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Abstract

The problem of a piston-like displacement of a fluid by another in a capillary is examined. It is suggested that each fluid is
prolonged into the domain occupied by the other fluid. This enables the replacement of the two-phase flow problem by a transient
single-phase flow problem, with discontinuity in velocity and pressure on a film interface. The problems related to the triple point
are solved by introducing a limit fluid near the pore wall. The demonstration of the Washburn equation contributes to the physical
justification of our model. To cite this article: Y. Lucas et al., C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Prolongement de deux phases dans le modele du déplacement d’un fluide dans un capillaire. Dans le cadre du déplacement
d’un fluide par un autre dans un capillaire, lorsque le mouvement du ménisque est de type piston, nous proposons un prolongement
de chaque fluide dans le domaine occupé par 1’autre fluide, qui nous permet de remplacer le probleme d’écoulement diphasique
par un probleme d’écoulement monophasique transitoire, avec une discontinuité de la vitesse et de la pression sur une interface de
type film. Les problemes liés au point triple sont résolus par I’introduction d’un fluide limite pres de la paroi. La démonstration
de 1’équation de Washburn contribue a la justification physique de notre modele. Pour citer cet article : Y. Lucas et al., C. R.
Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Version francaise abrégée

A I’échelle du capillaire, I’étude d’un type d’écoulement diphasique (déplacement d’un liquide non-mouillant par
un liquide mouillant) est proposée, dans la configuration ou I’interface séparant les deux fluides est un ménisque
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rigide, dont la courbure reste la méme au cours de 1’écoulement. L’existence d’un film fin de la phase mouillante en
avant du ménisque [1,2] permet un mouvement de type piston [1].

Nous introduisons de nouvelles variables de vitesses #* et de pressions p* pour la phase fluide «, définies sur
I’ensemble de la phase fluide : ces variables définissent deux « pseudo-fluides» I et II étendus a 1’ensemble de la
phase liquide, coincidant respectivement avec les fluides réels I et II sur les domaines occupés par chacun de ces
fluides. Les conditions a I’interface sur le ménisque, continuité des vitesses et égalité des contraintes normales de
part et d’autre de I’interface, se réduisent alors a des relations d’identité, et n’apparaissent plus comme des conditions
contraignantes dans le nouveau systéme d’équations régissant 1’écoulement.

Dans le cas d’un écoulement dans un capillaire aux parois paralleles, les nouvelles variables en pression sont
définies dans (x) et en vitesse dans (k). Les problemes liés au point triple sont résolus par 1’introduction d’un fluide
limite avant et aprés le ménisque. Les nouvelles vitesses et pressions vérifient les Egs. (5)—(8). Dans I’espace des
nouvelles variables, les conditions sur le ménisque ont disparu. En ajoutant aux conditions initiales de pression et
de vitesse la position du ménisque, le nouveau systeme d’équations est fermé. L’étude de 1’écoulement diphasique
considéré se ramene ainsi a 1I’étude d’un écoulement monophasique avec une discontinuité de vitesse et de pression sur
I’interface de type film. Moyennant certaines hypotheses, ce systeme permet de déduire I’équation de Washburn [3].
Le cas d’un capillaire de type tube courbé revient au cas précédent par un changement de variables d’espace.

1. Introduction

We study the immiscible displacement of a non-wetting fluid by a wetting fluid in a capillary, where the interface
between fluids is a rigid meniscus, whose curvature remains invariable. We begin this study with the case where the
capillary has parallel pore walls.

The introduction of a rigid meniscus leads to the well-known problem of the triple point in two dimensions, or the
triple line in three dimensions (Fig. 1). Due to the no-slip condition at the pore walls, the point of the wall intersection
with the meniscus must be immobile. From experimental studies [1], it was shown that a thin precursor wetting
film exists, which enables a piston-like motion of the meniscus. The thin film thickness € of this is of the order of
RCa?’3 [2], where, R is the mean meniscus curvature and Ca is the capillary number (ratio of the hydrodynamic force
to the capillary force). In the case of important capillary effects, Ca < 1 and then the film thickness is negligible in
front of the meniscus: ¢ <« R. The film displacement is complex, requiring an analysis at molecular scale [1,4], but as
its thickness is negligible, the following model can be used (Fig. 2). It describes the displacement in a capillary whose
pore walls are parallel. This is the first case we dealt with.

The precursor film bounded by I'y and S is parallel to the pore walls and its thickness is ¢. The curvature of Iy is
1/(r — ¢). The flow of each phase is ruled by Navier—Stokes equations, with no-slip condition at the pore wall. At the
interface, the continuity of velocity and normal stress tensor components are assumed. The piston-like motion of the
meniscus means that its velocity is the same for each of its points, parallel to the pore wall.

/ triple point

wetting fluid (I) non-wetting
fluid (II)

I

meniscus motion

_ AN

—
precursor film | S Ty

Fig. 1. The simple model above cannot ex- Fig. 2. Model of displacement in capillary: ¢ tends to
plain the moving of the meniscus. Actually, Zero.

a precursor film exists in front of the menis-

cus.



198 Y. Lucas et al. / C. R. Mecanique 334 (2006) 196204

2. Usual equations

Let two fluids in movement in the capillary £2 C )? which consists of three non-intersecting sub-domains: 2! and
2™ are occupied by the appropriate fluid and 2™ is the solid. Each sub-domain £2! or 2 is connected and varies in
time. Let I" be the interface between fluids, composed of the meniscus interface I5,, and the film interface Iy, while
S is the pore wall. The flow of each phase is described by the Navier—Stokes equations in the following dimensionless
form (velocity u and pressure p), when inertial effects are negligible:

I

u 1 - 1 : 1 I

—Re—ar —gradp + pAu =0, dive =0, xe£2 M
1 du! I I -0 I

—Reg—ar —gradp + Au =0, dive =0, xe @)

W=0xesS;u, (x,t=0), pl(x, t=0),x¢€ oL u”(x, T =0), p"(x, t=0),x¢€ 25 are known.
At the interface x € I" velocity and the normal stress tensor components are continuous:

=, ®

_( duj 8u3 I ;! 8“? I s
In 5 + nj—pn; = + nj—pn; +oh(x)n;, withi=1,2,3 4
Xj 3x,‘ r 3xj ax,‘ r

where U is the characteristic velocity, like the injection velocity of the first phase at the entry of the capillary; d is
the pore diameter; u® is the viscosity of fluid «; X is the surface tension between two liquids; 2 (x) = 1/rmin(x) +
0/rmax(x); ri = Ri(x)/(R;) (i = min, max); (Rmin) and (Rmax) are two mean curvature radii of the interface I;
Ruin(x) and Rpyax(x) are the local curvature radii of the interface I"; t is the dimensionless time; n is the interface
normal vector.

The dimensionless variables are obtained using d as the scale for space variables, U as the scale for velocity,
AP = "U%/d as the scale for pressure, and 1 = d/U? as the scale for time. Five dimensionless parameters define
the flow: the Reynolds number Re = p'dU°/u!; the inverse capillary number which is the ratio of the capillary force
to the hydrodynamic force: o = 2.5/ (Rmin) A P; the viscosity ratio it = u!/u!'; the density ratio p = p'/p'l; the ratio
between the interface curvature radii 6 = (Rmin)/(Rmax)-

3. Phase prolongation
For each fluid «, its prolongation is introduced into the sub-domain occupied by the other:

e pressure prolongation

5= {p‘(x, 7), xen! I { %pl(x, ) +cl(r), xe!

Z = ()
aplx,7) +cl(x), xeQl P(x, 1), xel

where

1 _ - =l I _ﬁ _l 51
c(r)=—poh+ {1 —@)p xlxen,, ), c(1)= p +{1 p P (Xlxer,,T)

The motion of a meniscus is a piston-like motion, so the pressure of fluid I is the same on the meniscus, as for
fluid II, otherwise a transversal flow would occur. Furthermore, we consider that curvature is the same on the whole
meniscus. This means that the small variations in curvature are negligible. So # = (7). Thus ¢ is only a function of
time.

e velocity prolongation

ﬁl _ {uI(X, 7), X € QI ﬁH _ {[Lul(x, )+ (1— ﬁ)um(f), x € QI (45)

T, )+ (1= Dup(v), xeQ" u(x, 1), xenl
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The new variables define two ‘pseudo-fluids’ T and II. Each of them occupies a whole space: pseudo-fluid I is equal to
fluid T in £2! and pseudo-fluid 1T is equal to fluid I in §£2™. The fluid prolongation is determined in such a way that the
conditions at the meniscus interface would be satisfied by identity. Indeed, for the pseudo-fluid T: u!| ry= ull| rn=un

which leads to ft1|1~111 = %um + (1 - %)um =u, = ftI|F1 , which means identity

gy 0 pii} O} 5!+ fioh + (i — D'
- J ~] - J p T pno H p .
M(ax;+8xl)n1_pnl|rr}1=“(8x;+8xl>nj_ [,L ni|rr}ll+0hni, l=1,2,3

as u,, only depends on time, it follows:

~1 ~1 ~1 il
(2 2 ]y = (2 2 Y ]y =123
axj axi Jj lrr}1 8_xj 8xl‘ J lr’}lls s~

which is identity.

Conditions at the meniscus for fluid II are similar.

For the film interface, as the flow close to the film can be considered as parallel to it, i.e., n = (0, n2) and ul =
(ull, 0), so the stress tensor does not take velocity variations into account. With the new variables, surface conditions
for fluid I are:

|y = 2| (1= D

. 1 1 . 1
Pl =gl ()Pl e

There are pressure and velocity discontinuities at the film interface. Conditions at the film interface for fluid II give:

1 1

~1I ~ 11

u = = + 1_T u
|1"fH i |r} < M) m

1
~I1 ~I1 -\ ~II
- =— —(1- —h
Pl =Pl = =p ’fm“’(r_g )

Thus, each pseudo-fluid has continuous velocity and continuous normal stress tensor at the true interface location.

A contradiction appears in the model: indeed, there is a continuity of velocity and pressure through meniscus, a dis-
continuity through the film, what about the point linking film and meniscus? In fact, this problem comes from the fact
that in reality the meniscus curvature is continuous till it becomes parallel to pore walls. To solve this contradiction,
we consider that a film of a limit fluid exists on the whole length of capillary. This limit fluid occupies the sub-domain
2L of phase I, separating two fluids of the same phase (Fig. 3); there is a superficial tension between both phases, in
such a way that the limit fluid is continuous.

This way can seem artificial a priori, but it enables us to solve the contradiction. We can notice some similarities
between the limit fluid, which integrates continuity problems related to the phase interface, and some methods which
introduce a thickness of the interface [5] or of the surface tension [6].

Furthermore, we can already notice that the velocity is continuous through this new interface, and that the existence
of a superficial tension in this case, where the interface is almost parallel to flow, will slightly modify the pressure

____________ Q" Limitfluid le
7 T

QI QH

Pseudo-fluid

Fig. 3. Model of displacement in capillary with the limit fluid.
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gradient of limit fluid. The deduction of the Washburn equation in the framework of this model (see Section 4) will
contribute to its physical justification.

By injecting the new variables into Eqgs. (1)—(4), and remembering that ¢® and u,, are only functions of time, new
equations for two pseudo-fluids (5)—(8) are obtained:

o pseudo-fluid [
a~I
_Real —gradp' + iAd' =0, divi'=0, xe! o)
T
1/_oa' it 1
—Re— (a2 1 - )~ Zgrad '+ pAd' =0, diva'=0, xeQl 6)
0 aT at 7
a'=0,xeS;a(x,0), pl(x,0), x € 21U 2, are known;
o pseudo-fluid IT
IZH
—Re—— —grad Pl aat=0, diva'=0, xeo" D
T
1/1 aa" 1\ Odn
_RCT<TL + <1 - T) “ ) —jigrad p + Aa" =0, divi"'=0, xe2! ®)
p\ QL 0T n) ot

a'=0,xes; ft”(x, 0), p'(x,0), x € 21U 2", are known;
o limit fluid I
The limit fluid coincides with fluid I on 22%:
du"
—Rea——gradﬁL+ﬁAi4L=0, divi" =0, xent 9)
T

Initial and boundary conditions are:
at=0, xes; at(x,0, px,0, xent

Equations of the prolonged fluids through the real film are, as the flow close to the film can be considered as parallel
to it:

o with pseudo-fluid I

| = '+ (1= D (10)
—p| L=—l131| (L P +o Ly )
Iy pt M\ Ly r—e
o with pseudo-fluid IT
@ | =" (12)
1

~L ~I1

_ - 13
P |F}~ P |F}I+G<r_8> (13)

Equations of the prolonged fluids through the prolonged film:
o with pseudo-fluid T

g =l a4

J_pr

=5 +0/< : > (15)
Ff_p

r—e

7,

In order to have continuity on the limit fluid, we must have:

L I\ (P'®lr, , =P,
ol(x) = ﬁo(l —h(r—egp)) — (1 — ﬁ)( g +p (x)|rf_p>(r—8) (16)
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And thus the normal stress conditions are:
Iy | 1/1 I
- =—— +=1=-1
w |F}_p /sz F}'_p M </L )p
i.e., the same equation as on the real film.
o with pseudo-fluid IT

1 1
. +af( —h) (17
m nw\r—e

1 1
~L ~11 ~
u =— 1——)u 18
’F}_p m |F}I_p + < ,EL) " (18)

1
~L _ - ~II —\ ~II
Pl =R (=P ’m*"“""(r_s) 19)

In order to have continuity on the limit fluid, we must have:

PWlr,_, ﬁL(X)Irf_p>
7 + =

1
o) = Zo(1=hitlr —ep)) +(1 —ﬁ)(ﬁ“}pm —(A+1) (r—e) (20)

and thus the normal stress conditions are:

1 ~L 1 ~1I <
—= =——-pn +o
125 |F;_1) Mp Z|Ff]”[_17

> n; 21
r—e
i.e., the same equation as on the real film. We can notice that to ensure the continuity of the limit fluid in the case of
pseudo-fluid TI, we have to use an other surface tension.

Thus the meniscus interface I, disappears in the explicit form. Compared to the classical system of two-phase
flow equations, an additional term appears which is the meniscus velocity.

The systems (5), (6) and (7), (8) are two systems where two independent equations have two independent variables,
u and p, and require the knowledge of the meniscus position at time 7. As the meniscus velocity is the fluids velocity
of I, the initial meniscus position is a sufficient condition for the two systems being closed. Although for the sake
of interest the prolongation of two fluids is performed, in the homogenization process for instance, the solution of the
problem requires only one prolongation.

4. General equation of stationary flow in a tube capillary

Let us examine a slow flow with a meniscus in the middle of a long planned capillary (Fig. 4) such that it can
be considered as stationary over a time period. A zone exists near the capillary where the flow is not rectilinear,
but elsewhere, for reasons of symmetry, it is legitimate to assume it is rectilinear. The problem is solved only for
pseudo-fluid I.

8~I 82121
on 2! —ai—}—_ 3 ;1 =0, xe, x<xy—a
X1 X5
- -1
_Llopt 9%,

+ =O,x€.QH,x>x +b
M 9xy Maxg "

T IS_

|
X2 I i i II -0
L :
AAAAAA {-------- :‘ T !
; | i | i N
0 xn;—a Xn Xm‘+b I

Fig. 4. Flow for x| < x;; —a and x| > x;; + b is rectilinear.
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on 22~ —ai+ iy

21 =0, xe2" x<xy—a, x>x,+b
0x] ax;

with the limit conditions:
Tl 0, xeS8
By integrating these relations on their corresponding domains, it comes:

I II 2y =I ~]
(Axa+ B —x2) pL _ =P
27 Zm—a 0 I xe.QI, X1 <Xy —a

20 Cxn—0) —

Ally, + BT — 32y pl— pl

( 2 — 2 P X +b :ﬁi, xe.Qu, X1 >Xu+b
2 [—Gmtb)

where Al, BI, A" and B™ are unknown. It comes by symmetry that A' =0 and AT = 0.

~L
(r _xz) pxm—a pO _ ~L
_uxl,

e E P xe.QL,x1<xm—a
-y —

<,
(r _xz) pl pxm"l‘b =ﬁL
202 I —(xm+b) 1’

Let us examine the conditions on the real and the prolonged film:

xe.QL, X1 > X, + b

(i) on the real film:

~] ~] ~] ~]
2= —e)?) =Py p  (BY—(r—e)) P/ = Py, 4p

from (10 - - _ (-
( ) 2“ l—(xm+b) 2/,L l_(xm+b) ( M) m
L = 1, .
from (11)  py — pr = ﬁ(pll — Pantd)
thus B“=(r—s)2<1—l)+f+(ﬁ 1)2jau /w
) "1 — (X + D)

(i1) on the prolonged film:

2= (r—e)?) Pr,_o— Py (BN—(@—e)? P _.— P

from (14) — = —
20 Xm —a 20 Xm —a
- - | -
from (17) p)%m_a — p% = ﬁ(p}cm—a — pé)
1 r2 131 b
thus B'=(r — s)2<1 - T) +—=B"— (71— 1)2u —x'”
i) i m/ — (tm +b)

As fluids are incompressible, the average velocity on a section of fluid I is the same as meniscus velocity when &

tends to O:
e
/ ~1 dx2__pxm—a [70 1 BI_("—S)2
2(r—8) (xXm —a) 2/L 3

+&

on 2': Uy =

ﬁxm—afﬁo ﬁ
Xm—a 31’

_ P Paae 1 1 (r—g)? o
2(r—8)f l—(xm+b)2,72[<B 3 >+2(M l)uum}

—r+e

as limug,_o = u,,, it comes: u,, = —

on 1 U =
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~1__ =1
. . DI Prptb r?
as limue_o = u,, it comes u,, = —717(%:’117) —gﬁ,

following expression for meniscus velocity

and using (*) to come back to the real pressure, we obtain the

P Pya — Po g TP
mxm —a) + (I — (xm + b))
Thus, we see thatifa =b =0,

Um =

_ le — p(l) —oh
axm + (L= Xm)
which is the Washburn equation. Physically, it means that this equation ignores rotational flow near the meniscus. For
capillaries whose length is of the same order as the pore diameter, this hypothesis is no longer acceptable.

5. Curved tube capillary

The stress produced by superficial tension at the triple point depends on the contact angle between the interface
and the solid. So the velocity of the part of the meniscus in contact with the solid depends on this angle. By changing
space variables, this case can be studied by the previous method.

A curved capillary is examined. It was assumed that the meniscus should be rigid, which means that the capillary
pore walls have a constant curvature (Fig. 5). Furthermore, it is assumed that the curvature remains identical along the
pore walls. Following two consecutive transformations ¥ and ¢, the study of the displacement in this tube becomes
identical to that in a parallel capillary.

The transformation iy makes the capillary plane, preserving lengths and areas:

X2
xi:,/xlz+x%xarcos<7>; xh=
2.2
VAt
The meniscus C of radius r is deformed. We introduce another transformation ¢ in such a way that the meniscus

becomes an arc of circle with curvature radius r. Its centre (a”, b”) is on the capillary median. We require that ¢ lets
¥ (C1) unchanged, C'1 being known as an initial condition:

2
ry—nr2
(xfer —d)? + (xé’C] T ) =r?

2 2
Xy +x5—nr

arc of circle and
meniscus C

o°y(ChH=y(Cl) _¢°y(El)
- $Op(M)

(M)

H°w(C2) o°w(E2)

WED I ¢

A

" M)

w(C2) w(E2)

Fig. 5. Transformation of a curved tube capillary into a straight one. This transformation depends on the capillary curvature, so that for a capillary
having several curvatures, a new transformation has to be defined for each of them.
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thus,

X2C1 ri+nr 12
" __ 2 2 2 2 2
a’ =./Xjc1 T X3¢ xarcos( > 5 )+<r _< ) _\/x1C1+x2Cl> )
V¥ici +X5c1

If the point M belongs to the meniscus C, then ¢°y (M) belongs to the new meniscus and arc of circle ¢° ¢ (C):

N2 2012
(xi/—d//)z-i- <Xé/— r ; V2> =2 thusxi’:—(rz— (Vl -;7’2 _ /x12c1 +x§c1> ) +d’

Let M be a point of the capillary §2, ¢ (M) the transformed point in v (£2). We transform v (M) coordinates in such
a way that: (i) the meniscus becomes an arc of circle as said previously; (ii) the areas are preserved. Knowing the
ordinate of ¥ (M), we know the ordinate of ¢°y (M) xj = x}. And the intersection, in ¥ (£2), of the horizontal line
passing by ¥ (M) with /(C) gives the abscissa X{(x}), and so X{'(x}) by the previous method, and finally enables us
to define:

X =] 5 () - F ()

This operation is a translation, so preserving areas.

Thus, we find a capillary with parallel pore walls, with a meniscus of the same curvature. The geometry of the
entry and the exit are changed, but known, as well as the boundary conditions.

This global transformation ¢°v is bijective. The problem can be studied in the space variable x” = ¢° (x), which
leads to the previous case of parallel pore walls. The real behavior of fluids is found by the inverse transformation

x=(@°y) ().
6. Conclusions

By introducing new variables of velocity and pressure, it is possible to study an immiscible displacement of a
non-wetting fluid by a wetting fluid in a parallel tube capillary as a transient single-phase flow problem. It has enabled
us to point out some contradictions related to the triple point and to solve it by introducing a limit fluid. A conform
transformation enables the case of a curved tube capillary such as the one above to be dealt with.

The developed procedure of fluid prolongation may be used in various aspects: (i) the resolution of the modified
single-phase Navier—Stokes equations (5), (6) is obviously simpler than the use of a two-phase classic formulation;
and (ii) the homogenization procedure of two-phase meniscus flow requires a fluid prolongation procedure to apply.
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