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Abstract

In this Note, we deal with the non-linear vibration of viscoelastic shell structures. Coupling a harmonic balance method with a
one mode Galerkin's procedure, one obtains an amplitude equation depending on two complex coefficients. These are determin
by solving a classical eigenvalue problem and two linear problems. This permits us to characterize the evolution of the loss factc
with the vibration amplitude. To validate our approach, the amplitude-frequency and the amplitude-loss factor relationships ar
illustrated in the case of a circular ringp cite this article: E.H. Boutyour et al., C. R. Mecanique 334 (2006).
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Résumé

Vibrations non linéaires des structures viscoélastiques par une méthode de la balance harmonique. Dans cette Note, on
s'intéresse aux vibrations non linéaires des structures courbes viscoélastiques. Couplant une méthode de la balance harmoni
linéarisée et la technique de Galerkin & un mode, nous obtenons une équation d’amplitude dépendant de deux coefficients co
plexes. Ces derniers sont déterminés en résolvant un probléeme aux valeurs propres classique et deux autres problémes linéa
Cela permet de caractériser I'évolution du facteur de perte avec I'amplitude des vibrations. Pour valider notre approche, les rel:
tions de la fréquence non linéaire modale et du facteur de perte non linéaire modale en fonction de I'amplitude des vibrations sol
illustrées dans le cas d’'un anneau circuldfeur citer cet article: E.H. Boutyour et al., C. R. Mecanique 334 (2006).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

In structural mechanics, viscoelastic materials are widely used to reduce vibration and noise in many domains (e.g
the aerospace industry). Indeed, these materials can induce an effective damping especially when they are sandwicl
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between two elastic hard layers. In the linear range, the damping properties are characterized by two modal para
meters which are the frequency and the loss factor. Several analytical and numerical works have been developed t
determine these quantities in the linear vibration analysis of viscoelastic shells [1]. In the case of non-linear viscoelas-
tic structures, only a few investigations have been devoted to take into account the non-linear geometrical effects
These studies concern viscoelastic structures with simple geometry as beams or plates [2—4]. It is well known that
the non-linear geometrical effect induce some dependence of the frequencies and the loss factor with respect to th
amplitude [4].

The goal of this Note is to establish a simple general methodology to describe non-linear vibration properties of
viscoelastic shell structures. The method is limited to the periodic or damped responses and it couples an approximate
harmonic balance method with a one mode Galerkin’s procedure. This coupling leads to an amplitude-frequency
equation whose resolution permits to get amplitude-frequency and amplitude-loss factor relationships. An application
to a viscoelastic circular ring will be given. This will extend the approach of [3] that can only be applied to straight
beams or plates.

2. Formulation

Using the principal of virtual work, the equations describing the free non-linear vibrations of a 3D viscoelastic
structure can be written in the general following form:

{L(U)—i—Q(U, U)+MU)=0 1)

S=D®y, y=eW)+yulu,u)

whereU = (u, S) is a mixed vector; its components are the generalized displaceniemd the second Piola Kirch-
hoff stress tensors’, and the dots denote the derivative with respect to tifé.) is the relaxation function ang
denotes the classical convolution prodycis the Green—Lagrange strain which can be decomposed into a linear part
¢ and a quadratic ong,; (u, u).

L(-) is a linear operator with respect to the mixed unkndwe= (u, S), Q(-, -) a bilinear and symmetric one and
M (-) is the inertial operator. All these operators are defineblyeing the mass density awel being the reference
configuration of the structure:

<L(U),8U)=/S:8(8u)d$’2, (MU,(SU):/,oiiiSu,' ds

<Q(U, U),SU) = /{SS SV (u,u) + 28 ynl(u,(?u)} dse2
2

3. An approximated har monic balance method

The aim of this section is to get approximate solutions of the non-linear problem (1). As a first approximation, the
solution is assumed to be harmonic in time and almost parallel to a single mode in space with an arbitrary complex
amplitude. This approximation assumes that the frequency is near the frequency of an associated linear elastic stru
ture. As in non-linear elastodynamics, the harmonic response has to be corrected to balance the quadratic terms |
(1), (2). Thus, a non-linear complex frequency-amplitude relationship is obtained by using the one mode Galerkin’s
procedure.

3.1. First order modal approximation

Let consider a first approximated solutibi of the problem (1), (2), that is supposed harmonic and proportional
to the linear mode:

Up = %Un (a€*' +CC) ©)
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where ‘CC’ denotes the conjugate complex of the preceding teriris ‘an unknown complex amplitudey the

complex frequencyl/, is thern-th linear vibration mode of the associated elastic system and it is defined by a classical

real eigenvalue problem:
L(Uy,) — 0?M(U,) =0

Sn = D(0)e(un) @

3.2. How to get the correction term?

Let us consider a second order approximated solution of (1), (2) by adding a correctiv&/tdothe linear
response (3):
U=U,+U. ®)
The corrective term is assumed to be small with respect to the main term. That is why the equations defining th
correction are linearised with respectlip. This U. balances the quadratic terms in (1), (2):
LU +MUc = —QUy, Up) (68
Se =D ® [é(ue) + Y (un, un)] (6b)
The correction ternt/. combines a time independent term and a harmonic term with a double frequency:

1 .
U. = |a|?Ug + E(a?Uz ! + CC) 7)

When restricted to the elastic case, the approximations (3)—(6) correspond to the two first terms of a Poincaré—Lindste
expansion [6], that yields a parabolic approximation of the backbone curve. It holds for moderately large amplitude
the first harmonic term (3) is small (@)) and the correction term is smaller than the first oné(®). This is way
the coupling termQ (U;,, U,) can be neglected in (6) (@%)), as well as the quadratic terd(U,, U.) ((O(a*)).

The substitution of (7) into (6) leads to two linear time independent problems satisfied by the amfig@het /,,
the corresponding stress&gsandS; being deduced from the constitutive law (6b).

1

L(UO) = _EQ(U’“ Un)

1 (8a)
So= D(O) |:Vl (”0) + Ean(una un)i|

1
L(Uz) — 42 M (Up) = —50Wn, Un)
1 (8b)

So= D(Ziw)[yz(uz) + Eynl(unv un)]

whereD(0) is the tensor of the delayed elasticity of the viscoelastic material®2ilv) is the viscoelastic tensor at
frequency 2. Thus, the general solution of (1) induces a principal harmonic and two secondary ones.

1 : 1 :
U=SUn(a€” +CC) + la|?Uo + > (a®U2 %" +CQ) 9)

As previously said, the approximation (3) assumes that the structure oscillates with a frequeeay the linear
onew,. So, the tensoD (2iw) in (8b) will be replaced byD (2iw,,).

3.3. Amplitude equation

To get the non-linear frequency-amplitude relationship, one applies the one-mode Galerkin’s procedure, whicl
consists to project Eq. (1) oii, e'*’, the displacement being given by (9).
2n

(z)

/(L(U)—i— QU,U)+MU), U, e )dr =0 (10)
0
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Eq. (9) leads to an equation for the complex amplitude in the following form:
a(kl — a)zm) + a|a|2k,11 =0 (11a)

wherek; andk,; are complex constants, which correspond, respectively, to the linear and non-linear modal stiffness
andm is the modal mass.

ki=(L(Un),Up), ki =2(QUpn,Uo)+ Q(Un,Uz2), m=(M(Uy,),Up,) (11b)

The amplitude equation can be considered as a generic bifurcation equation, that holds for any form of the non-
linearity. It has been first derived in [3], but with a procedure that can only be applied in specific cases, as straight
beams or flat plates. When it restricted to an elastic material, the amplitude equation (11) coincides with the parabolic
approximation of the backbone curve, that can be deduced for instance by the Poincaré-Lindstedt asymptotic pro
cedure. The linearised form of (11) permits to recover the results of the modal strain energy method [3], that is a
classical approach in the analysis of viscoelastic linear structures. Thé;satigpermits to define the damped linear
frequencys2; and the linear loss factoy; .

ki kR k)

—=Q2A+in), Q=L = 12
P (A +1np) i - n klR (12)
where(kR, kl') are, respectively, the real and imaginary parts;0fq. (11a) establishes that the non-linear complex
frequency is a function of the amplitudie.

2 ki

W= —
m

k
+laP=2 (13)

m
A non-linear modal frequenc;?)fl and a non-linear modal loss factgy; are deduced from the complex frequency in
the same way as in the linear case.

1+ C'al?

92 — 2 1 CR 2 i —
nl C()n( + g ) Nl 7711+ CR|a|2

(14)
whereCR =R /kRandC! = k! /.

So, the present procedure defines a non linear frequency and a non linear loss factor as in [3]. Nevertheless, th
method of reference [3] defines the main tetin as a bending mode and the correction tdfmas a membrane
one and this restricts the application to straight beams or flat plates. In this paragraph, the latter technique has bee
extended to any viscoelastic structure. We refer also to [3] for comparison with direct numerical studies.

4. An application

In this section, the presented approach is applied to study the in-plane free non-linear vibrations of a viscoelastic
circular ring. For this, the rotations are assumed to be moderate, the shear deformation and the rotary inertia term
of the kinetic energy are neglected. The geometrical data are: r&diti$00, thicknes& = 1 and widthb = 1. The
motion equations describing the non-linear free vibrations and the constitutive law are given by:

—RN'— M’ + R(BN) + phSRi =0
RN —M" + R(NB) + phSR#w =0

I .
N=SDQ®7y, M:ED@)ﬂ’ (15)

— 12 _h / _h 1
)/(u)—S(u)+§ﬂ, E(M)—E(v +w), ,B—E(v—w)

whereN is the normal forceM is the bending moment, is the moment of inertia§ the cross-sectional areaand

w denote respectively the radial and tangential non-dimensional displacemeststanbtation of the cross-section.
The classical linear mod&,, = (v,, w,) and the eigenfrequenay, of the conservative associated system are

obtained by solving (15) neglecting the non-linear terms and using a real Young modulus [5].

k k
w?= El <1i /11— 4k—§ ) vy =V cosnb), w, =W sin(nb) (16)
1
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wheren is the circumferential wave numbéf,andW are constants, the ratio/ W being deduced from the linearised
form of (15). The constants, andk; are defined by:

1+ n? [ Dn? kDn?(1—n)2 Eh3
=——|—+%k), kp=——F—, k=FEh, D=——

ohR2 ( Rz ) 2= T (oh)2R 12

The correction term is obtained in the same way as in the general case. In the case of the ring, the linear problems (€
and (8b) give the following differential equations:

1

)

1 1
RN6+M6: ERNn,Bn» RNO_M(/)/:_ER(Nn,Bn)/
/ (17a)
No=SD(0)y(uo), Mo= ED(O),BC/)
1 1
(RN} + M}) + 4w?phSRvp = SRNuBu, RNz — MY — dw?phSRwy = —ER(N,,ﬂn)’
(17b)
. 1 .
N2 =SD(2iwy)y (u2), Mz= ED(ZVJ)n)IBé
with
ho, 1,
Ny =S8DO)e(upn), yua)= E(v“ + wq) + Zﬂ”’ fora=0,2 (18)

Injecting (18) in (17) and solving of the obtained problems, one ggts (vo, wo) anduz = (v2, w2) in the following
form:

vo | _ do1Sin(2n0) v2 | do15iN(2n0) (19)
wo |~ |doo+ dozcos2n0) | w2 | T | d2o0+ d22c092n0)
wheredy; are real constants antd; complex ones depending dhand W. We do not report here the values of the

latter coefficients, that can be obtained in a straightforward manner. Inserting (19) in the constitutive laws (17) anc
using (11b), one gets the constants of the amplitude equation (11a) as follows:

2 2
k,=D(iw)/{Nne(un)JruMnﬁ,;}de, m=/ph2{u§+w3}de
0 0

D (ii”) Nap2+ 299y o6, } w

knl = 2

{D<0)No/33 + D(i®) N, Bofn +

whereu = I/SR?.

A numerical application is presented, where, for simplicity, the complex Young modulus is assumed constant, i.e
D(viw) = D(0)(1+in;), n being the material loss factor ai#(0) the delayed elasticity modulus. Table 1 presents
both constant€’R andC' for different vibration modes. From these results, one notes(tRas a negative number
and thatC' is greater thaiC’R. In Fig. 1, one presents backbone curves corresponding to modal non-linear frequencies
and modal loss factors with respect of the radial displacemvgiak = |a|W. The modal non-linear frequencies de-
crease with the displacement (non-linearities of soft type), the modal loss factors increase with the displacement. Tt
increasing and the decreasing of frequencies and loss factors, respectively, are more important for higher vibratic
modes.

Table 1

Modal coefficientsCR andC!, as functions of the circumferential waves numier
m 2 6 10

cR —6.55x 1079 —9.24x 1078 —2.60x 10~/

c! —155x 1079 —455x 1079 —4.81x 1079
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Fig. 1. Modal non-linear frequency and modal non-linear loss factor ratio versus the radial displacement near the linear frequencies.

5. Conclusion

In this study, an amplitude equation has been presented for the free non-linear vibrations analysis of curved
viscoelastic structures. As in a classical bifurcation analysis, this amplitude equation is obtained by coupling an ap-
proximated harmonic balance method with a one-mode Galerkin’s procedure. This leads to two modal pa¢dmeters
andC', which account for the non-linear effects. These constants are determined by solving three classical problems
The first is a real eigenvalue problem. The two others are linear problems. In this way, one obtains a frequency-
amplitude relationship, which is similar to classical backbone curves. This approach yields also a definition of the loss
factor that depends on the amplitude.
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