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Abstract

One carries out three-dimensional large-eddy simulations of natural convection in a horizontal annulus using Smag
dynamic subgrid model. The onset of transition to turbulence and turbulent regimes are analyzed. The characteristics o
flows and their influence on the heat-transfer process are studied.To cite this article: E.L.M. Padilla, A. Silveira-Neto, C. R.
Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Simulation des grandes échelles de la transition à la turbulence dans un canal annulaire chauffé. On développe de
simulation des grandes échelles tridimensionnelles de la convection naturelle dans un anneau horizontal, grâce au m
maille de Smagorinsky dynamique. L’apparition de la transition à la turbulence et des régimes turbulents sont ana
étudie aussi les charactéristiques des écoulements instables et leur influence sur les mécanismes d’échange thermPour
citer cet article : E.L.M. Padilla, A. Silveira-Neto, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The study of natural convection between concentric cylinders has been the focus of several numerica
perimental investigations since the 1930s, due to the enormous number of practical and technological app
In the recent years, many numerical works have been performed, some of them in three dimensions. Th
convection between concentric horizontal cylinders was studied by Beckmann [1]. In several later works [2
effects of changes in the control parameters upon the local and global heat transfer were investigated.
destabilization due to natural convection in annular geometries was studied by [3] and [4]. Kuehn and G
[3] have looked at cylindrical concentric geometries filled with pressurized nitrogen over a wide range of R
number (Ra), corresponding to 2.2 × 102 � Ra � 7.7 × 107 and radii ratio of 2.6. Results have shown that th
flow becomes first unstable in the plume region, close toRa = 2×105, fully-developing to turbulence asRa grows.
McLeod and Bishop [4] studied the problem using helium at cryogenic temperatures, changing theRa from 8×106

up to 2× 109. They have graphically represented the dramatic changes in the flow pattern whenRa was increased
and new flow structures at the upper part of the cavity have been found.

From a numerical point of view, two-dimensional [5,6] and three-dimensional [7] studies using theκ–ε model
have been performed assuming vertical symmetry. Information about the unstable behavior of turbulen
convection in periodic horizontal annuli can be found in [8,9]. Fukuda et al. [8] have tackled the problem
direct numerical simulations up toRa = 5× 105.

In the present Note, unstationary numerical studies related to transition inside horizontal annuli subm
natural convection are presented, assuming periodicity in the axial direction. We use the large-eddy sim
methodology (LES) with a dynamic subgrid model.

2. Physical problem and numerical method

An incompressible flow of a Newtonian fluid (air) with constant physical properties is considered. The bu
term is modeled through Boussinesq approximation. We work in an annular cavity formed by two hor
concentric cylinders of radiiRi (inner) andRo. The cylinders are isothermic, with inner and outer surfac
temperatureTi andTo respectively, withTi > To. The gap between cylinders is labeledL and the axial lengthLax.
The geometric characteristics are defined by the dimensionless parameters: radii ratioη = Ro/Ri and aspect ratio
Γ = Lax/L.

The problem presented in this Note is governed by the Navier–Stokes and the energy equations, in w
filtering process are applied according to the LES methodology [10], allowing us to separate the subgri
from the large scales. This filtering process gives rise to subgrid-stress tensor and subgrid heat turbulent
filtered equations are non-dimensionalized [11] usingTi , To, L and viscosityν. They are written as:

∇ · �v = 0 (1)

∂ �v/∂t = −∇ · (�v�v) − ∇p − Gr T �k + ∇ · [(1+ νt )
(∇�v + ∇�vT

)]
(2)

∂T /∂t = −∇ · (�vT ) + ∇ · [(1/Pr + νt/Prt )∇T
]

(3)

whereGr = gβ(Ti − To)L
3/ν2 is the Grashof number and�k a unit vector in the direction of gravity acceleratio

The dimensionless eddy viscosityνt is evaluated using the dynamical subgrid scale model according to th
pression presented by Lilly [12]. The turbulent thermal diffusivity is estimated using the turbulent Prandtl n
Prt = 0.6 [13].

A finite-volume method is employed on a staggered grid in order to discretize the differential equation
second-order Adams–Bashforth and centered differences schemes for time and space respectively. The
step method [14] has been used for the pressure-velocity coupling. The pressure correction field is eval
solving a Poisson equation, using the strongly implicit procedure method. A non-uniform mesh is employe
radial direction, which is more refined near the walls. A uniform mesh is used in the angular and axial dire



E.L.M. Padilla, A. Silveira-Neto / C. R. Mecanique 333 (2005) 599–604 601

ut in the
r

sists of
k, it was

r
. 1(b). In

e and
t
uencies,

other
sothermal
d

a
round 0
.

3. Results

Simulations corresponding to the stable and unstable flows in the horizontal annuli have been carried o
range 4× 104 � Ra � 7.5× 105, with η = 2 andΓ = 2.8. The mesh has 16× 72× 24 cells in the radial, angula
and axial directions, respectively.

According to Bishop et al. [15], the instability onset that appears at the upper part of the cavities con
oscillations. The oscillations amplitude increases as the Rayleigh number increases. In the present wor
possible to capture theses instabilities precisely with the aid of a numerical probe placed atr = 1.5, θ = 90◦ and
z = 1.4, as illustrated by Fig. 1(a). Small periodic oscillations in the velocity and temperature are observed foRa �
4.7×104. For higherRa values, these oscillations increase and change dramatically, as can be seen on Fig
this figure, the radial velocity component is depicted for two differentRa. The fluctuations forRa = 5.0× 104 are
very small and periodic. AsRa increases, oscillations lose their periodic behavior, with increased amplitud
temporal frequency. ForRa > 1.5 × 105 oscillations display a chaotic evolution. AtRa = 7.5 × 105 they presen
a strongly irregular pattern of high amplitude. One observes also the presence of a wide range of freq
characterizing a turbulent behavior.

The effect of instability upon the temperature field manifests initially in the plume structure, and after in
regions of the cavity, as can be seen in Figs. 2 and 3. In these figures, instantaneous dimensionless i
surfaces for three differentRa are shown. One observes in Fig. 2 that, asRa increases, instabilities multiply an
intensify, the more affected region being the upper part of the cavity. In the flow corresponding toRa = 1 × 105,
the thermal plume oscillates axially, with small amplitudes and, also, small movements along theθ direction. For
higherRa, the oscillation is subject to an intense three-dimensionalization. ForRa = 5.8 × 105 one observes
chaotic pattern with hot mass transport in both sides, showing turbulent characteristics. The oscillations a◦
and 180◦ are very intense. In the lower part of the cavity the flow is unstable, but turbulence is less intense

Fig. 1. (a) Geometric characteristics; (b) time distribution of radial velocity.

Fig. 1. (a) Caractéristiques géométriques ; (b) distribution temporelle de la vitesse radiale.
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Fig. 2. Instantaneous temperature isosurfaces, thresholds 0.25 (transparent) and 0.65.

Fig. 2. Isosurfaces de température instantanée, seuils 0,25 (transparent) et 0,65.

Fig. 3. Temporal evolution of temperature isosurfaces forRa = 1.5× 105.

Fig. 3. Evolution temporelle de l’isosurfaces de température pourRa = 1,5× 105.

In Fig. 3, the flow atRa = 1.5 × 105 is depicted for two different instants: 49.5 s and 50 s. The transiti
flow presents three-dimensional oscillations. The plume oscillates with vigorous amplitude, moving from
(49.5 s) to the right (50 s) and back, as experimentally observed in [15] and [4].

We have compared satisfactorily some statistical properties with experimental results of Itoh et al. [16]
Time-frequency energy spectra of the radial velocity component fluctuation for two values ofRa are presented

in Fig. 4. The velocity distribution was taken at the probe of Fig. 1(a). A line with a−5/3 slope corresponding t
Kolgomorov law has been drawn. One observes that the ‘inertial range’ (if our temporal spectrum may be as
to a spatial spectrum thanks to some local Taylor hypothesis) increases withRa. The spectrum atRa = 1.5 × 105

is steeper than−5/3, demonstrating an energy concentration in the large scales.
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Fig. 4. Energy spectra of the radial velocity fluctuation.

Fig. 4. Spectres d’énergie de la fluctuation de vitesse radiale.

4. Conclusion

Three-dimensional unstationary numerical simulations of the transitional flow submitted to natural con
in an annular cavity were successful performed, employing an LES methodology with dynamic subgri
model. We have been able to characterize the onset of the first instabilities. As the Rayleigh number in
the flow becomes fully irregular and chaotic when a turbulent regime is reached. It was possible to cap
flow dynamic characteristics, as well as the plume transition. The results compare very well with experime
numerical results from other authors.
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