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Abstract

Numerical simulations of natural convection performed withitbealBoussinesq equations result in unbalanced irreversibil-
ity budget. Thehermodynami®@oussinesq equations solve this problem, especially because they simulate production of kinetic
energy within the fluid through its expansion and contraction. These fluid volume changes, without which natural convection
would not occur, also induce heat transfergiston effectThe piston effect, which appears then as an intrinsic component of
buoyancy-induced natural convection, introduces the non-dimensional adiabatic temperature gradient as a control parameter of
natural convectionTo cite thisarticle: M. Pons, P. Le Quéré, C. R. Mecanique 333 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Un exempledebilan d’entropiepour laconvection naturelle, Partie 2 : les équations de Boussinesg thermodynamiques.
Les simulations numériques réalisées avec les équations de Bousssnesigsne peuvent pas donner un bilan d'irréversibi-
lité fermé. Les équations de Boussingsgrmodynamiqueapportent une solution au probléme, en particulier parce qu'elles
incluent la production d’énergie cinétique a l'intérieur du fluide, par sa dilatation et contraction. Ces variations de volume du
fluide, sans lesquelles la convection naturelle n’existerait pas, provoquent aussi un transfert de cheffaimiston L'effet
piston, qui apparait alors consubstantiel a la convection naturelle, fait du gradient de température adiabatique adimensionné
un des parametres de controle de la convection natuRelle. citer cet article: M. Pons, P. Le Quéré, C. R. Mecanique 333
(2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

For reasons of publication, the work presented here is divided in two parts, Part 1 [1] and this article (Part 2).
It has been shown in Part 1 that silating natural convection with thesualBoussinesq (UB) equations leads
to fundamental contradictions with the second lavdded, the UB equations correspond to the energy diagram
Fig. 1(b), i.e. artificially introducing exchanges of work between the simulated system and its surroundings while
discarding the internal exchanges between heat and Workexample of the obtained contradictions is given for a
very simple case: air & = 300 K (Pr =0.71) in a square two-dimensional differentially heated cavity £ 1),
with Ra= 10, i.e. in steady-state, with a cavity heightof 1.2866 m, and an extremely smalll’ (4.890 mK).
The results of that numerical experiment are recallechanfirst line of Table 1. Actually, a careful reading of
literature, e.g. [2,3], shows that this case should not beutated with UB equations. Indeed, these equations are
valid when the parameter [¢ = SgHTo/(C, AT)] is small compared to 1. In the present cases larger than 2,
and the model must take this feature into account.

2. Thethermodynamic Boussinesq equations
2.1. A modified heat equation

Unlike the so-callechon-Boussinestiows with very large temperature differences (requirirngv Mach num-
ber models), theAT herein is small enough for validating the assumptions of solenoidal flow and constant fluid
properties, so that the model remains in the general Boussinesq framework. The usual continuity and momentum
equations (2) and (3) of [1] still hold. However, the heat equation (4) of [1] must be rewritten. We start from its
enthalpic form, which permits avoiding Boussinesq’s paradox (st&fing = O for a fluid the density of which
obviously changes). This equation is:
DT ) T (3a(p~H\ DP
o oo (M) o
wheret is the time g, the density of heat released by viscous friction (not neglected for sake of energy conserva-
tion), andP the pressure (the other quantities are defined in [1]). The viscous heat-soureg tsrgiven by the
Newton law. As only steady-states are ddesed herein, the total derivativ@P /Dt reduces to - V P. Moreover,
the first order approximation of the pressure gradiit is the hydrostatic ones pogz (wherez is the vertical
upward unit vector). Indeed, natural convection is mainly due to density variations in the hydrostatic pressure field
(Archimed forces), and effects such as thermoacoustinsel in steady-state. The resulting non-dimensional heat

(1)

equation is:
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with & = 2(5)% + (5% + §2)% + 2(52)2.

This is practically the heat equation calledtendedn [3], deep convectigrandthermodynamidn [4,5]. The
latter expression is retained in the followings. Several thermodynamic comments can be done on Eq. (2). First, the
kinetic energy lost in viscous friction is now correctly transformed into rlaatl/z(ﬂgH/Cp)¢]. Second, Eq. (2)
accounts for the work of pressure (hydrostatic field) on the flefgH/Cp)w(6 + To/AT)]. When the heat
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Table 1
Thermodynamic balances calculated with tisealandthermodynamidoussinesq equations, for a cavity heightof 1.2866 m aRa= 106.
In both cases, one has= 2.568, andAT /Ty = 16.30 x 106

Boussinesq model Nu Nyg+Nxy Nxy4 Nxy Nwm Numig
Usual 88407 17.6431 8.8407 8.8024 143480~ 8.8407
Thermodynamic 13514 13.1514 9.9046 3.2468 52:9P0°6 1.4156

equation is formulated with internal energy, the specific heat arising is that at constant ¥juamel the equation
contains one term iV - v. Indeed, expansion produces wogkdv is positive) out of internal energy, contraction
transforms work into internal energy. Wh&h- v is strictly assigned to zero, like in (4) of [1], these transfers are
discarded. The enthalpic formulatiaccounts for these internal transfeesween heat and work without explicitly
involving V - v while fully respecting the thermodynamic relation betwe&gn C,, and ¢ P/97T), as defined by
the fluid state-equation. It can also be noticed that the thermal diffusivéigpearing in the Rayleigh and Prandtl
numbers involves”, and notCy, making it preferable to work with the former rather than the latter. Now, is the
correct irreversibility budget recovered? Is the conversion efficieneyNyw,, /Nu fairly smaller than the Carnot
factor?

2.2. Numerical results

The two source terms of (2) are implemented in the etical model among the ndinear terms, i.e. explicitly
with a linear extrapolation. The overcost in terms of CPU-time is negligible. It has been checked that the model
yieldsNu, = Nu,, andNwm= Nwy, as it must. The other results of the calculations are presented in the second line
of Table 1 where they can be compared to theddBulations. First, the irreversibility budget £, + Nx, = Nu)
is now balanced, and this is true for any calculation done withthleemodynami@Boussinesq (TB) equations.
Second, in the present case, the conversion efficiengy=ig.024 x 10-6, a value slightly less than 25% of the
Carnot efficiency, a reasonable ratio. It can be seen that the system simulated with the TB equations fulfils the
four thermodynamic milestones stated in Part 1, demonstrating its thermodynamic consistency with the physical
phenomenon. This consistency also justifies a posteriori considering only the hydrostatic field as the pressure
gradient appearing in (1). The results can now be studied in some more detail.

2.3. Involvement of piston effect

Table 1 shows that choosing the UB equations instedlaeoT B equations has the following consequences (con-
firmed by all the other calculations we have done). The heat transfer is underestimated, the distribution between the
conductive and viscous irrerbilities is not correct, the teer being overestimated altogether with the mechanical
energyNwm. This feature indicates that the flow intensity is aatimated (in the present case, the maximal speed
is twofold that obtained with the TB equations).

It must be noticed that the departure from the UB equations most frequently investigated in the literature is the
non-Boussinesq problem, i.e. when the temperature difference is so large that the assumptions of solenoidal flow
and constant fluid properties no longer hold. Among recenttd$-rohlich et al. investigate the Rayleigh—Bénard
configuration atRa= 2000, with AT = 300 K [6], or Vierendeels et al. investigate the square differentially-
heated cavity with aRa= 10°-10/, with AT = 600 K [7]; both find Nusselt numbers differing from the UB
solution by some 2-4%. The present problem is completely different: the temperature difference is very small
(some millikelvin) and the cavity is rather high (abaurte meter), but still under the domain of geophysics (where
the UB approximation is accepted not to hold). It can bersthat the effects evidenced herein are much more
significant than the ones studied in the non-Boussinesq problem.

From the description above, one question also arises: how can the heat transfer be underestimated by the UB
system, when convection is overestimated?
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In the UB case, the heat flux transferred by conduction plus advection through any vertical line crossing the
cavity equates the heat flux at the active walls. Considering the heat transfer through the vertical line at mid-cavity,
and non-dimensionalising it like the other energy fluxes, one obtains the Nusselt number at mid-cavity:

1
1 a0
Numig = — [ ( Ra/?u6 — — | d
Umid Ar/( u 8x> Z
0

where the quantities, 6, andd6/dx are taken at = x./2. In the UB framework, one always obtaiNsimig =

Nu, = Nu.. On the opposite, with the TB equatioNsiyig is always smaller thahlu (in our exampleNumig =

1.4156), so that a certain proportion of the total heat flux (about 89% herein) is transferred from one wall to the
other by a process which is neither conduction nor advection through the mid-line. None of the two models includes
radiation, and viscous friction cannioé invoked for explaining that additional heat transfer. Among the terms of
the heat equation, remains the work of the pressure field, given by the last-iggH /C,) (0 + To/AT)w in

Eq. (2). This term can be split as(BgH/C,)0w — ¢w, the first part of which can readily be combined with the
viscous heat-source term. Eq. (2) can then be rewritten as:

09 26 96 1 2 N BgH ; ) @)
_ u— w— = —ow ) —ow
Tt ox dz Ral/? C, \Ra/2

Integrating BgH/C,)®Ra /2 yields the total heat flux released by viscous friction, forcedly equal to the
lost kinetic energyVwy, and integrating-(8gH/Cp,)0w over the whole fluid domain yields Nwm, see Eq. (8)
in [1]. [(BgH/C,)(®Ra Y2 — dw)] has thus a zero integral; in addition its order of magnitudesigH /C,)
(4 x 107 herein), it is locally very small. The last terta-¢w) also has a zero integral, but ag/R7T > 1, it is
by far the dominant part of the work related to the pressure forces. Talking of orders of magnitude, that last term
is, like ¢, notnecessarily negligibl§8—10]. It is even significant hereif@ = 2.568). Talking of energy—¢w is
a heat-sink term there where the fluid climbs up, i.e. close to the hot wall, transforming thus part of the thermal
energy transmitted to the fluid into mechanical energy (flow against gravity). Close to the cold wall, where the fluid
falls down,—¢w is a net heat-source term due to the transfaiomaof mechanical energy (flow along gravity)
into thermal energy. In the present case, the integr&af2¢w over the hot half of the cavity (i.e. between the
hot wall and the mid-line) yields 11.7357, i.e. the differehlte— Numiq, within a quantity that compares féwm.
The term—¢w is responsible for the additional heansfer. It can be here noticed thatggH/C,)0w and
—¢w both originate from the same term of (1), showing that the net mechanical energy responsible for the fluid
motion (Nwm) results from a very weak unbalance in the exchanges between heat and work above-described. These
exchanges between heat and work also result in a glal thansfer, from the vicinity of the hot wall directly
to that of the cold wall, operating in parallel to conduatiand convection, and much more significant than the
mechanical energy generated in the fluid or dissipated in viscous friction. According to the literature, this mode of
heat transfer is thpiston effectwell known in the field of near-critical fluids, see [11] and the bibliography therein.
Studies of piston effect in fluids away from their neaitical region are quite recent and consider only transient
situations [12]. The piston effect is indeed mainly known as a transient phenomenon. However the present study
evidences its involvement in steady-state (without thermoacoustic waves). The paradox is only apparent. Indeed,
from a Lagrangian point of view, a single patrticle is alternatively heated up and cooled down along the streamline it
follows, it alternatively expands and contracts. In the cavity, there are always fluid particles that expand somewhere
while other particles contract somewhere else, a double process that results in an apparent heat transfer from the
former to the latter by the so-called piston effect. In other words, the volume changes undergone by the fluid
because of temperature changes indaitegethernatural convectioand piston effect. Because of this common
origin, the piston effect is an intrinsic component of natural convection (when induced by buoyancy). Fig. 1(c)
shows the diagram energy of natural convection, correctly simulated by the TB model.

The heat equation (3) shows that the piston effect is ruled by the non-dimensional pakaméggH/C,) x
To/AT. Tritton mentionsp as the adiabatic temperature gradigiy{o/ C,) non-dimensionalised in the problem
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Fig. 1. Energy diagram describing natural cection in steady-state. The lower level represents thermal energy, the upper level mechanical
energy. The fluxes of thermal and mechanicargies are indicated in non-dimensional forhug, Nu., Mwm, Nwy). For sake of clarity,

the heat generated by viscouscfion is not mentioned. (b)Ysual Boussinesq system: the two heat fluxes are equal, the fluid also receives
mechanical energy from outside, and viscous dissipation correspordsirik of kinetic energy not transformed into heat. (c) Real case and
thermodynami@oussinesq system: expansion and contraction induce signifieensfers between thermal and mechanical energy, the result
of which is net production of kinetic energy AND heat transfer kst effect, viscous friction generates some heat in the fluid.

framework (i.e. divided byAT/H) [2]. The paramete¢ also appears in the Schwarzchild criterion for the onset
of natural convection in the Rayleigh—Bénard probleear critical point [13]. The present study leads to the
conclusion that is a control parameter of buoyayrinduced natural convection.

3. Conclusion

The thermodynamic inconsistencies appearing inuthgal Boussinesq calculations are solved when the heat
equation includes the work of pressure forces, leading tahteemodynamidoussinesq equations. As a conse-
quence, the piston effect, which also contributes to heat transfer, is an intrinsic component of natural convection.
As the piston effect is ruled by the non-dimensional adiabatic temperature gradie(ig H/C,)To/AT, ¢ is a
control parameter of buoyandgduced natural convection.
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