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Abstract

Extending a previous work on the Gurson model for a ‘porous von Mises’ material, the present study first focuses on the yield
criterion of a ‘porous Drucker–Prager’ material with spherical cavities. On the basis of the Gurson micro-macro model and a second
order conic programming (SOCP) formulation, calculated inner and outer approaches to the criterion are very close, providing a
reliable estimate of the yield criterion. Comparison with an analytical criterion recently proposed by Barthélémy and Dormieux—
from a nonlinear homogenization method—shows both excellent agreement when considering tensile average boundary conditions
and substantial improvement under compressive conditions. Then the results of an analogous study in the case of cylindrical
cavities in plane strain are presented. It is worth noting that obtaining these results was made possible by using MOSEK, a recent
commercial SOCP code, whose impressive efficiency was already seen in our previous works. To cite this article: M. Trillat et al.,
C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Analyse limite et optimisation conique : étude d’un matériau de Drucker–Prager poreux. Via l’extension d’un travail
précédent sur le modèle micro-macro de Gurson portant sur le cas d’un matériau de von Mises poreux, la présente étude concerne le
critère de « Drucker–Prager poreux ». En utilisant le modèle de Gurson et une formulation en optimisation conique du second ordre
(SOCP), les approches intérieure et extérieure obtenues sont très proches, donnant ainsi une estimation fiable du critère recherché.
La comparaison avec un critère analytique récemment proposé par Barthélémy et Dormieux—via une méthode d’homogénéisation
non linéaire—montre à la fois une excellente concordance sous déformation moyenne de traction et une substantielle amélioration
dans le cas compressif. Sont donnés ensuite les résultats de la même étude, en déformation plane, pour un matériau à cavités
cylindriques. Il faut noter enfin que l’obtention de ces résultats a été rendue possible par l’utilisation de MOSEK, code de SOCP

récent et d’une efficacité impressionnante, déjà constatée dans nos travaux précédents. Pour citer cet article : M. Trillat et al., C. R.
Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Gurson’s work [1] is concerned with the upper bound limit analysis problem of a hollow von Mises sphere or
cylinder under average strains imposed on the boundary in 1977, giving a celebrated criterion for ‘porous von Mises’
materials. Using his model and appropriate lower/upper numerical limit analysis formulations, we showed that the
Gurson criterion is erroneous for a cylindrically porous material (except the axisymmetric loading case) [2,3], but
correct for materials with spherical cavities [4,5]. As a natural extension, we propose here to analyze the yield crite-
rion of a ‘porous Drucker–Prager’ material with spherical cavities, using three-dimensional and plane finite element
discretizations.

The porous material is idealized as a single spherical cavity in a homothetic cell of a rigid-plastic Drucker–Prager
material, here called ‘Elementary Volume’ (EV). As is classical in homogenization techniques, the macroscopic stress
and strain rates Σij and Eij are linked to the microscopic ones, σij and vij , by the averaging relations:

Σij = 1

V

∫
V

σij dV, Eij = 1

V

∫
V

vij dV (1)

Due to material isotropy and EV symmetries—resulting in an isotropic criterion—the loading E is taken as prin-
cipal, i.e., Eij = 0 for i �= j . Therefore, working with an eighth of the spherical volume is sufficient. This eighth of
the hollow sphere is meshed into 14 000 tetrahedral elements (see Ref. [5] for more details). The methods used in
this Note, i.e., limit analysis and conic optimization, allow us to determine the plastic domain of the corresponding
porous material. All present results are obtained by using the recent MOSEK optimizer [6], that is a very impressive
commercial second order conic programming (SOCP) code.

Hereafter, we first briefly present both lower/upper limit analysis approaches, essentially recalling the expressions
of Drucker–Prager criterion, unit dissipated powers for a 3D loading and their implementation, referring to [5] for
other features; in a second step, results are analyzed and compared to those obtained in [7] through a nonlinear
homogenization method. Lastly, the criterion for a cylindrically porous material in plane strain is also investigated to
improve our previous SOCP results about a ‘porous Coulomb’ material in [8] and [9].

2. Limit analysis: static method

2.1. The Drucker–Prager criterion expression

The Drucker–Prager criterion is written as:

f (σ ) = √
J2 + α tr( σ ) − k � 0 with J2 = 1

2
tr( s2) and s = σ − 1

3
tr( σ )1 (2)

When α vanishes, the criterion reduces to the von Mises criterion; k is the limit in pure shear. Here, the parameters α

et k are chosen to be defined as functions of the internal friction angle ϕ and c cohesion of the Coulomb criterion as
in [10]:

α = sinϕ√
3(3 + sin2 ϕ)

, k = 3αH = 3
αc

tanϕ
, where ϕ ∈

[
0; π

2

]
and α ∈

[
0;

√
3

6

]
(3)

Then in a (x, y, z) reference frame, the full 3D Drucker–Prager criterion becomes:√(
2√
3

(
σx + σy

2
− σz

))2

+ (σx − σy)2 + (2τxy)2 + (2τxz)2 + (2τyz)2 � 2k − 2α(σx + σy + σz) (4)

It should be noted that (4) can be written, after obvious changes of variables, as a conic constraint for MOSEK:√√√√ n∑
j=1

x2
j � xn+1 (5)
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2.2. Implementation

The microscopic stress field is chosen as linearly varying in x, y, z in each tetrahedral element and it can be
discontinuous through any element boundary. We aim at finding the optimal equivalent macroscopic stress Σeqv
defined by:

Σ2
eqv = Σ2

gps + Σ2
ps (6)

where:

Σm = 1

3
(Σx + Σy + Σz), Σgps = (Σx + Σy)

2
− Σz, Σps =

√
3

2
(Σx − Σy) (7)

To get a microscopic stress field statically and plastically admissible, the following conditions are implemented,
briefly:

– definition of macroscopic stresses Σij as the averages of the corresponding microscopic ones, σij ;
– symmetry conditions: the microscopic tangential stresses are null on the three coordinate planes;
– boundary conditions: the stress vector Ti = σijnj is null at each apex of the element sides of the boundary cavity.

Hence, thanks to linearity, it is zero anywhere on this plane;
– in each element, the equilibrium equations, σij,j = 0, generate three linear equations;
– continuity conditions: the stress vector is continuous across every discontinuity surface; each discontinuity trian-

gular surface generates 3 × 3 equations;
– plastically admissible stress field: criterion (4) is written as in (5); it is imposed at each apex of the tetrahedron;

hence, due to its convexity, the criterion is verified anywhere in the tetrahedron.

To obtain Σeqv—defined by Eq. (6)—Σm is fixed to Σ0
m and Σgps is maximized under Σps = 0 (axisymmetrical

loading); k cohesion is always set equal to 1. After solving the constrained optimization problem using MOSEK, the
admissible character of the solution stress field is carefully verified a posteriori.

3. Limit analysis: kinematic method

3.1. Dissipated powers

According to [10], the expression of the volumic dissipated power is:

πvol( v ) = c

tanϕ
tr( v ) (8)

if the strain rate v is PA (plastically admissible) by verifying the following condition:

tr( v ) �
√

6α2(3 trv2 − (trv )2) (9)

Similarly, on the velocity discontinuity surfaces (whose normal is n ), the unit dissipated power is written as:

πdisc([u ]) = c

tanϕ
[u ].n (10)

if the velocity jump [u ] is PA by verifying:

[u ].n �
∣∣[u ]∣∣ sinϕ (11)

3.2. Implementation

Under the boundary conditions ui = Eijxj , from the virtual power principle the total dissipated power P tot can be
written as follows:

P tot/V tot = ΣmEm + ΣpsEps + ΣgpsEgps (12)
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where the macroscopic strain rates are defined by:

Em = (Ex + Ey + Ez), Egps = 2

3

(
(Ex + Ey)

2
− Ez

)
, Eps = 1√

3
(Ex − Ey) (13)

and P tot is written as:

P tot = P vol + P disc with P disc =
∫
Sd

π
([u ])dS and P vol =

∫
V

π(v )dV (14)

Sd being the set of discontinuity surfaces.
The displacement velocity field is chosen linear in x, y, z in each tetrahedral element, and any triangular sur-

face common to two tetrahedrons is a potential surface of velocity discontinuity. To express the admissibility of the
displacement field solution, the following conditions are imposed:

– symmetry conditions: the normal velocity is zero on each coordinate plane;
– boundary conditions: uij = Eijxj (with Eij = 0 for i �= j ) which forces the macroscopic strain rates Eij to be the

averages of the microscopic vij ;
– plastically admissible conditions, Eqs. (9) and (11): these conditions are written as conic inequalities (5) for each

tetrahedron and for each apex of a velocity discontinuity triangle, respectively;
– definitions of the dissipated powers, Eqs. (8) and (10), giving linear equations;
– definition of the functional.

More precisely, the volumic PA strain rate condition is written as:

(vx + vy + vz) �
√

6α

√
(vx − vy)2 + (vx − vz)2 + (vy − vz)2 + 6v2

xy + 6v2
xz + 6v2

yz (15)

and the PA velocity jump conditions:

[un] �
√

[ut1]2 + [ut2]2. tanϕ (16)

where [ut1] and [ut2] are orthogonal tangential jumps on the discontinuity interelement side.
Both conditions (15) and (16) are easily converted into conic form (5) for MOSEK. With Σps = 0 (inducing Eps

free), Σm = Σ0
m, and Egps = 1 the optimization process consists in minimizing Σgps as:

Σ
opt
gps = Min

{
P tot/V tot − Σ0

mEm

}
(17)

4. Results

In [7], the authors suggest a nonlinear homogenization technique to determine the stress states on the boundary of
the macroscopic admissible stress field for a porous Drucker–Prager criterion. Their yield criterion is written as:

2 + 4f/3

3T 2
Σ2

eqv +
(

3f

2T 2
− 1

)
Σ2

m + 2(1 − f )HΣm − (1 − f )2H 2 = 0 (18)

where T = 3
√

2α. For Σeqv = 0, considering Eq. (18) where Σm is the unknown, it can be noted that if f > 2T 2/3,
the two Σm solution values have opposite signs. As a consequence, failure is possible in compression as well as in
tension (Fig. 1, left).

On the contrary, if f < 2T 2/3, both Σm solution values are positive. In this case, failure becomes impossible
in compression: their estimation tends to infinity (Fig. 1, right). Hence, a critical porosity rate or a critical angle of
internal friction should exist, at least in this solution, as outlined by the authors as a singular value in their method.

Fig. 1 shows that the macroscopic criterion Eq. (18) is very close to our results on the right side of the curve, when
the generalized velocity Em is nonnegative (expansion case). In all our cases, failure is possible in compression as
well as in traction, which is not predicted by expression (18) above the critical friction angle ϕ (Fig. 1, right). The
Barthélémy and Dormieux criterion provides a reliable estimation of the maximum macroscopic mean stress but the
minimum is highly-underestimated.
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Fig. 1. Present results (Σeqv versus Σm) compared to the yield criterion of [7]—left: f = 10% and ϕ = 10◦—right: f = 10% and ϕ = 20◦ . Critical
angle of internal friction ϕ � 16◦ .

For polymer and geotechnic materials, the Drucker–Prager criterion or modified versions are commonly used;
hence we choose a porosity rate of 10%, a realistic value for these materials.

For a 14 000-element problem, the static and kinematic problems have 631 810 and 348 204 rows, 672 009 and
511 706 columns, and 3 266 038 and 2 789 681 nonzero terms, respectively. The optimization is done in roughly 1 h
20 min and 1 h 45 min using MOSEK on a Apple G5-2GHz using 2G of RAM.

5. Study in plane strain with cylindrical cavities

Finally, we study a ‘porous Drucker–Prager’ material with cylindrical cavities in plane strain, to confirm and
improve SOCP results first given in [8] and [9]. The EV is now a hollow cylinder. Thanks to symmetries, the study is
carried out on one quarter of a hollow ring, using a plane mesh (see [3] for more details). Using (3) the Drucker–Prager
criterion is equivalent to the Coulomb criterion, whose expression is:√

(σx − σy)2 + (2τxy)2 � 2c cosϕ − (σx + σy) sinϕ (19)

In plane strain expressions (8) and (9) become:

π(v ) = c

tanϕ
(vx + vy) if (vx + vy) �

√
3α

√
(vx + vy)2 + 3(vx − vy)2 + 12v2

xy (20)

Similarly, (10) and (11) give:

π
([u ]) = c

tanϕ
[un] if [un] �

∣∣[ut ]
∣∣ tanϕ (21)

It is worth noting that these expressions still hold in plane strain for the Coulomb criterion, as recalled in [11].
Now there are two loading parameters: Σps and Σh = (Σx + Σy)/2, associated with Eps = 1√

3
(Ex − Ey) and Eh =

Ex +Ey . Applying the static and kinematic methods as above, we represent Σps versus Σh for f = 10% and ϕ = 20◦
(Fig. 2).

It can be seen in Fig. 2 that the criterion presents corners on the Σh axis, as in the ‘porous von Mises’ case. Note
also that getting global incompressibility requires a compressive average stress ranged between three and four times
the cohesion.

For a 672-element problem, the static and kinematic problems have, respectively, 11 429 and 8687 rows, 12 100
and 6724 columns, and 55 949 and 46 461 nonzero terms. The optimization is done in a couple of seconds when using
MOSEK on the Apple G5-2GHz. Work is in progress to improve the results in the compressive case.
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Fig. 2. Limit loading for a Coulomb or Drucker–Prager material with cylindrical cavities in plane strain. f = 10% and ϕ = 20◦ .

6. Concluding remarks

In the 3D case as well as in plane strain, using limit analysis formulated as second order conic programming is
confirmed to be very efficient and fast with von Mises and Drucker–Prager materials. In this Note, for predicting
the plasticity criterion of a ‘porous Drucker–Prager’ material, we show that using the Gurson model, in spite of its
simplicity, can be as efficient as more recent homogenization theories, for example when predicting compressive
failure above a critical friction angle. In plane strain, previous conic programming results have been confirmed and
improved in the case of a ‘porous Drucker–Prager’ material. Work is currently in progress on these subjects.
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