singular trajectory:

dH1

dt
= −Cϕ,

d2H1

dt2
= −Cs − Cλψ,

d3H1

dt3
= −Cv + Cλϕ,

d4H1

dt4
= 2Cλs + Cλ2ψ − C2u

Thus, a control term appears for the first time at the 4th differentiation. Hence, the origin is a singular trajectory of
order 2. Kelley’s condition for optimality holds in the strict form

(−1)2 ∂

∂u

d4

dt4
H1 = −C2 < 0

Using the results [6,7], we have for the problem (10), (11) the statements (2a) and (2b). Theorem 4.1 is proved. �
5. Construction of a suboptimal solution for control the harmonic oscillator with quadratic cost functional

Optimal trajectories for the control problem of an oscillator have an infinite number of control switchings in a finite
time interval. In practice, we need to construct suboptimal trajectories with a finite number of control switchings that
approximate the optimal chattering solutions. In order to construct the suboptimal solution we consider two auxiliary
problems.

5.1. Time-optimal problem

T → min, s̈(t) = u(t), s(0) = τ 0
1 , ṡ(0) = τ1, s(T ) = ṡ(T ) = 0 (12)

A scalar control u is bounded −α � u � β , α > 0, β > 0. It was shown [8] that the optimal control of this problem is
the bang-bang control and that it has, at most, one switch.

5.2. Time-optimal problem for oscillator

T → min, s̈(t) + λs(t) = u(t), s(0) = τ 0
1 , ṡ(0) = τ1, s(T ) = ṡ(T ) = 0 (13)

A scalar control u is bounded −α � u � β , α > 0, β > 0. The optimal control has a finite number of switchings, and
the number of switchings depends on an initial point. The further an initial point is removed from the origin, the larger
will be the number of control switchings [8].

Now we can construct the suboptimal solution for (10), (11). Let (s∗(t), ṡ∗(t)) be an optimal trajectory for the
problem (10), (11) such that (s∗(0), ṡ∗(0)) = S0. Consider a part of this trajectory that contains exactly N points of
control switches. Suppose SN is the end point of this arc. Let us consider the optimal trajectory of the problem (12)
or of the problem (13) with the initial condition SN . By ĴN (S0) we denote the value of the functional (10) on this
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trajectory. Let J ∗(S0) be the optimal value of the functional of the problem (10), (11). Then we have the following
estimation of the loss in the functional for the suboptimal regimes:

Theorem 5.1. [9]. There exists a neighborhood Oε of the origin and two constants M > 0, ν > 0 such that for any
point S0 ∈ Oε the following estimation holds:

ĴN (S0) − J ∗(S0) < M e−νN
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