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Abstract

We study the observability and some of its consequences for the one-dimensional heat equation with a discontinuous coefficient
(piecewise C1). The observability, for a linear equation, is obtained by a Carleman-type estimate. This kind of observability
inequality yields results of controllability to the trajectories for semilinear equations. It also yields a stability result for the inverse
problem of the identification of the diffusion coefficient. To cite this article: A. Benabdallah et al., C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Inégalité de Carleman pour une équation de la chaleur à coefficient discontinu et applications. On étudie l’observabilité
et certaines de ses conséquences pour une équation de la chaleur à coefficient discontinu (C1 par morceaux). L’observabilité, pour
une équation linéaire, est obtenue au moyen d’inégalités de Carleman. Ce type d’inégalités d’observabilité permet d’obtenir des
résultats de contrôlabilité aux trajectoires pour des équations semi-linéaires. Elle permet aussi de résoudre un problème inverse
d’identification et de stabilité pour le coefficient de diffusion. Pour citer cet article : A. Benabdallah et al., C. R. Mecanique 334
(2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The question of controllability of partial differential systems with discontinuous coefficients and its dual counter-
part, observability, are not fully solved yet. Recently, a result of controllability for a semilinear heat equation with a
discontinuous coefficient was proven in [1] by means of a Carleman observability estimate. Roughly speaking, as in
the case of hyperbolic systems (see, e.g., [2, p. 357]), the authors of [1] proved their controllability result in the case
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where the control is supported in the region where the diffusion coefficient is the ‘lowest’. In both cases, however,
the approximate controllability holds without any restriction on the ‘monotonicity’ of the coefficients. It is then nat-
ural to question whether or not an observability estimate holds in the case of non-smooth coefficients and arbitrary
observation location.

In the one-dimensional case, the controllability result for linear parabolic equations was proven for coefficients
with bounded variations in [3]. The proof relies on Russel’s method [4]. However, the question of the existence of
a Carleman-type observability estimate remains open. The present paper provides a positive answer in the case of
piecewise C1 coefficients.

Carleman estimates for parabolic equations with smooth coefficients were proven in [5]. The proof is based on the
construction of suitable weight functions β whose gradient is non-zero in the complement of the observation region. In
the non-smooth case, in [1], to obtain the observability, the authors have to add the assumptions on the ‘monotonicity’
of the coefficients mentioned above. In both cases, the weight function β was chosen in the domain of the operator
∇ · (c∇). Here, we do not impose this constraint, which, with the jump of the derivative of β as a new parameter,
enables us to control the interface terms in the derivation of the Carleman estimate and therefore allows us to relax
the ‘monotonicity’ condition on the coefficient. Note however that the results of [1] are for the multidimensional heat
equation. The relaxation of the ‘monotonicity’ condition in the n-dimensional case, n � 2, remains, to our knowledge,
open.

With such a Carleman estimate at hand, we treat the problem of the null controllability for classes of semilinear
parabolic equations of the form⎧⎨

⎩
∂ty − ∂x(c∂xy) + G(y) = 1ωv in Q

y(t, x) = 0 on Σ

y(0, x) = y0(x) in Ω

(1)

where T > 0, Ω = (0,1), Q = (0, T )×Ω , Σ = (0, T )×{0,1} and where G : R → R is locally Lipschitz and G(0) = 0
(further assumptions on the nonlinear function G or on the initial condition will be introduced below).

We also provide a stability result for the inverse problem of the identification of the diffusion coefficient.

2. Global Carleman estimates

We consider a piecewise C1 diffusion coefficient with a finite number of singularities. We shall thus here assume
that 0 = a0 < a1 < a2 < · · · < an = 1 and c|[ai ,ai+1] ∈ C1([ai, ai+1]), i = 0, . . . , n − 1. Let j ∈ {0, . . . , n − 1} be fixed
in the sequel and ω0 � ω � (aj , aj+1) be a non-empty open set. Let T > 0. We shall use the following notations:
S = {a1, . . . , an−1}, Ω ′ = Ω \ {a1, . . . , an−1}, Q = (0, T ) × Ω , and Q′ = (0, T ) × Ω ′.

We first introduce a particular type of weight functions, which are constructed using the following lemma:

Lemma 2.1. There exists a function β̃ ∈ C(Ω) such that β̃|[ai ,ai+1] ∈ C2([ai, ai+1]), i = 0, . . . , n− 1, satisfying β̃ > 0
in Ω , β̃ = 0 on {0,1}, (β̃|[aj ,aj+1])′ �= 0 in [aj , aj+1] \ω0, (β̃|[ai ,ai+1])′ �= 0, i ∈ {0, . . . , n− 1}, i �= j , and the function

β̃ satisfies the following trace properties: for some α > 0, (Aiu,u) � α|u|2, u ∈ R
2, with the matrices Ai , defined by

Ai =
( [β̃ ′]ai

β̃ ′(a+
i )[cβ̃ ′]ai

β̃ ′(a+
i )[cβ̃ ′]ai

β̃ ′(a+
i )[cβ̃ ′]2

ai
+ [c2(β̃ ′)3]ai

)
, i = 1, . . . , n − 1

where [ρ]x = ρ(x+) − ρ(x−) for x ∈ (0,1).

Choosing a function β̃ , as in the previous lemma, we introduce β = β̃ + K with K = m‖β̃‖∞ and m > 1. For
λ > 0 and t ∈ (0, T ), we define the following weight functions:

ϕ(t, x) = eλβ(x)

t (T − t)
, η(t, x) = eλβ̄ − eλβ(x)

t (T − t)
(2)

with β̄ = 2m‖β̃‖∞ (see [1]). We introduce

ℵ = {
q ∈ C(Q,R); q|[0,T ]×[ai ,ai+1] ∈ C2([0, T ] × [ai, ai+1]

)
, i = 0, . . . , n − 1,

q|Σ = 0, and q satisfies (TC), for all t ∈ (0, T )
}
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with

q(a−
i ) = q(a+

i ), c(a−
i )∂xq(a−

i ) = c(a+
i )∂xq(a+

i ), i = 1, . . . , n − 1 (TC)

Theorem 2.2. There exist λ1 = λ1(Ω,ω) > 0, s1 = (T + T 2)s̃1(Ω,ω) > 0 and a positive constant C = C(Ω,ω) so
that the following estimate holds:

s−1
∫ ∫
Q

e−2sηϕ−1(|∂tq|2 + ∣∣∂x(c∂xq)
∣∣2)dx dt + sλ2

∫ ∫
Q

e−2sηϕ|∂xq|2 dx dt + s3λ4
∫ ∫
Q

e−2sηϕ3|q|2 dx dt

+ sλ

n−1∑
i=1

T∫
0

ϕ(t, ai)e
−2sη(t,ai )

∣∣∂xq(t, a−
i )

∣∣2 dt + s3λ3
n−1∑
i=1

T∫
0

ϕ3(t, ai)e
−2sη(t,ai )

∣∣q(t, ai)
∣∣2 dt

� C

[
s3λ4

∫ ∫
(0,T )×ω

e−2sηϕ3|q|2 dx dt +
∫ ∫
Q

e−2sη
∣∣∂tq ± ∂x(c∂xq)

∣∣2 dx dt

]
(3)

for s � s1, λ � λ1 and for all q ∈ ℵ.

Proof. Arguing as in [5,1], we set ψ = e−sηq . We obtain, in the derivation of the Carleman estimate, integral terms
over Q′ and some time integrals over (0, T ) with trace terms at ai , i = 1, . . . , n − 1. In fact, the leading order terms
for these time integrals at ai (w.r.t. to the parameters s and λ) are given by

μi := sλ

T∫
0

ϕ(t, ai)
[
β ′|c∂xψ |2(t, .)]

ai
dt + s3λ3[c2(β ′)3]

ai

T∫
0

ϕ3(t, ai)
∣∣ψ(t, ai)

∣∣2 dt, i = 1, . . . , n − 1

We obtain μi = sλ
∫ T

0 ϕ(t, ai)(Aiu(t, ai), u(t, ai))dt with u(t, ai) = (c(a−
i )∂xψ(t, a−

i ), sλϕ(t, ai)ψ(t, ai))
t , with the

2 × 2 matrix Ai as in Lemma 2.1. This term is thus positive and can ‘absorb’ the remaining time integrals at ai if we
choose the parameters s and λ to be sufficiently large. The rest of the proof can be adapted from [5,1]. �
Remark 1. In a similar fashion, we can obtain Carleman estimates with a ‘side observation’ for the operators ∂t ±
∂x(c∂x), for instance with the term

sλ

T∫
0

ϕ(t,0)e−2sη(t,0)|∂xq|2(t,0)dt

replacing the volume integral over (0, T ) × ω on the r.h.s. of (3). To this purpose, we need to introduce a weight
function β̃ according to the following lemma:

Lemma 2.3. There exists a function β̃ ∈ C(Ω) such that β̃|[ai ,ai+1] ∈ C2([ai, ai+1]), i = 0, . . . , n− 1, satisfying β̃ > 0
in Ω , β̃(1) = 0, (β̃|[ai ,ai+1])′ � ν < 0, i ∈ {0, . . . , n − 1}, and the function β̃ satisfies the following trace properties:
for some α > 0, (Aiu,u) � α|u|2, u ∈ R

2 with the matrices Ai , defined as in Lemma 2.1.

Remark 2. Note that an inequality, of the form of (3), with these pointwise terms on the l.h.s. of the Carleman
estimates can still be obtained in the case of a smooth coefficient by simply choosing the weight function β to have a
jump condition for its derivative and satisfying the properties given by Lemma 2.1.

3. Controllability results

The Carleman estimate (3) allows to give observability estimates that yield results of controllability to the trajec-
tories for classes of semilinear heat equations. Considering a piecewise C1 diffusion coefficient with n − 1 points of
discontinuities, a1, . . . , an−1, with 0 = a0 < a1 < · · · < an−1 < 1 = an, we let ω � (aj , aj+1) be an non-empty open
set for some j ∈ {0, . . . , n − 1}. We first state an observability result with an L2 observation. We let a be in L∞(Q)

and qT in L2(Ω). From Carleman estimate (3) we obtain the following proposition:
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Proposition 3.1. The solution q to⎧⎨
⎩

−∂tq − ∂x(c∂xq) + aq = 0 in Q

q = 0 on Σ

q(T ) = qT in Ω

(4)

satisfies ‖q(0)‖2
L2(Ω)

� eCK(T ,‖a‖∞)
�

(0,T )×ω
|q|2 dx dt , where K(T ,‖a‖∞) = 1 + 1/T + T ‖a‖∞ + ‖a‖2/3∞ .

The proof of this proposition can be found in [1]. Such an observability estimate yields the null controllability of
the following semilinear parabolic equation (1) where G : R → R is locally Lipschitz and G(0) = 0. This implies that
G(s) = sg(s), with g in L∞

loc(R).

Theorem 3.2. Let c be a piecewise C1 diffusion coefficient with n−1 points of discontinuities, 0 < a1 < · · · < an−1 < 1.
We let ω � (aj , aj+1) be an non-empty open set and we assume that G is locally Lipschitz. Let T > 0:

(i) Local null controllability: There exists ε > 0 such that for all y0 in L2(Ω) with ‖y0‖L2(Ω) � ε, there exists a
control v ∈ L2((0, T ) × ω) such that the corresponding solution to system (1) satisfies y(T ) = 0.

(ii) Global null controllability: Let G satisfy in addition lim|s|→∞ |G(s)|
|s| ln3/2(1+|s|) = 0. Then for all y0 in L2(Ω), there

exists v ∈ L2((0, T ) × ω) such that the solution to system (1) satisfies y(T ) = 0.

The proof is based on a fixed point argument and is along the same lines as that in [6] and originates from [7].

Remark 3. A similar result holds for a boundary control, i.e., by imposing y = v at either 0 or 1, with v ∈ L2(0, T ).
Note that as usual, y(T ) = y∗(T ) can replace y(T ) = 0 in the previous statements, where y∗ is any trajectory defined
in [0, T ] of system (1), corresponding to some initial data y∗

0 ∈ L2(Ω) and any v∗ in L2((0, T ) × ω) (L2(0, T ) in
the case of a boundary control). For the local controllability result, one has to assume ‖y0 − y∗

0‖
L2(Ω)

� ε, with ε

sufficiently small.

4. Stability for a discontinuous diffusion coefficient

In [8], the authors establish a uniqueness result for the discontinuous diffusion coefficient c as well as a stability
inequality. This inequality estimates the discrepancy in the coefficients c and c̃ of two materials (with the same
geometry) with an upper bound given by some Sobolev norms of the difference between the solutions y and ỹ to⎧⎨

⎩
∂t ỹ − ∂x(c̃∂x ỹ) = 0 in Q

ỹ(t, x) = h(t, x) on Σ

ỹ(0, x) = ỹ0(x) in Ω

⎧⎨
⎩

∂ty − ∂x(c∂xy) = 0 in Q

y(t, x) = h(t, x) on Σ

y(0, x) = y0(x) in Ω

(5)

Set u = y − ỹ and q = ∂tu. Then q is solution to the following problem:⎧⎪⎨
⎪⎩

∂tq − ∂x(c∂xq) = ∂x((c − c̃)∂x∂t ỹ) in Q′

q = 0 on Σ

transmission conditions (TCg) on S × [0, T ]
with

q(x−) = q(x+), (c∂xq)(x−) = (c∂xq)(x+) + g(x, t) (TCg)

where x ∈ S = {a1, . . . , an−1}, the set of singularities for both c and c̃, and

g(x, t) = (
(c − c̃)∂x∂t ỹ

)
(x+) − (

(c − c̃)∂x∂t ỹ
)
(x−)

If the solutions y and ỹ to (5) satisfy some (regularity) conditions (that can be achieved with some choices of
boundary conditions h and initial conditions y0 and ỹ0 in L2(Ω)—see [8] for details) we have the following stability
result:
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Theorem 4.1. We assume that the diffusion coefficients c and c̃ are piecewise constant with the same singularity
locations. Then there exists a constant C such that

|c − c̃|2L∞(Ω) � C
∣∣∂x(∂ty − ∂t ỹ)(. ,0)

∣∣2
L2(0,T )

+ C
∣∣�y(T ′, .) − �ỹ(T ′, .)

∣∣2
L2(Ω ′) (6)

where Ω ′ is the open set Ω with the singularities of c removed.

A Carleman estimate is the key ingredient in the proof of such a stability estimate. In [8], this Carleman estimate
was proven in any dimension but with an additional ‘monotonicity’ assumption on the discontinuous diffusion co-
efficient. In the present case, we can establish such a Carleman estimate for a piecewise C1 diffusion coefficient.
Choosing the weight function as in Lemma 2.3, we have the following estimate:

Theorem 4.2. Let t0 > 0, in (0, T ) and g(. , ai) ∈ H 1(t0, T ), i = 1, . . . , n− 1. There exist λ1 > 1, s1 = s1(λ1) > 0 and
a positive constant C so that the following estimate holds

∣∣M1(e
−sηq)

∣∣2
L2(Q′) + ∣∣M2(e

−sηq)
∣∣2
L2(Q′) + sλ2

∫ ∫
Q

e−2sηϕ|∂xq|2 dx dt + s3λ4
∫ ∫
Q

e−2sηϕ3|q|2 dx dt

� C

[
sλ

T∫
t0

e−2sηϕ|∂xq|2(t,0)dt +
∫ ∫
Q

e−2sη
∣∣∂tq ± ∂x(c∂xq)

∣∣2 dxdt + sλ

T∫
t0

∫
S

e−2sηϕ|g|2 dσ dt

+
T∫

t0

∫
S

e−2sηϕ4|g|2 dσ dt + s−2

T∫
t0

∫
S

e−2sη|∂tg|2 dσ dt

]
(7)

for s � s1, λ � λ1 and for all q ∈ ℵg , with M1 and M2 given by

M1ψ = ∂x(c∂xψ) + s2λ2ϕ2(β ′)2cψ + s(∂tη)ψ, M2ψ = ∂tψ − 2sλϕcβ ′∂xψ − 2sλ2ϕc(β ′)2ψ

and ℵg is given by

ℵg = {
q ∈ H 1(t0, T ,H 1

0 (Ω)
); q|(t0,T )×(ai ,ai+1) ∈ L2(t0, T ,H 2(ai, ai+1)

)
,

i = 0, . . . , n − 1, q|Σ = 0 and q satisfies (TCg) a.e. w.r.t. t
}

(8)

Remark 4. Observe that in Theorems 4.1 and 4.2, we need not assume that jumps for c are greater than some positive
constants � at its points of discontinuities, as is done in [8]. This is due to the choice made on the weight function
β̃ in Lemma 2.3. This remark is to be connected to the proof of Theorem 1.3 in [8, estimate (1.16) and following
arguments].
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