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Abstract

One presents a model for coalescence of cavities in porous ductile viscoplastic solids. The representative volume element
considered is schematized as a ‘sandwich’ consisting of a central porous layer surrounded by two external sound layers, the
stress and strain rate tensors being considered as homogeneous in each layer. The sound layers obey the classical Norton moc
and the porous one some specific homogenized model for porous viscoplastic solids accounting for void shape. An important
feature is the description of the peculiar evolution of this shape during coalescence. The model predictions are successfully
compared to the results of some finite element micromechanical simulafiorge this article: L. Flandi, J.-B. Leblond,

C. R. Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumeé

Modélisation théorique et simulation numérique de la coalescence des cavités dans les matériaux poreux ductiles
viscoplastiques.On présente un modele pour la coalescence des cavités dans les solides poreux ductiles viscoplastiques. Le
volume représentatif élémentaire considéré est schématisé par un ‘sandwich’ comprenant une couche centrale poreuse entoure
de deux couches externes saines, les tenseurs de contrainte et de taux de déformation étant considérés comme homogenes d
chaque couche. Les couches saines obéissent au modéle classique de Norton et la couche poreuse & un modéle homogéné
spécifiqgue pour les matériaux poreux viscoplastiques prenant en compte la forme des cavités. Un élément important est la
description de I'évolution particuliere de cette forme pendant la coalescence. Les prédictions du modele sont comparées avec
succes aux résultats de simulations micromécaniques par élémentRdimisiter cet article: L. Flandi, J.-B. Leblond, C. R.

Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The study of coalescence of cavities in porous plastic or viscoplastic solids is of great importance for under-
standing and modeling the ductile rupture of metals. Because of the difficulties of a theoretical treatment of the
problem, most works devoted to this question up to now were purely numerical, and consisted of performing micro-
mechanical calculations of the behavior of some ‘elementary cell’ in some porous material using the finite element
method. This route was opened by Koplik and Needleman [1] and subsequently followed by many authors who
cannot all be cited here. Most of them studied the case of a plastic material but that of a viscoplastic one, which is
of more interest here, was also considered by a number of authors, notably Brocks et al. [2], Needleman et al. [3],
Herakovich and Baxter [4], Mohan and Brust [5], Garajeu et al. [6] and Kl6cker and Tvergaard [7,8].

The elementary cell considered in almost all of these works was a cylinder with circular basis (approximately
representing a cylinder with hexagonal basis, which can be duplicated and piled up so as to build a periodic lattice)
containing an initially spherical void. The loading was axisymmetric (equal overall principal stresses in the ‘hori-
zontal’ plane perpendicular to the ‘vertical’ axis of the cylinder) with predominant axial stress. In the plastic case,
the onset of coalescence was marked by a sudden concentration of the strain rate in the horizontal ligaments link-
ing neighboring voids, the horizontal layers separating these ligaments in the vertical direction becoming suddenly
rigid. As a result, the overall deformation mode became a vertical extension with no lateral shrinkage, and the
decrease of the overall stress and the increase of the porosity became much more rapid. In the viscoplastic case, th
same phenomena were qualitatively observed but the transition from the pre-coalescence phase to the coalescenc
phase was no longer sudden but gradual, because viscoplastic flow could never completely cease in the horizonta
layers separating the inter-void ligaments, at least for the Norton law without threshold considered by the majority
of authors. This transition was almost instantaneous for very large values of Norton’s exponent (corresponding to
an almost ideal-plastic matrix), but spread over a large range of values of the overall deformation for small values
of this exponent; in the case of a linearly viscous (Newtonian) material, it was so gradual that the very notion of
coalescence became meaningless.

From the theoretical point of view, the first, seminal contribution to the subject was that of Thomason [9,10],
who considered only the plastic case. This author evaluated the ‘critical’ vertical stress inducing coalescence in
a representative cell similar to those considered in numerical works, by using limit-analysis with a velocity field
‘adapted’ to coalescence in that it was zero in the horizontal layers separating the inter-void ligaments. His results
were subsequently used by Pardoen and Hutchinson [11] and Benzerga [12], in combination with the Gologanu—
Leblond—Devaux (GLD) model [13] (which extends the famous Gurson model [14] for porous plastic solids with
spherical voids to spheroidal voids), to define analytical models for coalescence. More specifically, they used the
GLD model to describe the overall behavior of the cell prior to coalescence, Thomason’s results to predict the
onset of coalescence, and specific models to account for the peculiar evolution of the voids toward less prolate or
more oblate shapes during coalescence, due to necking of the inter-void ligaments. Another route was opened by
Perrin [15] and followed by Gologanu et al. [16]. The main feature of the approach proposed was the schematization
of the cell as a ‘sandwich’ made of three horizontal layers, sound/porous/sound, in which the stress and strain rate
tensors were considered as homogeneous; the behavior of the sound layers was described using the von Mise
model and that of the porous layer using the Gurson model [14] or the GLD model [13]. In this approach, the
onset of coalescence corresponded to the brutal transition from a phase where all layers were plastic to another one
where the sole central porous layer remained so, the surrounding sound layers becoming suddenly rigid.

Although the basic physical ideas in the works of Perrin [15] and Gologanu et al. [16] were the same as in
the works of Thomason [9,10] and followers [11,12], the simplicity of the analytic treatment allowed for greater
flexibility and versatility. Extension to the case of a viscoplastic matrix, for instance, would be difficult using
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Thomason’s approach because it would demand consideration of new, more complex velocity fields not vanishing
in the horizontal layers separating the inter-void ligaments. In contrast, extending the approach of Perrin and
Gologanu et al. to viscoplasticity is relatively straightforward, provided that a suitable homogenized model for
porous viscoplastic solids is available for use in the central porous layer. Such an extension was proposed by
Garajeu et al. [6], using such a specific model.

The aim of the present work is to propose a new extension of the coalescence models of Perrin [15] and Golo-
ganu et al. [16] to the case of a viscoplastic matrix. This extension is similar in principle to that proposed by Garajeu
et al. [6] but different in detail. One difference is that a more refined homogenized model for porous viscoplastic
solids proposed very recently by the authors [17-19] is used in the porous layer. Another difference lies in the
definition of some specific evolution equation for the void shape during the coalescence phase, accounting for the
tendency of the void to become less prolate or more oblate. This feature was disregarded in Garajeu et al.’s work
[6], although it was considered in other ones devoted to the plastic case [11,12,16]. The predictions of the new
model will be critically assessed using the results of some micromechanical simulations.

2. The model
2.1. Generalities

The model is based on consideration of a cylindrical cell of semi-heligradiusB, containing a spheroidal void
of semi-axes andb in the vertical and horizontal directions respectively (Fig. 1(a)). This geometry is characterized
by three dimensionless parameters, the porogijtthe shape parametsrof the cell and the shape paramesé&?
of the void, defined by

2 ab? A a

Following the approach initiated by Perrin [15] and Gologanu et al. [16], we schematize the cell as a ‘sandwich’
consisting of one central porous layer of thicknegspus two surrounding sound layers of thickness- d
(Fig. 1(b)). The central layer is to represent both the void and the inter-void ligament where the strain rate will
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Fig. 1. The elementary cell considered and its schematization by a model composite structure. (a) Elementary cell, (b) Model composite
structure.
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concentrate during coalescence, and the external layers those zones which will deform less. Quantities pertaining
to the sound and porous layers are denoted with upper inticé® when necessary to avoid a confusion with
a similar quantity pertaining to the whole cell; for instanBe D® andD® denote the overall strain rates in the
cell, in the sound layers and in the porous one.

The semi-thicknesag of the porous layer is defined as the vertical semi-axis of the largest spheroid enclosed in
the cell ancconfocal with the voidqFig. 1(a)):

d=B2+a2— b2 @)

This definition is logical because the homogenized model which will be used in the central porous layer [17-19]
is precisely based on consideration of some spheroidal representative volume elenfiecal with the voidThe
volume fractionc of the porous layer within the cell and the porosft’ within this layer are then given by

2/3 1/2 2
c i —e9 |:1_ <% es_s(m) (1_ ezs(p))] 7 f(p) — gﬂ / 3)

A 3dB2 ¢

The cell is subjected to some axisymmetric loading with predominant axial stress; that is, the components of
the overall stress tensar are zero excepEy, = Xy, = X, andX,, = ¥, > X,. This type of loading is achieved
through the following boundary conditions:

v, =Cst, o,;,=0 onthe lateral surface
v, =0, o,z =0 onthe bottom 4)
v, =Cst, o,,=0 onthetop

wherev ando denote the local velocity and stress tensor and cylindrical coordifatész) are used. The overall
stress and strain rate components are related to their counterparts in the layers through the relations

5 =1-0X9+cxP x0=3P-x. pO9=pP =D, D,=1-0)D®+cDP (5
2.2. Viscoplastic flow rules in the sound and porous layers

The stress and strain rate tensors are considered as homogeneous in each layer; thus there is no distinctiol
between macroscopic and microscopic quantities within each layer.

In each sound layer, the viscoplastic strain faf¢ is assumed to be given by the classical Norton flow rule
without threshold:

S\ n yr(s)

3. (e X

D = 560< q ) © ©
00 Eeq

where X’® denotes the stress deviator in the Ia@éﬁ) the corresponding von Mises equivalent stress,é&néy
andn material constants; is the Norton exponent.

The porous layer is assumed to obey some homogenized model proposed very recently by the authors [17-19]
for porous materials with a Norton matrix. This model provides an implicit expression of the overall stress potential
v (x®), where X denotes the overall stress tensor in the layer, through consideration gatige surface
(isopotential surface in the stress space)

_ _ ¢
S= {s, (S = ET } (7)

First, an approximate equation of this surface is provided in the () = 0, where thegauge function’ reads
(for axisymmetric stress tensors):
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L n+1F(kH)

n— 2

(g+1 poL (g+7P) (8)
1 n

F(x)z(1+;|x|("+1)/”> ., 0=S.—S., H=2wS+ (1—2w)S, (9)

The expressions of coefficients 7, ¢, g, k, a2 here are too long and complex to be recalled. Then, for any stress
tensorX | there is a positive scalat(X®), thegauge factoysuch that

S(zP) =

U[S(xP)]=0 10
A(2<P>)€S = [S(=P)] (10)

Once this gauge factor has been calculated by solving Ecp, (i@ overall viscoplastic strain rai® in the
porous layer follows from the formula

n
DO _ ¢ AT 94
o0

(A I 7 ()
:éO[A(z )} (@ /99)[S(ZP)] 1)

00 B /3S)[S(ZP)]: S(xP)

2.3. Evolution of the internal parameters

The evolution equation of classically derives from matrix incompressibility, and thasdfom (1),:

f=A-pHtD;  S=D,— D, (12)

The evolution equation & proposed in [17—19] is adopted only in the initial (I) phase preceding coalescence,
since this phenomenon was disregarded in these works. It reads

1-f® (-3 - 30y
FO1— 301 +3f® (a1 —ay)
wheren, a1 ande] are further coefficients the expression of which is again too complex to be given here.
With regard to the evolution of® during the final (F) coalescence phase, the following semi-heuristic expres-

sion, accounting for the tendency of the void to grow less prolate or more oblate, was proposed by Gologanu et al.
[16] in the plastic casen(= +o0):2

) 1—f®@ 1—3w1)(1— 3] 1
5P _ 1 (4 f ( 1( ) )y
f®  1—301+3fP(a; — o) 21

Also, for n = 1, linearity implies that the factors connecti§§’ to the components dd® must depend on the
sole geometric parameters and thus have identical expressions in the initial and final phases; hence the expressio
of SPD must be identical to that ™" Finally, for arbitrarys, the following heuristic ‘interpolation’ formula
is adopted between the values pertaining to the linear and plastic cases:
(L) (L)
) _ o) _ SF n—1.peo) _ S n—1 .m0
Sg =8 = —— E =T+TS (15)
Finally, since in the viscoplastic case, there is no clear separation between the initial and final phases, one must

describe the continuous transition between the two. The job is done by the following heuristic formula:

5P —n(p® — DP) 4 trD® (13)

2
(y — 2)} D, y~ 3 (14)

. . . 21D 1/n
§0 = x5P 41— )5, XE( IDxI> (16
Z

2 In fact Gologanu et al.’s [16] formula is slightly modified here to account for some minor improvement brought into Gologanu et al.’s [13]
model by the authors [17-19].
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At the beginning of the loading, overall incompressibility almost prevails since the porosity is small, &, that
—%DZ, X~1andS® ~ Sfp). At the end of the loadingD, ~ 0 since the sound layers no longer undergo

significant deformation, so that ~ 0 andS® ~ S(Fp). Furthermore, for small values af X gradually decreases

to zero so that the value 6f” gradually varies fronﬁfp) to S,(:p); but for very large values of, X remains close to
unity as long as the ratio| 2, |/ D, does not completely vanish, then quickly decreases down to zero when it does,
so that the transition betweé'lﬁp) andSép) is much more abrupt. Thus the predictions of Eq. (16) are qualitatively
what one wishes them to be.

2.4. Numerical solution of the equations of the model

The equations of the model are solved in the case where the avigrability 7' (ratio of the overall mean stress
Y= %tr X over the overall equivalent stresg,) is fixed to some arbitrary value and the overall axial strain rate
D. is fixed to unity. The evolution equations (12), (16)/fS andS® are integrated using Runge—Kutta’s method
of order 4. At each step of the calculation, the stress and strain rate components are calculated using a Newton
method on the unknowm, and requiringl’ to take the value prescribed. This is feasible because the valDg of
being known, if that ofD,. is also known, the various stress components follow from the flow rules in the various
layers, so that" is a known (albeit complex) function db,.. Results will be given in the next section.

3. Comparison of model predictions and finite element calculations

Finite element micromechanical simulations are performed for initially spherical and spheroidal voids and var-
ious values of the initial porosity, the Norton exponent and the overall triaxiality imposed. For space reasons, we
only show the results obtained for an initially spherical void, valuefand7 of 0.0104 and 1 respectively, and
various values of.

Fig. 2(a) shows the ‘normalized’ overall equivalent str&gg/ oo versus the overall equivalent cumulated strain
Eeq, comparing the results of the finite element computations and the predictions of the model of Section 2.
Fig. 2(b) similarly compares the finite element results and the predictions of the authors’ model [17-19] not ac-
counting for coalescence. (This model is equivalent to considering that the porous layer fills the whole cell, which

1T 7 7 T T T T T T T T T L T T T T T T | T T T

—— FE
---------- Model

08 -

0.6 -

ZEq/U(}
224/0'0
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02 - "': :‘. n=3

@ (b)

Fig. 2. Evolution of the equivalent stress — Initially spherical vgigl= 0.0104,T = 1. (a) Comparison of FE results with the model accounting
for coalescence. (b) Comparison of FE results with the model disregarding coalescence.
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Fig. 3. Evolution of the porosity — Initially spherical void, Fig. 4. Evolution of the void shape parameter — Initially spherical
fo=0.0104,T =1. void, fo=0.0104,T =1.

means dropping equation (2) and takithg= A instead.) Clearly, the model of Section 2 does a much better job
than that not incorporating coalescence. It faithfully reproduces the accelerated decrease of the overall stress during
coalescence, the quick transition from the pre-coalescence period to the coalescence period for large values of the
Norton exponent, and the slower transition for smaller values of this exponent.

Fig. 3 shows the evolution of the porosity in a similar way. Again, the agreement between finite element results
and model predictions is quite good; the model correctly captures the accelerated increase of the porosity during
coalescence and the dependence of the transition between the two regimes upon the Norton exponent.

Finally Fig. 4 shows the evolution of the void shape parameter. The agreement between finite element results and
model predictions is somewhat less satisfactory in this figure; the difficulty of defining a good evolution equation
for the void shape parameter has already been emphasized by the authors [19]. The model does capture, howeve
the general trends of the evolution of the void shape, including, thanks to Eqg. (16), the tendency of the void to grow
less prolate or more oblate during coalescence.
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