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Abstract

Numerical simulations of natural convection in cavities performed withutoal Boussinesq equations result in an unbal-
anced irreversibility budget. Theiodynamic analysis shows that these equatiepsesent a system that exchanges with the
surroundings, not only two heat fluxes, but also two fluxes of mechanical energy: an input, that generates the fluid motion, and
an output, due to viscous friction. After this analysis, the thermodynamic discrepancies can be exptagiedhis article:
M. Pons, P. Le Quéré, C. R. Mecanique 333 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Un exemple de bilan d’entropie pour la convection naturelle, Partie 1 : les équations de Boussinesq usuelles. Les
simulations numériques réalisées avec les équations de Bousasuelgs ne peuvent pas donner uilam d'irréversibilités
fermé. L'analyse thermodynamique démontre que ces équations représentent un systéme qui échange avec I'extérieur, en plus
des deux flux de chaleur, deux flux d’énergie mécanique :waéhtrant, qui est la source du mouvement du fluide, un flux
sortant, qui est di & la friction visqueuse. Gréace a cette analyse, les incohérences thermodynamiques trouvent une explication.
Pour citer cet article: M. Pons, P. Le Quéré, C. R. Mecanique 333 (2005).
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1. Introduction

For reasons of publication, the work presented here is divided in two parts, this article (Part 1) and Part 2 [1].

The Boussinesq approximation of the Navier—Stokes equations is more than a century old [2,3]; it is presented
in many textbooks or articles [4—9] where its validity is also discussed. These equations are extensively used for
modelling natural convection, except when the temperatiffiereince is very large, ingpphysical configurations,
and for near-critical fluids. About second law analysis of natural convection, one-phase pure fluids present only
two sources of irreversibility, heat-diffusion and viscous friction. The literal expressions of these irreversibilities
as functions of velocity and temperature can be foimchany textbooks, for instance [4-6,10,11]. Second law
analyses of natural convection are rather scarce. Mb#te time, they consist of calculating the two fields of
irreversibility in their respective nodimensional scales. However, estahiligy a balanced entropy budget requires
giving all the irreversibities in a common scale. In Section 2, such arthodynamic analysis, very simple, is
applied to buoyancy-driven natural convection witéo heat sources. It leads to thermodynamic conditions ful-
filled by any real system, and that should therefore be respected by any good numerical simulation. In Section 3,
are presented numerical results obtained withuual Boussinesq (UB) equations in one very simple case corre-
sponding to the famous benchmark of De Vahl Davis [12,IB¢ contradictions with the second law presented by
the numerical solutions make a thermodynaamalysis of the UB equations necessary.

2. Thermodynamic milestones about natural convection

The thermodynamic analysis developed in this section appliasytoeal system in the following conditions:
buoyancy-driven natural convection in steady-state with rigid impermeable walls at fixed temperatures, one at
T, the other afT, (T, > T¢; the indexes: andc stand for thenot andcold walls), with the two other boundaries
adiabatic, rigid and closed (or ruled by symmetry). This includes the Rayleigh—Bénard configuration (either with
adiabatic vertical walls or in infinite geometry), the differentially-heated cavity with adiabatic horizontal walls, etc.
The fluid is assumed to be one-component oneselaad at local thermodynamic equilibrium.

2.1. First law analysis of steady-state

The heat fluxes through the hot and cold walls are respectiggly(positive) andQ. (negative). As the
barycentre is fixed (because of stationarity) and théswdosed, rigid and immobile, the system does not ex-
change any work with the surroundings, but only these two heat fluxes. The first law in steady-state readily writes:
On+ Q. = 0. Taking as a reference the heat fldx that would be exchanged between the active walls by pure con-
duction through the fluid at rest, the respective Nusselt numbers are ddined: 0,/ Q,., andNu, = —Q0./0;..

The non-dimensional form of the first law islu = Nu, = Nu,. This first thermodynamic milestone is obvious.
Looking now in some more detail, the fluid follows a convection loop in the cavity, with the following ingredients:
kinetic energy, shear in the boundary layers, and viscous friction, i.e. dissipation of kinetic energy into heat. In
steady-state, the global kinetic energy of the fluidiobgly remains constant. As a consequence, the continuous
viscous dissipationW,) is exactly compensated by a continuous generation of mechanical ervéggyir( the
system itself, see for instance [5], p. 111, or [6], p. 179. Non-dimensionali&jnand W, by the reference heat

flux Q,, that equality become®y,, = W,,,/ 0, = W,/ 0, = Nwy. This is the second thermodynamic milestone.
From this energetic description, the real system is schematically represented by the energy diagram, Fig. 1(a).

From another point of view, the system exchanges heat fluxes with two heat sources, one hot one cold, and
produces mechanical energy. Like for any heat-engineonversion efficiency can be defined according;te:
Win/Qn = NWm/Nuh-
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2.2. Second law analysis of steady-state

When considering the system in steady-state as a whole, the rate of total entropy produﬁtim@;(Tc—l -
Thfl). Since energy fluxes are non-dimensionalised by &z fiux in a purely conductive system, all the quantities
involving entropy are non-dimensionalised by the entropy produciigrihat would exist in that same system:
X = QA(TC—1 — Thfl). It is easily proved that, in steady-state, the number of total irreversitityalways
equates the Nusselt number:
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Let us denote bz, andNx, the numbers of irreversibility corrpending to the entropy productions respec-
tively by heat diffusion and by visas friction, non-dimensnalised as described above. The equality above can
then be written:

N2q+N2v=NU (1)

In the steady-state, the sum of the different non-dimensional irreversibilities (herein heat-diffusive and viscous)
must equate the Nusselt number. This is the third thermodynamic milestone; in the limits of our knowledge it
was never mentioned before. Another expression of the second law says that the conversion efficiency of any heat
engine operated between two heat sourcdg andT, is less than the Carnot efficienoy; = (T, — T;)/ T,. Any
real system necessarily fulfilg:< nc. This inequality is a fourth thermodynamic milestone.

3. Numerical resultswith the usual Boussinesq system

Let us now check whether numerical calculations done on a very simple example chosen among the systems
analysed in Section 2 are in agreement with those four thermodynamic milestones. The numerical example simu-
lates one two-dimensional differentially-heated cavity filled with air and in steady-state (see the benchmark of De
Vahl Davis). Let us first describe the numerical model.

3.1. Non-dimensional usualBoussinesq system

The UB equations are well-known and will not be recalled. The fluid density is assumed to depend only on
temperaturep = po[1 — B(T — Tp)], whereg is the thermal expansion coefficient, and the state 0 defined by the
average temperatu® = (7, + T.)/2. Those equations are non-dimensionalised by taking as references (1) the
height of the fluid domairH for distances, (2) the spedd* = («/H)Ral/2 for velocities, (3) the temperature
difference AT = Tj, — T, for the differencel’ — Tp. The Rayleigh number iRa= (BgH3AT)/(ve), « is the
fluid thermal diffusivity,g is the gravity acceleratiom, is the fluid kinematic viscosity. In addition to the Rayleigh
number, the control parameters are the aspect ratigheight/width=H /L) and the fluid Prandtl numbé?r.

With the non-dimensional quantities, coordinatesndz, velocity components andw, time t, pressurdl, and
temperatur®, and in the framework of the Fourier and Newton laws, the non-dimensional equations are:
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The boundary conditions are: no slip at the four walls+ +0.5 atx =0 andd = —0.5 atx = x. = 1/A,;
adiabaticity for the two walls at = 0 andz = 1. The numerical model used for this study has been formerly
developed in LIMSI and is described in details in [14].

3.2. Thermodynamic balances

The Nusselt numbers are:

1 1
-1 a0 ¢ -1 20
_9n_ -1 <_) dz: Nu, = Q. _-1 <—) dz (5)
[ A, 9x x=0 -0 Ay dx X=X,
0 0 '

The UB equations ensure their equality, so it is included in our calculations. The irreversibility balance (1)
also involves the numbers of conductive and viscouwémrgbility, obtained by integration of the corresponding
entropy productions over the whole fluid wohe and adequate non-dimensionalisation:
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It must be here noticed that, among the three quantities involved in EqV§l), and onlyNy,, involves a
fourth non-dimensional parametgg H 7o/ (C, AT), whereC), is the fluid specific heat at constant pressure. This
parameter, independent 4f, Pr, andRa, and that does arise neither from the UB equations nor from the boundary
conditions, is denoted by in the followings. Bejan [5,10] and Gebhart et al. [4] point out #ahight easily be
comparable to one, both authors concluding that the viscous irreversibitity iecessarily negligible.

Nz x dz @)

3.3. Numerical results

The numerical results presented here-under are obtained with&i=aB00 K (Pr = 0.71) in a square cavity
(A, = 1), with Ra = 10°. Because of the fourth parametgr either the heigh#f or the temperature difference
AT must be fixed. We have chosen 1.2866 m as the cavity hé&ighthich results in a temperature difference
AT of 4.890 mK. These values emphasize as much as possible the effect we mean to highlight, while preventing
the results from physical aberration (see discussion below). It must also be mentioned that such a cavity size
belongs more to building engineering than to geophysics, and that such assmalllidates the assumptions of
solenoidal flow and constant fluid properties. The present problem differs absolutely from that of large temperature
differences and non-Boussinesq flows. Lastly, this is a numerical experiment, not a physical one. The results are
presented in Table 1. The total irreversibility numk¥ég = Nx, + Ny, is found strictly larger than the Nusselt
number, in contradiction with Eq. (1). Moreover, the equality obtainedvis; = Nu. These two features are
found for any calculation done with the UB equations, which therefore must be revisited from the point of view of
thermodynamics.

3.4. Thermodynamic analysis of the usualBoussinesg equations

The UB equations are herein strictly considered for themselves, no longer as approximations of the Navier—
Stokes equations, and simple thermodynamic consequences are drawn. First, a divergence-free flow means that the
fluid is incompressible. Second, applying the momentum equation (3) to an incompressible fluid means that the
fluid is locally submitted to a vertical force by whithe fluid motion is induced. Thermodynamically speaking,
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Table 1
Thermodynamic balances calculated with tiseal Boussinesq equations, for a cavity heigtitof 1.2866 m at
Ra=10°. One hasp = 2.568, andAT /Ty = 16.30 x 108

Boussinesq Nu Nyg +Nxy Nx4 Nxy Nwm
model
Usual 8.8407 17.6431 8.8407 8.8024 143486
F”N Wm -N Wy N Wm R 'Iy /4%
NERERERE - 1
HEEEREE N
NN
Nug| | [ 1)L [ Nue Nuy, |Nu.
T, T, T, T,

(@) (b)

Fig. 1. Energy diagram describing natural cection in steady-state. The lower level represents thermal energy, the upper level mechanical
energy. The fluxes of thermal and mechanicargies are indicated in non-dimensional folug, Nu., Ny ,,, Nw). For sake of clarity, the

heat generated by viscous friction is not mentioned. (a) Real casgrdiduction of mechanical energy inside the system is symbolised by
the upward dashed arrows, the viscous dissipation byldaward solid arrows. (b) System simulated with tiseal Boussinesq equations:

the two heat fluxes are equal, but the fluid also receives mechanicalyeand viscous dissipation corresponds to transfer of work; internal
exchanges between work and heat are discarded.

the fluid receives mechanical energy, with a non-dimensional local densgty-9*)w , whereg* is an arbitrary
but constant non-dimensional temperature. The integral of that energy dengity. ism non-dimensional form,
and noticing that the integral af is zero, one has:

Ral/2
Ny = 8 ﬂgH //(Gw)dxdz 8)

r

As 0 andw are mostly of same sigiNw,,, is positive. Now, as third point, where does this mechanical energy
come from? In the real world, the system only exchanges heat fluxes, the mechanical energy responsible of the
fluid motion is thus surely generated within the fluid, and this process, for sake of total energy conservation,
consumes some internal energy, see Fig. 1(a). In the numerical simulation however, the heat equation (4) only
accounts for advection and diffusion, with no source-term that could transform heat into mechanical energy: in
other words the simulatetNy,, does not come from the fluid, it comes from outside. This analysis shows that
the UB equations implicitly assume that tfoecing term of the momentum equation represents an external force,
and that mechanical energy is consequently supplied to the simulated system by its surroundings. This implicit
assumption is in contradiction with the real world. Now, as fourth point, the total non-dimensional kinetic energy
lost by viscous friction is:

1 xc

—1B8gH
Nwy = A—'Bg //(uvzu +wVw) dx dz 9)
r Cp

In the real world, the energy dissipated transforms into heat, an irreversible process. In the simulated system
however, the viscous term of the momentum equation has no counterpart in the heat equation. Some authors liken
this feature to the presence of molecular-size turbines distributed in the fluid and that would withdraw from the fluid
as much kinetic energy as lost in friction. In such a system, the kinetic energy lost in friction is not transformed
into heat but released as work toward the surroundings. This point has two aspects. First, the simulated system
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is finally described by the energy diagram Fig. 1(b): in addition to the heat fluxes, this system exchanges with
the surroundings two equal and opposite fluxes of mechanical energy while completely discarding the internal
exchanges between heat and work. Second, that release of work is a reversible process, evidencing that viscous
friction is not an irreversibility in the simulated system. It results from the latter observation that there remains
only one source of irreversibility in the simulated system, heat diffusion, so that the irreversibility balance (1)
reduces inNy = Nx, = Nu. The numerical results agree with this equality. The last concern is the conversion
efficiencyn and its theoretical maximal limijc. From the values given in Table 1 one obtains: 16.23 x 10°
andnc = 16.30x 1075, If the results of this calculation were a goqupaoximation of reality, then the calculated
values ofNu and Ny ,,,, and consequently, would also be realistic, leading to a conversion efficiency very close
to (but still less than) its maximal limijic. A real system producing irreversibility as reported in Table 1 cannot be
that close to reversibility. We could have presented results obtainedivith1.29 m andAT = 4.851 mK (still
with Ra= 10°). The calculated values of andnc would have been respectively: 16270~ and 16.1% 107,
in full contradiction withn < nc. The case presented herein just avoids this physical aberration, but shows that the
UB equations do not prevent from violating the second law.

Actually, a careful reading of literature, [6,9] amondets, shows that the case investigated herein should not
be calculated with UB equations. Indeed, these authors indicate that the UB equations are validisvherall
compared to 1. Hereim is larger than 2, so that this particular case should be approached with a heat equation
called extended in Ref. [9], or deep convection, or thermodynamic in Ref. [7]. Thethermodynamic Boussinesq
model, the numerical results, and their thermodynamic analysis are the subject of the second part of this study [1].

4. Conclusion

The usual Boussinesq equations can never lead to balanced irreversibility budget. Indeed, they represent a
system that, in addition to the heat fluxes exchanged with the hot and cold sources, also exchanges with the sur-
roundings two fluxes of mechanical energy, equal and opposite. The input generates the fluid motion, the output
replaces the generation of heatligcous friction. Moreover, thasual Boussinesq model discards the internal ex-
changes between heat and work. As a first consequence, in the UB system viscous friction is not an irreversibility,
and its irreversibility balance cannot be that of the ssatem. As a second consequence, the UB equations do not
insure that the simulated system producss lwork than allowed by the Carnot factor.
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