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Abstract

The influence of higher-order nonlinear terms on the shape of solitary waves is studied for mechanical systems
by a generalization of the 5th order Korteweg–de Vries equation. New localized travelling wave with intrinsic osci
(not breathers) is shown to arise from arbitrary initial pulse thanks only to the higher-order quadratic nonlinearity, whi
nonlinearity is responsible for the formation of so-called ‘fat’ solitary wave.To cite this article: A.V. Porubov et al., C. R.
Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur quelques ondes localisées gouvernées par une équation de KdV généralisée. On étudie l’influence des termes no
linéaires d’ordre élevé sur la forme d’ondes solitaires dans des systèmes mécaniques gouvernés par une équation de K
cinq. On montre que de nouvelles solutions d’ondes localisées présentant des oscillations intrinsèques (pas des ‘brea
engendrées par une impulsion initiale arbitraire grâce aux non linéarités quadratiques, alors que la non linéarité cu
responsable de la formation d’une onde solitaire dite « épaisse » (ou « grasse »).Pour citer cet article : A.V. Porubov et al., C. R.
Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

One of the important problems of nonlinear wave propagation in fluids and solids is to know whether an
finite amplitude localized pulse will evolve into a sequence of solitary waves in a dispersive medium. The
waves propagate keeping their shape and they transfer energy over long distances. They usually exist as
a balance between nonlinearity and dispersion. However, the features of the solitary wave depend upon th
nonlinear and dispersive terms in the governing equation.

We consider the following nonlinear equation

ut + 2buux + 3cu2ux + ruuxxx + suxuxx + duxxx + f uxxxxx = 0 (1)

This equation is often called extended Korteweg–de Vries (KdV) equation. It appears, in particular,
shallow water theory, see [1] and references therein. Eq. (1) may be used for a modeling of weak nonlo
solids [2]. It may account for a continuum limit of discrete models with far neighbour interactions [3]. We ge
Eq. (1) the fifth-order (in space derivatives) KdV (5th KdV) equation whenc = r = s = 0. This equation arises fo
water waves when surface tension is rather strong [4]. Whenc = r = s = d = 0, the resulting equation models th
LC ladder electrical transmission lines [5,6].

Known exact travelling wave solutions obtained in [4] for the 5th KdV equation, and in the general case
account for a familiar bell-shaped solitary wave like in the classic KdV case. At the same time, the phase
analysis performed for the 5th KdV equation in [8], revealed a solitary wave that oscillatorilly vanishes far fr
core. Also a two-hump exact travelling solitary wave solution was found in [9] in the casec = 0. Hence, analytica
solutions demonstrate the dependence of the wave shape upon the type of nonlinear and dispersive terms
they require special initial conditions, thus they cannot describe aformation of localized wave structures, a proble
which is very important in applications.

We study how higher-order dispersion and nonlinear terms in Eq. (1) affect the features of the solitary
solutions and theirappearance from rather arbitrary localized finite amplitude initial pulse. Previously [10]
have found that generated solitary waves may decay at infinity (far from their core) either monotonical
KdV solitons) or oscillatory (like found by Kawahara [8]) thanks to the influence of the fifth-order dispersive
f uxxxxx . Now attention is paid to an appearance of rather unusual localized waves due to the influenc
higher-order quadratic nonlinear termruuxxx atc = s = 0. This was first mentioned in [10], but important featu
of this solution were not dutifully recognized there. Also a formation of so-called ‘fat’ solitary wave is found t
to the cubic nonlinear term, 3cu2ux , whenr = s = 0.

We used two methods for computations, finite-difference and pseudospectral, in order to prove the va
the numerical results. The difference scheme that we applied to Eq. (1) is similar to those used in [5,8]; th
fourth-order Runge–Kutta method has been chosen for numerical solution. Vanishing boundary condit
imposed at the ends of the computation interval. The accuracy of the method at each time step is O(�t4,�x2). The
computation code for the pseudospectral simulation was designed in [11]. We adopted a slightly modifi
as given in [11] for our purposes, in particular, to process the termsruuxxx andsuxuxx . The program compute
solutions of 1D scalar PDEs with periodic boundary conditions. It evaluates spatial derivatives in Fourie
by means of the Fast Fourier Transform, while the time discretization is performed using the fourth-order
Kutta method. This scheme appears to have a good stability with respect to the time step. Below only thos
are shown that were obtained using both numerical methods.

2. Formation of multi-hump localized structures

We obtained in the cases = c = 0 [10] that an increase in positive values ofr yields a decrease in the veloci
and an increase in the amplitude of the solitary waves arising from the Gaussian input. The number of solita
decreases, but the train of generated solitary waves looks similar to the KdV case. However, at negative var
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Fig. 1. Equalization of the first and the second solitary waves and subsequent exceeding of the second wave due to the alteration of
values of the coefficientr . Other coefficients are fixed:b = 1, d = 1, f = −1.

we found that at the initial stage of the splitting of the Gaussian profile the amplitude of the second solitar
becomes equal to that of the first one atr = −2.9, see Fig. 1. Comparing with previous results from [10] we see
the critical value ofr increases as the value ofd decreases, in particular, it is equal to−1.57 for d = 0.5 [10]. At
smallerr the second solitary wave becomes higher, and two solitary waves form an unusual multi-hump lo
structure. This multi-hump travelling structure was already presented in [10] but an important question r
whether it is a regular or a chaotic solution. The structure itself moves with permanent velocity, but wha
positions of the humps inside it? Is there any periodicity in their movement? That is why we consider the ev
of the multi-hump structure more carefully. Shown in Fig. 2 are 21 stages of generation and evolution
localized structure. The first three stages in Fig. 2 demonstrate usual splitting of the Gaussian initial pulse
solitary waves. Then the first two waves form a two-hump travelling wave. It is no longer quasistationary si
positions of the humps vary in time inside the wave structure. However, there is a periodicity in the humps
movement.

Indeed, we see five different shapes: the first appears at the stages 5, 10, 15, 20 in Fig. 2; the secon
stages 6, 11, 16, 21; the third – at the stages 7, 12, 17; the fourth – at the stages 8, 13, 18; and the fifth
stages 9, 14 and 19. Hence a sequence of shapes at the stages 5–9 repeats at the stages 10–14 and in th
This is an evidence of periodicregular behavior of the humps movement. The number of humps depends both
the parameters of the initial pulse and the value of the coefficientr . Decreasingr we achieve an increase in th
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Fig. 2. Two-hump solitary wave formation forr = −3, b = 1, d = 1, f = −1. Initial pulse parameters are:A = 0.5, σ = 0.008.

number of humps in the multi-hump localized wave [10]. Hence this localized multi-hump wave is not the
quasistationary multi-hump wave shown, in particular, in [9,12]. Now the shape of this travelling wave vari
time, and its evolution is not governed by the ODE reduction of Eq. (1). That is why we can use neither the
portrait analysis nor the known exact solutions to explain the numerical results. On the other hand, one ca
these waves breathers since a breather usually contains intrinsic oscillations around the zero level.

3. Generation of the ‘fat’ solitary wave

We studied the influence of the amplitude and the width of the initial condition on the shape of the em
solitary waves. The most interesting results have been found in the caser = s = 0 when only cubic nonlinearity
is added to the 5th-order KdV equation. Earlier, an action of the cubic nonlinear term on the type of de
solitary waves was exhibited, depending on the sign ofc [10]. Also the solution is sensitive to the ratio betwe
nonlinear contributions,b/c, and the value of the amplitude of an initial pulse. Indeed we have found that forb ∼ c,
b > 0, f < 0, the train of solitary waves arises only from a positive initial pulse while a negative one is disp
Dependence of the amplitude of the exact solutions of the equation with quadratic nonlinearity on the sb
is quite typical. However, at smallerb, b < c, the formation of solitary waves no longer depends upon the sig
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Fig. 3. Formation of the ‘fat’ solitary wave from the wide Gaussian input forc = −1, b = 1, d = 1, f = −1. Initial pulse parameters are
A = 0.5, σ = 0.002.

the initial pulse amplitude and on the sign ofb. A similar tendency is observed for a higher initial amplitude wh
predominant cubic nonlinearity excludes an influence of the quadratic one on the sign of the wave amplit
in the exact solution.

The shape of the solitary waves may also depend upon the parameters of the input. Indeed, numerical sim
show us that usually increasing the width or the amplitude of the initial pulse provides forc < 0 the formation of
the so-called ‘fat’ solitary wave, see Fig. 3, whose shape differs from other usual monotonic solitary wave
train. The difference is that widening of the wave due to the widening of the input (or growth of its amp
is accompanied by much smaller growth of the amplitude in comparison with what happens forc > 0. Only one
‘fat’ solitary wave may be generated, and no alternate transition from monotonic to oscillatory ‘fat’ solitary
is observed varying values off in contrast to the case of the 5th order KdV equation [10].

It is interesting to note that the shape of the solitary wave in Fig. 3 is similar to the shape of the exact tra
wave solution forc < 0 found in [13,14] for the Gardner equation, a particular case of Eq. (1) forf = r = s = 0.
Also one can find a similarity with the generation of the Gardner equation solitary wave from Gaussian in
c < 0 in [15]. Hence we have found that the Gardner ‘fat’ solitary wave may exist in a more general case a
the 5th order derivative term,f u , does not prevent a formation of it.
xxxxx
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