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Abstract

Numerical simulations of natural convection performed with theusualBoussinesq equations result in unbalanced irrevers
ity budget. ThethermodynamicBoussinesq equations solve this problem, especially because they simulate production o
energy within the fluid through its expansion and contraction. These fluid volume changes, without which natural co
would not occur, also induce heat transfer bypiston effect. The piston effect, which appears then as an intrinsic compone
buoyancy-induced natural convection, introduces the non-dimensional adiabatic temperature gradient as a control pa
natural convection.To cite this article: M. Pons, P. Le Quéré, C. R. Mecanique 333 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un exemple de bilan d’entropie pour la convection naturelle, Partie 2 : les équations de Boussinesq thermodynamiques.
Les simulations numériques réalisées avec les équations de Boussinesqusuellesne peuvent pas donner un bilan d’irréversi
lité fermé. Les équations de Boussinesqthermodynamiquesapportent une solution au problème, en particulier parce qu’
incluent la production d’énergie cinétique à l’intérieur du fluide, par sa dilatation et contraction. Ces variations de vo
fluide, sans lesquelles la convection naturelle n’existerait pas, provoquent aussi un transfert de chaleur pareffet piston. L’effet
piston, qui apparaît alors consubstantiel à la convection naturelle, fait du gradient de température adiabatique adim
un des paramètres de contrôle de la convection naturelle.Pour citer cet article : M. Pons, P. Le Quéré, C. R. Mecanique 333
(2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

For reasons of publication, the work presented here is divided in two parts, Part 1 [1] and this article (Pa
It has been shown in Part 1 that simulating natural convection with theusualBoussinesq (UB) equations lea

to fundamental contradictions with the second law. Indeed, the UB equations correspond to the energy diag
Fig. 1(b), i.e. artificially introducing exchanges of work between the simulated system and its surrounding
discarding the internal exchanges between heat and work.One example of the obtained contradictions is given f
very simple case: air atT0 = 300 K (Pr = 0.71) in a square two-dimensional differentially heated cavity (Ar = 1),
with Ra= 106, i.e. in steady-state, with a cavity heightH of 1.2866 m, and an extremely small�T (4.890 mK).
The results of that numerical experiment are recalled in the first line of Table 1. Actually, a careful reading
literature, e.g. [2,3], shows that this case should not be calculated with UB equations. Indeed, these equations
valid when the parameterφ [φ = βgHT0/(Cp�T )] is small compared to 1. In the present case,φ is larger than 2,
and the model must take this feature into account.

2. The thermodynamic Boussinesq equations

2.1. A modified heat equation

Unlike the so-callednon-Boussinesqflows with very large temperature differences (requiringLow Mach num-
ber models), the�T herein is small enough for validating the assumptions of solenoidal flow and constan
properties, so that the model remains in the general Boussinesq framework. The usual continuity and mo
equations (2) and (3) of [1] still hold. However, the heat equation (4) of [1] must be rewritten. We start fr
enthalpic form, which permits avoiding Boussinesq’s paradox (stating∇ · v = 0 for a fluid the density of which
obviously changes). This equation is:

DT

Dt
= α0∇2T + qv + T

Cp

(
∂(ρ−1)

∂T

)
P

DP

Dt
(1)

wheret is the time,qv the density of heat released by viscous friction (not neglected for sake of energy con
tion), andP the pressure (the other quantities are defined in [1]). The viscous heat-source termqv is given by the
Newton law. As only steady-states are considered herein, the total derivativeDP/Dt reduces tov ·∇P . Moreover,
the first order approximation of the pressure gradient∇P is the hydrostatic one,−ρ0gz (wherez is the vertical
upward unit vector). Indeed, natural convection is mainly due to density variations in the hydrostatic press
(Archimed forces), and effects such as thermoacousticscancel in steady-state. The resulting non-dimensional
equation is:

∂θ

∂τ
+ u

∂θ

∂x
+ w

∂θ

∂z
= 1

Ra1/2
∇2θ + 1

Ra1/2

βgH

Cp

Φ − βgH

Cp

w

(
θ + T0

�T

)
(2)

with Φ = 2( ∂u
∂x

)2 + ( ∂u
∂z

+ ∂w
∂x

)2 + 2( ∂w
∂z

)2.
This is practically the heat equation calledextendedin [3], deep convection, andthermodynamicin [4,5]. The

latter expression is retained in the followings. Several thermodynamic comments can be done on Eq. (2).
kinetic energy lost in viscous friction is now correctly transformed into heat[Ra−1/2(βgH/Cp)Φ]. Second, Eq. (2
accounts for the work of pressure (hydrostatic field) on the flow[−(βgH/Cp)w(θ + T0/�T )]. When the hea
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Table 1
Thermodynamic balances calculated with theusualandthermodynamicBoussinesq equations, for a cavity heightH of 1.2866 m atRa= 106.
In both cases, one hasφ = 2.568, and�T/T0 = 16.30× 10−6

Boussinesq model Nu NΣq + NΣv NΣq NΣv NWm Numid

Usual 8.8407 17.6431 8.8407 8.8024 143.48×10−6 8.8407
Thermodynamic 13.1514 13.1514 9.9046 3.2468 52.92×10−6 1.4156

equation is formulated with internal energy, the specific heat arising is that at constant volumeCv, and the equation
contains one term in∇ · v. Indeed, expansion produces work (p dv is positive) out of internal energy, contractio
transforms work into internal energy. When∇ · v is strictly assigned to zero, like in (4) of [1], these transfers
discarded. The enthalpic formulation accounts for these internal transfersbetween heat and work without explicit
involving ∇ · v while fully respecting the thermodynamic relation betweenCv, Cp , and (∂P/∂T )ρ as defined by
the fluid state-equation. It can also be noticed that the thermal diffusivityα appearing in the Rayleigh and Pran
numbers involvesCp and notCv, making it preferable to work with the former rather than the latter. Now, is
correct irreversibility budget recovered? Is the conversion efficiencyη = NWm/Nu fairly smaller than the Carno
factor?

2.2. Numerical results

The two source terms of (2) are implemented in the numerical model among the non-linear terms, i.e. explicitly
with a linear extrapolation. The overcost in terms of CPU-time is negligible. It has been checked that the
yieldsNuh = Nuc, andNWm= NWv, as it must. The other results of the calculations are presented in the seco
of Table 1 where they can be compared to the UBcalculations. First, the irreversibility budget (NΣq + NΣv = Nu)
is now balanced, and this is true for any calculation done with thethermodynamicBoussinesq (TB) equation
Second, in the present case, the conversion efficiency isη = 4.024× 10−6, a value slightly less than 25% of th
Carnot efficiency, a reasonable ratio. It can be seen that the system simulated with the TB equations f
four thermodynamic milestones stated in Part 1, demonstrating its thermodynamic consistency with the
phenomenon. This consistency also justifies a posteriori considering only the hydrostatic field as the
gradient appearing in (1). The results can now be studied in some more detail.

2.3. Involvement of piston effect

Table 1 shows that choosing the UB equations instead ofthe TB equations has the following consequences (c
firmed by all the other calculations we have done). The heat transfer is underestimated, the distribution bet
conductive and viscous irreversibilities is not correct, the latter being overestimated altogether with the mechan
energyNWm. This feature indicates that the flow intensity is overestimated (in the present case, the maximal sp
is twofold that obtained with the TB equations).

It must be noticed that the departure from the UB equations most frequently investigated in the literatu
non-Boussinesq problem, i.e. when the temperature difference is so large that the assumptions of soleno
and constant fluid properties no longer hold. Among recent results, Fröhlich et al. investigate the Rayleigh–Bén
configuration atRa= 2000, with �T = 300 K [6], or Vierendeels et al. investigate the square differentia
heated cavity with atRa= 106–107, with �T = 600 K [7]; both find Nusselt numbers differing from the U
solution by some 2–4%. The present problem is completely different: the temperature difference is ver
(some milliKelvin) and the cavity is rather high (aboutone meter), but still under the domain of geophysics (wh
the UB approximation is accepted not to hold). It can be seen that the effects evidenced herein are much m
significant than the ones studied in the non-Boussinesq problem.

From the description above, one question also arises: how can the heat transfer be underestimated b
system, when convection is overestimated?
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In the UB case, the heat flux transferred by conduction plus advection through any vertical line cross
cavity equates the heat flux at the active walls. Considering the heat transfer through the vertical line at mi
and non-dimensionalising it like the other energy fluxes, one obtains the Nusselt number at mid-cavity:

Numid = 1

Ar

1∫
0

(
Ra1/2uθ − ∂θ

∂x

)
dz

where the quantitiesu, θ , and∂θ/∂x are taken atx = xc/2. In the UB framework, one always obtainsNumid =
Nuh = Nuc. On the opposite, with the TB equationsNumid is always smaller thanNu (in our exampleNumid =
1.4156), so that a certain proportion of the total heat flux (about 89% herein) is transferred from one wal
other by a process which is neither conduction nor advection through the mid-line. None of the two models i
radiation, and viscous friction cannotbe invoked for explaining that additional heat transfer. Among the term
the heat equation, remains the work of the pressure field, given by the last term−(βgH/Cp)(θ + T0/�T )w in
Eq. (2). This term can be split as−(βgH/Cp)θw − φw, the first part of which can readily be combined with t
viscous heat-source term. Eq. (2) can then be rewritten as:

∂θ

∂τ
+ u

∂θ

∂x
+ w

∂θ

∂z
= 1

Ra1/2∇2θ + βgH

Cp

(
Φ

Ra1/2 − θw

)
− φw (3)

Integrating (βgH/Cp)ΦRa−1/2 yields the total heat flux released by viscous friction, forcedly equal to
lost kinetic energyNWv, and integrating−(βgH/Cp)θw over the whole fluid domain yields−NWm, see Eq. (8)
in [1]. [(βgH/Cp)(ΦRa−1/2 − θw)] has thus a zero integral; in addition its order of magnitude is(βgH/Cp)

(4 × 10−5 herein), it is locally very small. The last term(−φw) also has a zero integral, but as T0/�T � 1, it is
by far the dominant part of the work related to the pressure forces. Talking of orders of magnitude, that la
is, like φ, not necessarily negligible[8–10]. It is even significant herein(φ = 2.568). Talking of energy,−φw is
a heat-sink term there where the fluid climbs up, i.e. close to the hot wall, transforming thus part of the
energy transmitted to the fluid into mechanical energy (flow against gravity). Close to the cold wall, where t
falls down,−φw is a net heat-source term due to the transformation of mechanical energy (flow along gravit
into thermal energy. In the present case, the integral ofRa1/2φw over the hot half of the cavity (i.e. between t
hot wall and the mid-line) yields 11.7357, i.e. the differenceNu− Numid, within a quantity that compares toNWm.
The term−φw is responsible for the additional heattransfer. It can be here noticed that−(βgH/Cp)θw and
−φw both originate from the same term of (1), showing that the net mechanical energy responsible for t
motion(NWm) results from a very weak unbalance in the exchanges between heat and work above-describe
exchanges between heat and work also result in a global heat transfer, from the vicinity of the hot wall direct
to that of the cold wall, operating in parallel to conduction and convection, and much more significant than
mechanical energy generated in the fluid or dissipated in viscous friction. According to the literature, this m
heat transfer is thepiston effect, well known in the field of near-critical fluids, see [11] and the bibliography ther
Studies of piston effect in fluids away from their near-critical region are quite recent and consider only trans
situations [12]. The piston effect is indeed mainly known as a transient phenomenon. However the prese
evidences its involvement in steady-state (without thermoacoustic waves). The paradox is only apparent
from a Lagrangian point of view, a single particle is alternatively heated up and cooled down along the strea
follows, it alternatively expands and contracts. In the cavity, there are always fluid particles that expand som
while other particles contract somewhere else, a double process that results in an apparent heat transfe
former to the latter by the so-called piston effect. In other words, the volume changes undergone by t
because of temperature changes inducealtogethernatural convectionand piston effect. Because of this comm
origin, the piston effect is an intrinsic component of natural convection (when induced by buoyancy). Fi
shows the diagram energy of natural convection, correctly simulated by the TB model.

The heat equation (3) shows that the piston effect is ruled by the non-dimensional parameterφ = (βgH/Cp) ×
T0/�T . Tritton mentionsφ as the adiabatic temperature gradient (βgT0/Cp) non-dimensionalised in the proble
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Fig. 1. Energy diagram describing natural convection in steady-state. The lower level represents thermal energy, the upper level mec
energy. The fluxes of thermal and mechanical energies are indicated in non-dimensional form (Nuh , Nuc , NWm, NWv). For sake of clarity,
the heat generated by viscous friction is not mentioned. (b)Usual Boussinesq system: the two heat fluxes are equal, the fluid also rec
mechanical energy from outside, and viscous dissipation corresponds toa sink of kinetic energy not transformed into heat. (c) Real case
thermodynamicBoussinesq system: expansion and contraction induce significant transfers between thermal and mechanical energy, the r
of which is net production of kinetic energy AND heat transfer by piston effect, viscous friction generates some heat in the fluid.

framework (i.e. divided by�T/H) [2]. The parameterφ also appears in the Schwarzchild criterion for the on
of natural convection in the Rayleigh–Bénard problemnear critical point [13]. The present study leads to
conclusion thatφ is a control parameter of buoyancy-induced natural convection.

3. Conclusion

The thermodynamic inconsistencies appearing in theusualBoussinesq calculations are solved when the h
equation includes the work of pressure forces, leading to thethermodynamicBoussinesq equations. As a con
quence, the piston effect, which also contributes to heat transfer, is an intrinsic component of natural con
As the piston effect is ruled by the non-dimensional adiabatic temperature gradientφ = (βgH/Cp)T0/�T , φ is a
control parameter of buoyancy-induced natural convection.
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