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Abstract

In this paper we apply the ADER approach to the Discontinuous Galerkin (DG) framework for the two-dimension
earized Euler equations. The result is an efficient high order accurate single-step scheme in time which uses less st
Runge–Kutta DG schemes, especially for very high order of accuracy. The aim is to obtain an arbitrarily accurate sc
space and time on unstructured grids for accurate noise propagation in the time domain in very complex geometries
present numerical convergence rates for ADER-DG methods up to 10th order of accuracy inspace and time on structured and
unstructured meshes.To cite this article: M. Dumbser, C.-D. Munz, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Schémas de Galerkine discontinu ADER pour l’aéroacoustique. Nous appliquons l’approche ADER au cadre des
ments finis discontinus pour les équations d’Euler linéarisées bidimensionnelles. Le résultat sont des schémas de hau
tout en utilisant moins de mémoire que les schémas du type Runge–Kutta Galerkin discontinus, spécialement pour
trés élevés. Le but est d’obtenir un schéma de précision arbitraire en temps et en espace sur des maillages non-stru
le calcul précis du bruit dans les géometries très complexes. Nous présentons des études de convergence numériqu
méthodes ADER-DG sur des maillages structurés et non-structurés jusqu’à l’ordre 10 entemps et en espace. Pour citer cet
article : M. Dumbser, C.-D. Munz, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

For the accurate simulation of noise propagation in the near field, which may still contain convection effe
geometrically complex obstacles, very accurate numerical schemes for solving the linearized Euler equ
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the time domain are necessary. In order to be able to treat complex geometries, the method should be de
run also on unstructured grids. For this purpose, quadrature-free Runge–Kutta Discontinuous Galerkin me
are very attractive since they can easily be implemented for unstructured grids. Concerning the accura
scheme in time, however, one is more or less limited since the Runge–Kutta schemes become compli
orders of accuracy higher than four and they need more and more intermediate stages. The recently d
ADER approach of Toro et al. [2–4] may overcome these difficulties. It is essentially based on the solu
generalized Riemann problems using Taylor expansions and the Lax–Wendroff procedure, which is also k
Cauchy–Kovalewski procedure. It can be programmed in such a way that it really runs at arbitrary order of a
in space and time for any linear hyperbolic system [5]. The method presented in [5] is based on the finite
concept and thus needs a reconstruction procedure which may become very cumbersome on unstructu
Our proposed scheme applies the ADER approach to the Discontinuous Galerkin finite element method w
high order polynomials are directly stored and evolved in time in each element.

2. The ADER discontinuous Galerkin scheme

In the following, we consider the two-dimensional linearized Euler equations (1) where we subsequen
classical tensor notation

∂up

∂t
+ Apq

∂up

∂x
+ Bpq

∂up

∂y
= 0 (1)

The fluctuation quantities areup = (ρ′, u′, v′,p′)T, the Jacobians of the fluxes areApq andBpq , where lineariza-
tion is performed about a mean flow denoted by the subscript 0

Apq =




u0 ρ0 0 0

0 u0 0
1

ρ0

0 0 u0 0

0 γp0 0 u0




, Bpq =




v0 0 ρ0 0

0 v0 0 0

0 0 v0
1

ρ0

0 0 γp0 v0




(2)

The numerical solution of (1) is written in terms of pure spatial basis functionsΦl with associated time
dependent degrees of freedom. The basis functions are chosen such that they are orthogonal, see e.g. [6

up(x, t) = ûpl(t)Φl(x) (3)

Multiplication of (1) by a test functionΦk and integration by parts over a triangleT (m) yields∫

T (m)

Φk

∂up

∂t
dV +

∫

∂T (m)

ΦkF
h
p dS −

∫

T (m)

(
∂Φk

∂x
Apquq + ∂Φk

∂y
Bpquq

)
dV = 0 (4)

where a suitable numerical fluxFh
p must be introduced for the surface integral because the numerical so

is discontinuous at an element interface. In the following, we use the Courant–Isaacson–Rees (CIR) flu
the locally linearized Euler equations, supposing a piecewise constant background flow in each elemen
produces Godunov’s flux in the case of constant Jacobians. Application to unstructured grids needs a trans
of each triangleT (m) in the physicalx–y space to a reference triangleT E in ξ–η space, since allΦk are defined
in T E . We also transform (1) to theξ–η system:

∂up

∂t
+ A∗

pq

∂uq

∂ξ
+ B∗

pq

∂uq

∂η
= 0 with A∗

pq = Apqξx + Bpqξy and B∗
pq = Apqηx + Bpqηy (5)

Following the ADER approach, we first expand the vector of state in a Taylor series in time up to orderN and
then apply the Lax–Wendroff procedure to the modified system (5). This procedure expresses time-deriv
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up by pure space-derivatives ofup, making successive use of the modified governing PDE (5), finally yielding
following result:

up(x, t) =
N∑

k=0

tk

k!
∂k

∂tk
up(x,0) =

N∑
k=0

tk

k! (−1)k(A∗
pq∂ξ + B∗

pq∂η)
kuq(x,0) (6)

It is the key point of the method to apply the Lax–Wendroff procedure to the transformed system (5). Oth
the application to unstructured grids would be extremely expensive. Then the basis function expansio
the numerical solution for the current time leveln is introduced into (6) for each element. Now we project t
expression onto the basis functions in order to get an approximation of the temporal evolution of the de
freedom in each element during one timestep

�t∫
0

ûpl(t)dt = 〈Φn,
∑N

k=0
�t(k+1)

(k+1)! (−1)k(A∗
pq∂ξ + B∗

pq∂η)
kΦm(ξ)〉

〈Φn,Φl〉 ûqm(0) (7)

where〈·, ·〉 denotes the inner product over the reference triangleT E and the division by the mass-matrix stan
for the multiplication by the inverse mass-matrix. This approximation can now be introduced into (4) and
the linearity of the governing equations (1) the system can be analytically integrated in space and time. Ma
of (7) can be evaluated beforehand since the basis functions are known a priori, i.e. we only need to calcu
and then store the projections of the basis functions and all their spatial derivatives onto the DG basis. T
Wendroff procedure (6) can be coded in a completely automatic manner which only needs as input the J
matrices and the desired order of accuracy in time. For Cartesian grids, the ADER-DG scheme is similar a
more terms in (7) can be pre-computed.

We summarize that the ADER-DG schemes are quadrature-free finite elements which perform time int
in one single step, making use only of the degrees of freedom of the element and its direct neighbors, th
ideal for parallelization. They also need less memory compared to RK-DG schemes since no intermed
stages have to be stored. Numerical experiments have also shown that the ADER-DG method is faster com
a RK-DG scheme. Since Eq. (7) can be coded in a completely general manner, the ADER-DG schemes a
of arbitrary high order of accuracy inspace and time on structured and unstructured grids.

3. Numerical convergence rates

In this section, we present numerical convergence rates which have been obtained for the lineariz
equations in a very simple setting. We consider the advection of an initial Gaussian density fluctuation

ρ′(x) = e− 1
2 (x2+y2)/σ2

, u′(x) = v′(x) = p′(x) = 0 (8)

in a rectangular computational domain with periodic boundary conditions and with extents[100× 100]. The back-
ground velocity isu = v = 1. The density fluctuation is transported along the diagonal of the domain for one p
so that the exact reference solution is just the initial condition. We perform convergence studies on a Carte
(σ = 3) and on a regular unstructured grid (σ = 5) which is derived from the Cartesian grid by subdividing e
square in four equilateral triangles, each consisting of two corners and the barycentre of the square. In Ta
the errors inL∞ andL2 norm are given as well as the corresponding convergence rates, whereOL∞ andOL2 de-
note the measured order of convergence inL∞-norm andL2-norm, respectively, between two successive grids.NG

is the number of squares in each dimension andNd is the total number of degrees of freedom. Tables 1–4 cle
show that the high-order schemes need less degrees of freedomNd in order to reach the same precision as the
order schemes. This favours high-order schemes when high precision is needed and leads to considerab
savings, which are important when big aeroacoustical problems are to be tackled in very complex geomet
e
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Table 1
Numerical convergence rates for ADER-DGO2 andO4 schemes (P1 and P3) on the Cartesian grid

Tableau 1
Résultats de convergence numériques pour les schémas ADER-DGO2 etO4 (P1 et P3) sur un maillage Cartésien

ADER-DGO2 ADER-DGO4

NG Nd L∞ L2 OL∞ OL2 NG Nd L∞ L2 OL∞ OL2

100 30 000 1.5660E–01 6.4463E–01 25 6250 7.8971E–02 2.8840E–01
150 67 500 7.2868E–02 2.8628E–01 1.9 2.0 50 25 000 4.5254E–03 1.4428E–02 4.1
200 120 000 4.0392E–02 1.5835E–01 2.1 2.1 75 56 250 6.9786E–04 2.2745E–03 4.6
300 270 000 1.7306E–02 6.8851E–02 2.1 2.1 100 100 000 2.0581E–04 6.4561E–04 4.2

Table 2
Numerical convergence rates for ADER-DGO6 andO10 schemes (P5 and P9) on the Cartesian grid

Tableau 2
Résultats de convergence numériques pour les schémas ADER-DGO6 etO10 (P5 et P9) sur un maillage Cartésien

ADER-DGO6 ADER-DGO10

NG Nd L∞ L2 OL∞ OL2 NG Nd L∞ L2 OL∞ OL2

25 13 125 1.0116E–03 4.6516E–03 10 5500 2.3342E–03 9.1034E–03
50 52 500 1.6321E–05 7.0422E–05 6.0 6.0 25 34 375 7.0918E–07 2.8242E–06 8.8 .8
75 118 125 1.5928E–06 5.4450E–06 5.7 6.3 50 137 500 1.0632E–09 4.1396E–09 9.4 .4

100 210 000 2.6423E–07 9.1726E–07 6.2 6.2 75 309 375 2.6470E–11 7.1228E–11 9.1 .0

Table 3
Numerical convergence rates for ADER-DGO2 andO4 scheme (P1 and P3) on the regular unstructured mesh

Tableau 3
Résultats de convergence numériques pour les schémas ADER-DGO2 etO4 (P1 et P3) sur un maillage non-structuré régulier

ADER-DGO2 ADER-DGO4

NG Nd L∞ L2 OL∞ OL2 NG Nd L∞ L2 OL∞ OL2

25 7500 1.0143E–01 8.4504E–01 10 4000 2.6614E–02 1.7035E–01
40 19 200 4.3561E–02 3.5315E–01 1.8 1.9 20 16 000 2.1150E–03 1.1262E–02 3.7
50 30 000 2.9151E–02 2.2921E–01 1.8 1.9 40 64 000 1.7118E–04 7.7531E–04 3.6
75 67 500 1.3540E–02 1.0488E–01 1.9 1.9 60 144 000 3.7768E–05 1.6343E–04 3.7

Table 4
Numerical convergence rates for ADER-DGO6 andO10 schemes (P5 and P9) on the regular unstructured mesh

Tableau 4
Résultats de convergence numériques pour les schémas ADER-DGO6 etO10 (P5 et P9) sur un maillage non-structuré régulier

ADER-DGO6 ADER-DGO10

NG Nd L∞ L2 OL∞ OL2 NG Nd L∞ L2 OL∞ OL2

5 2100 2.0367E–02 1.6683E–01 4 3520 1.1908E–03 7.5866E–03
10 8400 8.1399E–04 4.5373E–03 4.6 5.2 8 14 080 7.1357E–06 2.1936E–05 7.4
20 33 600 2.3346E–05 8.3467E–05 5.1 5.8 12 31 680 1.4006E–07 4.4864E–07 9.7
30 75 600 2.3879E–06 7.8982E–06 5.6 5.8 16 56 320 1.2676E–08 2.8100E–08 8.4
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