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Abstract

The model developed in this Note makes it possible to determine the value of the mean indentation pressure usually named
hardness from the elastoplastic properties of materials and also the shape of the cone or that of the wedge. The approximatior
rests upon the definition of a linear elastic solid which has the same indentation pressure as the material actually indented.
Cases of cone and wedge indentation are studied. A method to determine the uniaxial stress—strain curve of materials from
indentation tests is given. The results are validated using finite element simuldaite this article: G. Kermouche et al.,

C. R. Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Solution approchée du probléme de 'indentation conique et diédrique de matériaux élastoplastiquelse modele dé-
veloppé dans cette Note permet de déterminer la valeur de la pression moyenne d’indentation (habituellement dénomée dureté
a partir des propriétés élastoplastiques des matériaux. L'approximation développée repose sur la définition d’un solide élastique
linéaire dont la pression moyenne d’indentation est la méme que celle du matériau réellement indenté. Une méthode d'iden-
tification de la courbe contrainte-déformation uniaxiale a partir d’'essais d’indentation est proposée. Les résultats sont ensuite
validés a 'aide de calculs par éléments fifdsur citer cet article: G. Kermoucheet al., C. R. Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. On indentation tests

The understanding of the indentation of solids is very important to measure the mechanical properties of sur-
faces. The instrumented indentation method makes it possible to measure continuously the load applied on the
indenter as a function of the penetration depth. Thus, the study of the load-penetration curve can be used to
determine mechanical properties even when the penetration is very small. The indentation of isotropic elasto-
plastic material has been widely investigated over the past few years [1-4] and many laws from experimental
studies and simplified models have been proposed. Recently, the development of nanoindentation techniques [5.
6] has made it possible to finely characterize the mechanical properties of surfaces. The aim of this study is to
propose a new approximate solution of the indentation of elastoplastic materials using a rigid cone or a rigid
wedge.

Using an empirical approach based on experiments on metals, Tabor [1] explains that the real definition of
hardness is the mean pressure under load. Assuming that the principle of geometric similarity can be applied to
elastoplastic materials indented by sharp indenters (cone, wedge, Berkovitch, Vickers, etc.), the mean pressure is
constant during the penetration. The principle of geometric similarity (PGS) has been described by many authors
[1,7,4] and states that if two indentations are made of the same geometric shapes, then, whatever their size, the strail
and stress distributions around the indentation will be geometrically similar. For cone indentation of half-space, the
PGS means that stress and strain fields can be written as functions of some reduced codfdinates) and
Z = z/a(t) wherer andz are polar coordinates anmdr), the contact radius at tinre

oij(r,z,t) = (X, Z) and ¢&;(r,z,t) = E;j(X, Z) (1)

Eqg. (1) leads to a contact pressure function of reduced coordinates. Hence the mean pressure does not depen
on the applied load. There is a close resemblance between problems where geometric similarity is maintained
and problems of steady motion. A representative sisgsnd a representative straip characterizing the stress
and strain distributionsX;; and E;;) corresponding to each other on the uniaxial stress—strain curve can be de-
fined.

Tabor’s suggestion [1] is to relate a representative stress to the mean prgssupg, /3 and a representative
strain to the shape of the indentgr= 0.2tan(8) with g the angle from the face of the indenter to the surface.
Hence the uniaxial stress—strain curve can be obtained in a non destructive way using indentation tests. Using
similarity principles, Hill et al. [3,7] and Storakers et al. [8] have shown that these empirical results are valid for
rigid plastic materials with power law hardening. It has been confirmed by the finite element study of Larsson et
al. [9]. However, when elastic properties have to be taken into account, Tabor’s relationships are no longer valid.
Using the analytical solution of the expansion of an elastoplastic spherical cavity under a hydrostatic pressure
and assuming that this result can be applied to model cone indentation tests, Johnson [10] proposed an expres
sion where the mean pressure (or hardness) is related to the yield stress and elastic properties. Using dimensione
analysis and scaling relationships, Cheng and Cheng [4] have applied these methods to the understanding of the
effects of the mechanical properties on indentation results. They have shown in particular that for given elastic
properties,E andv, multiple choices of the plastic parameters — yield stress, strain hardening exponent — are pos-
sible, which produce the same hardness value. Several studies have been made to compare the force penetratic
curve obtained experimentally and also using numerical simulations [11,4]. Recently, several authors have estab-
lished dimensionless functions for a wide range of material properties using intensive finite element simulations
[12]. These functions express the indentation load as a function of mechanical and geometrical properties and
have been mainly developed for sharp indentations. Then they used several algorithms to identify plastic parame-
ters [13,14]. The most important drawback of such approaches is that the strain hardening curve must be known.
Moreover, results are not always stable depending on elastoplastic properties and regulation methods have to be
applied [15].
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2. A new approximation of wedge and cone indentation

In Sections 2, 3 and 4, the constitutive elastoplastic equations are based on the classical rate independen
Prandtl-Reuss equations for von Mises plasticity with isotropic hardening. Let us introduce the ratio between
the mean pressurg, and the representative stressy = p,,/o-. y depends o and on the elastoplastic proper-
ties of the indented material. For linear elastic solids; y, depends only on elastic properties andsoifror rigid
perfectly plastic materials;,. is equal to the yield stress- y =y, depends only o (Hill [16], Lockett [17]).

For wedge and cone indentation of linear elastic half-space, the expression of the mean pressure is the same. |
is given by (Love [18]):

1 E
Pm = 51,2 tan(g) 2
Let us now consider representative stress and strain definitions in this case. On a uniaxial tensile test, the stres:s
is related to the strain by the = E¢ equation. Following the work of Tabor [1], the representative stress of the
indentation test is related to the mean presswire- p,,/y.. Using Eq. (2), the representative strain is given by
er = 1/(2y.(1 — v?)) tan(B). The value ofy, being arbitrary, there is an infinite number(f., ¢,) couples which
give the correct value of the mean pressure.
Let us now consider elastic perfectly plastic materials. Both elastic and plastic deformations have to be taken
into account. The representative strain is thus writies ¢¢ + /. The elastic part is simply given by = o, /E.
Similarly to the definition of Tabor [1], the representative plastic stediis considered to be strongly related to
the shape of the indenter. Moreowgr must be equal to zero when the angle of the sharp indenter is not sufficient
to produce plastic strain in the material. Therefore, we assume/tten be written as:

ef = (¢ (tan(B) — tan(o))) 3)

where¢ is a parameter which will be defined belo). represents the McCauley’s brackgg.is a critical angle
introduced by Johnson [19] from which plastic deformations have to be taken into accountf\&hgés the mean
pressure is given by Eq. (239 depends on elastoplastic properties and is written

Y
tan(fo) = B @)

whereB equals tar (1 — v?)/+/3 for a wedge and equals b — v?) for a cone. Theoretically, the infinite pressure

at the apex will cause plastic flow even f8r< Bo. Plastic deformation will take place but will be very small

and confined to a small region close to the apex. As suggested by Johnson, such minor deformations should be
neglected. In the sequel, we will consider tjgas bigger thargg which implies that, =Y.

The PGS being satisfied, the mean pressure does not depend on the contact radius and on the load applied on tf
indenter. Thus representative parameters can be defined. Let us define a linear elastic solid which gives the same
representative stress and strain as those corresponding to the elastoplastic solid really indented. We will call it the
representative elastic material and its Young’s modulus will be giveB,b¥ o, /¢,

Y
"~ Y/E + ¢(tan(B) — tan(Bo))

This material is fictitious and is only used to establish the approximate solution of the model.

For the representative elastic material, the valug.cf p,, /o, is arbitrary. Let us choosg, equal to the ratio
y of the elastoplastic solid really indented. Hence the mean pressure obtained with the linear elastic solid is the
same as that obtained with the elastic perfectly plastic solid. It is given by:

®)

r

1 E,
Pm = 5 1_ Vrz tan(g) (6)
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wherev, is the representative Poisson coefficient. Combining Eqgs. (4) and (6), one obtains:

_pm_1 1 tanc) (7)

o, 21-v2(1-¢B)Y/E +¢tan(B)
Eqg. (7) must be valid for any elastic perfectly plastic solid. Let us consider the limit case of rigid perfectly plastic
solids. For these solidg = y, depends only org. Moreover the representative elastic strain is equal to zero

(Y/E =0). Eq. (7) then gives:
1 1
B 2yp 1 -2

¥p can be determined using the analysis of Hill [16] for wedge indentation and Lockett [17] for cone indentation.

Using an experimental approach, Tabor [1] sugggsts 3. The last unknown factor relates to the expression of
v,. To satisfy the limit case of elasticity, must be equal to. However, nothing indicates that does not depend
on the mechanical properties of the material and in particular orY ftie ratio. In his study of modelling the
indentation of rigid plastic solids by non linear elastic solids, Hill [3] recommends a value of 0.5 for the Poisson
coefficient in order to satisfy plastic incompressibility. Most engineering materials are more plastic than elastic
during cone or wedge indentation tests, so we recommene 0.5. A simple illustration of these results is to
considery, equal to 3 and a rigid perfectly plastic solif E = 0, v, = 0.5. The expressions fer. ande, are:

Pm

oy 3 and &, =0.22 tanB) 9)

These expressions are very close to those suggested by Tabor [1] in the case of rigid plastic materials.

The main difficulty concerning the extension of this approach to work-hardening elastoplastic solids is that the
y = pm /o, ratio is not known in the case of rigid plastic solids. Storakers et al. [8], Larsson et al. [9] and Cheng
and Cheng [4] have shown that when the work hardening is expressed as a power lawowsitbgis )Y with
op andm material constants and when the material considered is rigid plastic, the mean pressure is expressed as
Pm = B1oo(B2)Y™ in which B1 and B are constantsB, may be viewed as the representative plastic straiand
By asy = pn/o-. These results lead us to consider thdor rigid plastic solids is constant and thus equalg;fo
Hence Eqg. (8) is still valid for work hardening plastic materials. For any elastoplastic material, the mean pressure
is thus given by substituting with o, in Egs. (7) developed previously for elastic perfectly plastic solids.

_ 1 1 o,
~ 21-v2(1-¢B)o, /E + ¢ tan(B)
If the stress—strain curve of the material is known, tefncan be determined for any indentation tests using

Egs. (3), (4), (8) and (10). Then one obtaimsand thus the mean indentation pressure — or hardness — using
Eq. (10).

¢ ©)

Pm (10)

3. ldentification of the uniaxial stress—strain curve from indentation tests

A major interest of the indentation test is to obtaivg, ¢,) couple related to the uniaxial stress—strain curve
of the material. For each cone or wedge angjl¢he quantities B angt, are known is given by Eq. (8) and,
equals to (6. Assuming thap,, and E are known — or can be measured experimentally — the representatives stress
and strain can be computed using the following equations.
o £ tan(B) pu
" ypstan(p) — (1— ¢ B)pu/E

g =(1— ;B)% +ztan(p) (12)

(11)
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With the development of the continuous stiffness measurement technique available on most nanoindentation
devices [5,20], the conta, stiffness can be measured experimentally. This measure helps to determine the
contact area and thus the mean pressure. If the elastic properties of the material are known, the determination is
direct, otherwise special procedures must be used [5,20,12]. The measure of the mean indentation pressure give
one point on the uniaxial stress—strain curve. Consequently, the use of different cone or wedg@ @aglde
used to determine the uniaxial stress—strain curve of elastoplastic solids.

4. Numerical study

In this section, the results obtained above are verified using finite element simulations of indentation tests.
Firstly, let us consider the model developed in Section 2 and particularly Eq. (10). Finite element simulations have
been performed with ‘Systus/Sysweld’ [21] using an axisymmetric formulation to model cone indentation. In this
study, the analysis is performed using a large displacement/large strain option. The plastic flow is described via
a plastic von Mises criterion. In order to ensure plastic incompressibility, four node quadrilateral isoparametric
elements with a selective reduced integration scheme are used in the plastically deformed area. The mesh is par
ticularly fine near the contact zone, but it is also sufficiently wide to approximate a semi-infinite solid. For a good
representation of the contact geometry, the width of the elements is determined in order to have at least 40 nodes in
contact where the penetration is maximum. The height of the elements is about five times lower than the maximum
penetration. The whole mesh contains about 9000 elements and 9400 nodes. The contact between the indente
and the workpiece is assumed to be frictionless and loading is achieved by monitoring quasi-static displacement
of the indenter which is pushed vertically into the workpiece. The major difficulty is that the level of penetration
has to reach a certain depth so as to minimize the error on the determination of the contact area and thus on the
computation of the mean pressure [22].

Let us consider an elastic perfectly plastic material with a yield stress100 MPa. Several finite element
calculations have also been performed with different values of the Young modulusEfrerb00 MPa toE =
30000 MPa. For higher values 6f the mean pressure is approximatively constant. These values could correspond
to those of some polymeric materials. The evolution of the mean indentation pregsasa function of the Young
modulusE has been studied for a cone angle= 10° in Fig. 1(left). The approximate model developed in this
paper is plotted as a solid line. Based on the study of Lockett [17], we have chgseB andv, = 0.5 for this
cone angle. Each numerical simulation gives a single point on Fig. 1(left). The agreement between the approximate
model and the results of the numerical simulations is very satisfactory. The model developed by Johnson is also
plotted but the results are less accurate than those obtained with the model proposed in this paper. An elastoplastic
material which exhibits strain hardening has been studiésl2(® and the values of, andv, have been chosen at
2.8 and 0.5. The law of strain hardening follows a Ramberg—Osgood tawt ¥ + K (¢”)" —with Y = 100 MPa,

K = 150 MPa and: = 0.5. Several calculations have also been performed with different values of the Young
modulus fromE = 500 MPa toE = 30000 MPa. The evolution of the mean pressuyeis plotted as a function

of the Young modulusE on Fig. 1(right). As for the elastic perfectly plastic material the numerical results are in
very good agreement with the approximation developed in Section 2.

Finally, the method developed in Section 3 is validated using finite element simulations. Let us consider the
following materials: AISI304L [23] and heat treated AlISI52100 [24]. The uniaxial stress—strain curve of these
materials are an input parameter of the finite element simulations. Twenty numerical simulations corresponding to
different values of8 (2° < B < 40°) are performed. In this study, wedge indenters are used because the value of
¥p is known for each value gf (Hill [16]), which is not the case for cone indenters. Each numerical simulation
gives the value of the mean indentation pressure. Then Eqgs. (11) and (12) ginde,. For each material twenty
different points §,; ¢,) are computed. The curve thus determined is compared to the real uniaxial stress—strain
curve as well as the curve obtained with the Tabor method [1]. The results are plotted in Fig. 2.
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Fig. 1. Mean pressure versus Young's modulus; left: elastic perfectly plastic solid¥with00 MPa and3 = 10°; right: work hardening
elastoplastic solids witlif = 100 MPa,K = 150 MPa: = 0.5 andg = 20°.

Fig. 1. Pression moyenne en fonction du module de Young ; a gauche: solides élastiques parfaitement plastifues@édPa e = 10°;
a droite : solide élastoplastique écrouissable avec100 MPa,K = 150 MPa» = 0.5 et = 20°.
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Fig. 2. Comparison of the stress strain curves obtained with the method proposed by Tabor, the present work and from tensile tests for
the stainless AISI304L steel (left) and the AISI52100 heat treated steel (right).

Fig. 2. Comparaison des courbes contrainte-déformation obtenues a partir des méthodes d’identification de Tabor et celle proposée dans cetts
Note et a partir d’essais de traction pour I'acier inoxydable AISI304L (a gauche) et pour I'acier AlISI52100 (a droite) traité thermiquement.

For both AISI304L stainless steel (Fig. 2 (left)) and heat treated AlS152100 steel (Fig. 2 (right)), the agreement
between the rheology and the model developed in this study is very satisfactory. For AISI304L, Tabor’s approx-
imation seems to give correct results when the wedge angle is small. It comes from the fact that the deformation
is mainly plastic, the solid can thus be considered as rigid plastic/grid close to 3. In these conditions, the
Tabor model can be used. For higher valueg ahe approximatiory,, = 3 is no longer valid. It is the reason why
this model does not give accurate results. For AIS152100 steel, Tabor’s approximation does not work because the
steel has been heat treated. Consequently the elastic deformation must be taken into account when compared to th
plastic deformation. This model underestimates the representative stress and the representative strain. Contrary t
the Tabor model the approximation developed in this Note gives results very close to the tensile curve of the two
materials.

These numerical studies help to validate equations developed in Sections 2 and 3. Thanks to their simplicity,
these expressions can be used easily with experimental indentation tests to convert hardness values into a represe
tative stress and a representative strain. Identification methods based on dimensional analysis [4,12,14] give result:
equivalent to those obtained in this Note. The main advantage of the method proposed here is that it is easy to use
and it does not require any approximation of the work hardening curve. Moreover, it does not call for intensive
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finite element calculations and can be easily and quickly adapted to other shapes of sharp indenters (Berkovitch,
Vickers, Knoop, etc.).
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