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Abstract

The present article deals with the simulation of fluid structure interaction problems in large deformation, and discusses twc
aspects of their numerical solution: (i) the derivation of energy conserving time integration schemes in presence of fluid structur
coupling, moving grids, and nonlinear kinematic constraints such as incompressibility and contact, (ii) the introduction of adequatt
preconditioners efficiently chaining local fluid and structure solvers. Solutions are proposed, analyzed and tested using nonline:
energy correcting terms, and added mass based Dirichlet Neumann preconditioners. Numerical applications include nonline
impact problems in elastodynamics and blood flows predictions within flexible art@deste this article: P. Le Tallec et al.,

C. R. Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Simulation numérique des problemes d'interaction fluide structure en grandes déformationsDu fait des fortes nonlinéa-
rités du probléme posé, la simulation de phénoménes d’interaction fluide structure en grands déplacements et vitesses modér
conduit a plusieurs difficultés numériques : respect numérique des mécanismes de conservation d’énergie dans le traitement
grilles mobiles, des forces de raideur, de la synchronisation des forces de contact et d'interface d’'une part, construction de précc
ditionneurs adaptés permettant I'utilisation efficace d’algorithmes de couplage résolvant de maniére successive et découplée
parties fluide et structure, d’autre pdraur citer cet article: P. Le Tallec et al., C. R. Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords:Computational fluid mechanics; Nonlinear elastodynamics; Time integration; Energy conservation; Fluid structure interaction; Added
mass; Preconditioner

Mots-clés :Mécanique des fluides numérique ; Elastodynamique nonlinéaire ; Intégration en temps ; Conservation de I'énergie ; Interaction fluide
structure ; Masse ajoutée ; Préconditionneur

Version frangaise abrégée

L'article introduit d’abord la formulation mathématique du probléme de couplage de fluide structure en grands
déplacements dans un cadre de biomécanique. Il explique I'impact des diverses nonlinéarités mécaniques et cir
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matiques du probléme sur les schémas d'intégration numérique en temps, et propose une stratégie systématique
corrections nonlinéaires permettant de restaurer les propriétés fondamentales de conservation d’énergie apres disc
tisation. Cette stratégie, proposée initialement dans [1] et fondée sur un remplacement de dérivées d’énergie par de
différences divisées, est appliquée a toutes les composantes du probléme : contraintes élastiques, incompressibilif
contact, termes de convection dans le fluide. L'article rappelle ensuite les difficultés de convergence qui peuvent st
produire dans le traitement itératif de ces problémes, et explique I'intérét de préconditionneurs de type masse ajouté
dans une approche multidomaine (Dirichlet Neumann) de la résolution numérique. Ces différents aspects sont illustré
sur des applications numériques tridimensionnelles, d’'une part sur des problémes d’'élastodynamique nonlinéaire étt
diant le comportement en temps long d’une structure hyperélastique incompressible, d’autre part sur des probleme
d’hémodynamique étudiant les écoulements sanguins dans des anévrismes ou dans des artéres souples.

1. Introduction

The recent interest in biomechanical problems has introduced new types of fluid structure interaction problems
where a complex flexible structure such as artery walls or cardiac muscles interacts with the flow of an incompressible
fluid, namely the blood (see an example in Fig. 1). This has motivated a renewed interest in the development anc
analysis of efficient (accurate) numerical tools in nonlinear dynamics, in kinematic coupling, and in domain decom-
position algorithms in order to properly handle issues such as discrete conservation of energy, time preservation o
(nonlinear) kinematic constraints (incompressibility), and numerical efficiency.

Indeed, because of large deformation, contact, or of kinematic constraints such as incompressibility, these system
have a highly nonlinear behavior, which affects the global conservation properties of most linear schemes [2,3]. This
is rather disturbing in fluid interaction problems because existence, convergence and stability results are all base
on energy estimates [4,5]. Therefore, one needs to introduce energy correction terms in the numerical approximatiol
of the original problem. For pure elastodynamics problems, this has been done in [6] for quadratic energy in large
displacements, with a second correction added by [1] to handle more general situations. Herein, using the idea
already introduced in [7] and in [8], we will extend the strategy of [1] for structural problems in presence of contact
and of internal flows discretized on moving grids. The key at this level is to derive specific energy correction terms to
handle the coupling between domain transport, fluid grid motion and time derivatives of contact forces.

Because of the large size of the resulting problems, efficient solvers must also be developed, respecting the basi
coupling mechanisms between the different subdomains, while retaining the formulation and specific complexity of
the local solvers available for the separate solution of the structural problem on one hand, and on the incompressibl
flow problem on the other hand. The Dirichlet Neumann strategy originally introduced and analyzed by [9] for elliptic
problems and by [10] for fluid structure problems can be a reasonable candidate, but lacks efficiency in very large
scale systems. As observed in [11], efficiency is restored when respecting the added mass effects in this Dirichle
Neumann algorithm.

Fig. 1. A pressure wave inside an aortic bifurcation.
Fig. 1. Onde de pression a l'intérieur d’une bifurcation aortique.



912 P. Le Tallec et al. / C. R. Mecanique 333 (2005) 910-922

U

&

./

- A

QO \_/ QS( t)

Fig. 2. Configuration of the fluid structure problem.
Fig. 2. Configuration du probléme posé.

The purpose of the present article is then to describe, explain and justify on a significant model problem (Section 2)
the mechanism, role and importance of energy corrections (Section 3), and to explain the philosophy of added ma
preconditioners for Dirichlet Neumann algorithms (Section 4).

2. The mechanical problem
2.1. The system of incompressible elastodynamics in large deformation

The system under study occupies a moving donfizgn) in its present configuration. It is made of a fluid in motion
in a deformable parf2/ (1) of £2(r) and of a deformable flexible structure which lies on the compleniit) of
27(¢) in 2(1) (Fig. 2). The problem consists in finding both the time evolution of this configuration, and the velocity
U:= % and Cauchy stress tensemvithin the fluid and the structure.

The time evolution, and the associated stress distribution within the structure is best described in a known referenc
configurations2; where both the equation of motion and the constitutive law are easy to write and to identify. The
evolution of the structure is then governed by an initial boundary value problem sgf ehose main unknown is
the positionx(X, r) of the different material pointX at timez:

m(x,ﬁ)+a(vX,vﬁ)=/f~z7+fg-z7+/xv-ﬁ, vU elU 1)
Q R 992

/(def(Cl/Z(VX))—lJrep)ﬁ:o, VpeP @)

2

X-v>go and A(X-v—gop) =0 onos2, 3)

Above, the structural mass operatohas the usual linear expression encountered in Lagrangian dynamics

m(x,ﬁ)zfpxﬁdx
2

When dealing with incompressible or almost incompressible elastic materials in large deformation, the stiffness terr
a(Vx, VU) is best defined in mixed form agVx, VU) = fQ F - X (Vx) - VU with X the second Piola—Kirchhoff
stress tensor given by:

3 detCc1/?
2=2M —2PL (4)
aC aC

wherep denotes the hydrostatic pressurg the stored elastic energy, which is a given function of the right Cauchy—
Green strain tensaf = F’ - F, andF = Vx denotes the deformation gradient.
The above formulation involve three major nonlinear effects:
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— atransport ternk” = Vx in factor of the stress tensaf, due to the pull back of the equation of motion from the
present configuration to the reference one,

— anonlinear incompressibility constraint on ¢€&/2(Vx)) — 1 written in terms of the Cauchy strain tengt{vx)
for a simpler verification of energy conservation,

— a frictionless contact constrairnt: v > 0 imposed on a pam$2, of its boundary where the displacementv
normal to a given obstacle cannot exceed a given thresholoh practice, this frictionless contact constraint is
often handled by a penalty approach giving the normal readtias a function of the interpenetration distance
X v —gol- =max(0, go—X-v) byr= $|x -v — gol-, wheree, is a small penalty coefficient.

Moreover,e > 0 is also a small parameter, whose inverse can be interpreted as the bulk modulus. The formulation
introduced in (1)—(3) handles quasi incompressible as well as truly incompressible materials and leads to finite elemen
formulations which converge uniformly with respect to the bulk modulus.

2.2. Fluid structure interactions in large deformation

In fluid structure interaction problems, in order to evaluate the strain field or write the elastic constitutive laws
inside the structure, it is again very convenient to transport the conservation laws for both the fluid and the structure
on a fixed reference configurati(ﬁo The choice of the configuratioﬁo and of the map: 20 — £2(¢) (and hence
of its Jacobian/ = det i and of the underlying grid velocity; = ( ixo) may be arbitrary (Arbitrary Lagrangian
Eulerian (ALE) formulatlon) but, as seen above, on the strucmjrethe equations are much simpler when the point
X(Xo, t) corresponds to the present positii(xg, t) of the material point which was located ¥ at time . The
mappingx/ from _Qg onto 227 (1) defining the present position of each discretization grid point inside the fluid is
then a user defined extensiah = Ext(xfro) of the structural deformation, matching this deformation on the fluid
structure interface.

The structure is again supposed to be nonlinear incompressible elastic, and interacts with a viscous incompressibl
fluid of given densityp which perfectly sticks to its boundary, meaning that the fluid particles must follow the structure
during the motion. In this framework, using the nonconservative formulation usually employed when dealing with
incompressible fluids, the mechanical evolution of the global fluid structure system is governed by the following
equations:

Find the structural deformatioti € V*, the pressure € Q = L?(£2) in the fluid and in the solid, the fluid velocity
Ul e v/, the interface tractiog € Wr = (HY?(£20))’, the contact force. ond 2., and the fluid configuration
mapplngxf e V7 such that

/ div (oU')g + /(det(Cl/z(VX)) ~1+4€p)§=0

xf (240 2§
Vq:$£20— R (mass and volume conservation) (5)
~ au/ : .
ms(xs’Us)‘l' / /0(7 +(Uf—UG)'VUf)~Uf
X
Xf(SZ({,I) 0
RPN aU’
L at (VXL VD) + f (4(V:U7 4 ViU7) ~ pid): 0
X
xf @2f .0
= / f-U+ / ¢ U+ / AU.U+/gp.(tr(U‘V)|F—tr(Uf)‘F),
20 092(t) 992, I
V(U*,U7) e v* x v/ (momentum conservation) (6)
t
tr(x")lr =1tr(Xo)|r +/tr(Uf)|F(r)dr (kinematic continuity) )

0
x/ = Ext(x{r,) (fluid configuration map) 8)
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The presence of the fluid brings in a new nonlinear convection e’ — U%) - VU/. Observe in addition
that the kinematic continuity condition imposed at the interface between the fluid and the structure is expressed i
displacements. Indeed, the structural velocity is onlyLf(£2%), and therefore we cannot define its trace on the
interface.

3. Energy conserving implicit schemes
3.1. Basic time integration schemes

A standard implicit scheme in elastodynamics uses a trapezoidal rule for time integration combined with stress av
eraging [12]. For nonlinear problems, Simo or Crisfield [6,13] have proposed to use in addition a transport averaging

which means that each integraq,1/» is predicted as follows

1 .
(F- E(Vx))nH/2 = E(Van + VX,) - Zpi1/2  (transport averaging)

Z‘n+1/2 = (W,C(C(Vxn—i-l)) + W,C(C(Vxn)))
AdeUCYE(VXuy1) 3 detC/A(VX,))

- stress averagin
Pn+1 Ye n e ( ging)
/(det(Cl/Z(Vx,,H)) —1+epat1)p=0, ¥p (incompressibility at time,1),
2
Xn+1 — X 1 . .

Unt1/2 = %tn = E(U"+1 + U,) (velocity construction)

n

Upy1— U, .

Kpy12= il = o (acceleration)

Aty

In theory, the above time integration schemes have good properties with respect to energy conservation, achievir
second order accurate conservation, with an error vanishing at the linear limit. For example, a mid point integratior
of the mechanical work developed by the elastic stress yields
F,+ Fiia
————= - (W.c(Cap1) + W.c(Cp)) - VUps1/2
) . Cn+l - Cn

= Cn Cn
(W.c(Cpg1) + We(Cn) AL

1 W 3
= AL [W(Cn+1) —W(Cn) + €53 (G0 (Cup1 = Co) }

1
Aty
with a similar behavior for the incompressibility termps detC/2/3C.

In practice, as observed on Fig. 3 for both the trapezoidal and the mid point schemes, such a second order conser
tion is not good enough for nonlinear structures, and numerical instabilities are often observed in real life simulations

[W(Chi1) = W(C)] + cAt?

3.2. Energy corrections on the structure

Nonlinear corrections are then needed, with different choices proposed in the literature. We have tested and adopt
a nonlinear and nonsymmetric correction term proposed by Gonzalez [1], where the elastic stressﬁ,&relr/age
W.c(Cuy1) + W.c(Cy)) acting on the Cauchy strain variation is replaced by the following divided difference:

8Cny1/2 ©)
3Cp41/2:8Ch41/2

with §C,41/2 = Cpy1— Cp. It was rapidly observed in [8] that a similar correction must be added to the pressure term,
yielding

ow ow
2,5+1/2 = zﬁ(cn+l/2) + Z(W(CnJrl) - W(Cy) — %(CnJrl/Z) : 5Cn+1/2)



P. Le Tallec et al. / C. R. Mecanique 333 (2005) 910-922 915

— T T T — T —r— T
0.15 i
L point milieu
trapéze

conservatif

F HHT 1
0.1 - -

0.05

déplacement vertical (m)

-0.05 — -

temps (s)

Fig. 3. Long term energy evolution of an oscillating nonlinear beam with different numerical schemes.
Fig. 3. Evolution en temps long de I'énergie dans une poutre oscillante pour différents schémas.

ddetCc1/2
76, (Cn+1/2)

0
12 d detC/2 ) 3Cuy1/2 :|

detcY? _ detc C :8C
+ ( n+1 n aC (Cnt1/2) n+1/2 8Cyy1/2:8Ch41)2

2,2?1/2 = _(pn+l + pn)|:

By construction and from the incompressibility constraint satisfied at tinasdz, 1, we then directly have

1 1 i
Ezn+l/2 : 8Cn+1/2 = E (E,(,:_;,_l/z + E,I,rfl/z) : 8Cn+1/2 = W(Cn+l) - W(Cp)

implying exact energy conservation, even at the incompressible limit. The resulting numerical tests observed on &
simple incompressible beam are then quite convincing (Fig. 3) and in sharp contrast with the diverging results of the
original trapezoidal rule.

But, even after these first two corrections, the proposed scheme does not handle well contact conditions. In the
framework of frictionless contact, both Laursen and Chawla [14] and Armero and Petdcz [15] observing such diffi-
culties, have shown the interest of the persistency condn'(onx)%(x -v — go) = 0 to obtain energy conservation
in the discrete framework. Nevertheless, as underlined in [16], both contributions encounter a difficulty in enforcing
standard Kuhn—Tucker conditions associated to frictionless contact. This difficulty is resolved in [16], by introduc-
ing a discrete jump in velocities during impact, making possible the enforcement of contact conditions at each time
step, at the computational price of resolving a problem on the jump in velocities. In the framework of the present
penalized enforcement of the contact condition (3), the energy correction (9) can be adapted to enforce the standar
Kuhn—Tucker contact conditions at entire time steps [8]. The trick is to treat the contact constraint exactly as the
incompressibility constraint averaging separately the geometric update (transport) of the manuathe kinetic
force A, while replacing local derivatives by divided differences.

To reproduce in the discrete framework the previous conservation properties, we propose the following midtime
approximation of the normal vector

Vnt1/2 = V(Xnt1/2) + [Xn+1 “V(Xp1) — X - V(X)) — v(Xpg1/2) - 8X] 5% - 5x

wherev(x,+1/2) is the normal outward unit vector to the obstacle at mid print;» andéx = X,+1 — X, is the
displacement update between two successive time steps. Observe that we always have by construction

Vn+1/2 - OX = Xp41 - V(Xp41) — Xp - V(Xy) := 8¢
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Table 1

Data for the constitutive Saint-Venant Kirchhoff material and for the geometry of the ball
Tableau 1

Données constitutives et géométriques pour la balle élastique

radius 0.1m
density 1200 kgm3
Young’s modulus 0.2 M Pa
Poisson’s ratio 0.33
initial distance of the center of the ball to the wall 0.12m
initial velocity 0.4 mys

€ 1.E-4

time step 0.002's

T 10s

# nodes in the mesh 11.160

and that for a plane obstacle for whielix,,1/2) = v(X,+1) = v(X,) = v, the above construction simply reduces to
vu4+1/2 = v. Similarly, we propose the following update of the reaction force

1 > 1 2
Ant1/2 = §|Xn+1'vn+l_g0|_ - §|Xn'1}n —golZ

€.68
so that we have by construction

1 2 1 2
Ant1/2Vns1/2 - 6X = | =—|Xu41 - Vny1 — golZ — =—IXn - vy — golZ
2¢. 2¢.

that is perfect conservation of the penalty energy.

To validate the proposed energy conserving impact formulation, let us consider an elastic ball presenting a sma
cylindrical hole around one of its diameters (Table 1 and Fig. 4).

Four snapshots of the impact simulation are shown on Fig. 4. As illustrated on Fig. 5, the evolution of discrete
energy in the ball during the dynamics is very sensitive to the time integration strategy.

In particular, the discrete energy explodes when using a midpoint scheme or a trapezoidal scheme. The conservati
Gonzalez scheme enriched with our energy conserving impact formulation keeps its promise and the relative loss
energy through the impact is8lx 10~4, only depending on the accuracy of the Newton’s solver.

3.3. Energy conserving scheme for the fluid structure problem

We now complete the above nonlinear energy conserving scheme used on the structure by a similar scheme int
grating the fluid equation at time+ 1/2 by a second order Crank Nicholson scheme with

- f f f f
U/ _ U= Ua yG . S T X
ot )41 At n+1/2 At
while averaging all expressions at time.1/> by
(')n-‘rl + ()n
(nt1/2 = T

With this choice, the time discrete problem is: At each timg, find the structural deformatiox), , € V¥, the
pressurep, 41,2 € Q, the fluid veIocityUan, the interface tractiongr),+1 € Wr, the contact force., 1,2 and the
fluid configuration mappingj;rl € V/ such that

f divy (U}, 1,,)d + / (det(CY2(VXy11)) — 1+ €pp41)§ =0, V¥4:20— R (10)
x (2] tuv1y2) 2

for mass and volume conservation,



P. Le Tallec et al. / C. R. Mecanique 333 (2005) 910-922 917

L,
t=0.008 s I t=0078s
L,
t=0.16s t=030s

Fig. 4. Snapshots of the impact simulation.

Fig. 4. Images de la simulation du probléme d’'impact.

<Uf U/

(&40 0°) + / % +[(v! -v%). VUf]n+1/2> U’

<1 (24 tns1/2)

. _ a0/
+ / Fuvijz- (Z7a0+ Z¥ap0) : VU + / (w(VxUT +VUT) = pld), g x
2 Xf(Q(')fJnﬂ/z)
= / fat1y2-U+ / gnt1y2- U+ / Ant1/2Vnr1/2 - U°
$2(tn+1/2) 082(tn+1/2) 082
+ f Pz (0(0) . —t(@7),), V(O 0F)evs x v/ (11)
Io
for momentum conservation, and
_ f
tr(xthl)lr0 = tr(xn+1)|ro (12)
f f
f G X1~ Xn
X 41=EXt((X\r,) 1 40)- Ulip=—""—c— A7 (13)

for the kinematic interface continuity and the fluid configuration map.
3.4. Energy balance for the fluid structure interaction problem
A time integration of the principle of momentum conservation taking the real velocity field as test function indicates

that the variation of the sum of the kinetic energy of the system and of the elastic energy of the structure must be equa
to the difference between the energy introduced by the external boundary conditions and the energy dissipated b
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Fig. 5. Evolution of the ball mechanical energy through impact for midpoint, Euler—-Newmark, energy conserving, and dissipathg) (
schemes.

Fig. 5. Evolution de I'énergie mécanique de la balle pour les schémas de point milieu, d’Euler, conservatif et digsias)(

viscous effects inside the fluid. It is important to respect this energy principle after time discretization for stability
purposes and for ensuring the long term accuracy of the numerical predictions.

To check energy conservation in the time discrete case, we need to multiply at eacttiifethe variational
equation (11) b}U,{:rl/2 on the fluid, and by, , on the structure. This choice cancels the action of the interface
traction forces - because of the imposed kinematic compatibility condition (13) enforced at each timg.step

On the structure, we have seen above that the nonlinear energy corrections of Gonzalez [1] guarantee the ex:
conservation of energy, namely that the integration of the inertia terms directly yields the variation of the structural
kinetic energy and that the integration of the stiffness terms directly produce the variation of elastic energy.

On the fluid, from the volume conservation equation (1O)A((ﬂX¢,"+1/2) =0 onxf(Q({, th+1/2)), a direct integra-
tion of the viscous and hydrostatic stresses directly yields the viscous dissipation

f 2
W11/ | f
/ (VU + V0T ) = pld), g 0 —5 =5 = / ZM‘E(VxUnH/zJF Viliiaz2)

Xf(-%f,tnﬂ/z) Xf(-%f»tnﬂ/z)
And finally, a direct integration of the inertia terms inside the fluid yields
f f
u' ,—-U
f e n+l n f G f f
Liy1p'= / P— A7 Unnpt / [o(U/ —U )ur12VUir1s2]  Unsay
xf(.QOf,t,,_H_/z) Xf(Qg,t,1+1/2)
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1 2 2 1 2 .
= / Z_Atp(|Unf+1\ —|ul ) + / —§p|Ur{+1/2\ div.[(U7 = U)], 1/
(28 tny12) X/ (£20,tn11/2)
T .

xf (R20.1011/2)

The last term disappears since we h&vd — UG),1+1/2 = 0 on the interface from the kinematic condition (12) and
the definition ofU ¢ ,. After direct algebraic manipulations and subtracting the weak equation of mass and the grid

n+1/
evolution Iaw% % =div, (U%), we can reduce the inertia terms integral to
2
f _ 1 o2 12 1 9J, ¢ 2 At 09°J f o2 112
Hoe= [ gareUnialUfal? = nlud ) = [ go5i10a = vl P+ era (0l - 10/ )

f f
24 24

1 N .
B / (E'Uﬁf 1/2'2_q>(d'v"[pr]n+1/2)’ va

X (820,10 11/2)

The first line is the expected variation of kinetic energy. The second and third lines correspond to two types of
discretization errors induced by the grid motion. The second line is proportional to the truncation error induced by the
time discretization scheme of the Jacobigrand directly depends on the regularity in time of the mpdp In other
words, any abrupt changes &fin time can lead to large local errors. The last line corresponds to a space truncation
error

. At 1 f 2 . f
en = qh'Qth / > (E}U +1/2| - ‘Ih) div.[pU ]n+l/2
27 (tyy1/2)
which can be made very small by a careful choice of the space of pressure test fuggtiarsgs error disappears for
the space continuous problem.

These two second order errors are usually acceptable in most practical applications, because of the presence
viscous dissipation inside the fluid. In any case, these errors can be totally suppressed by introducing a new specifi
nonlinear second order correction in the fluid convection terms by setting

1 . :
(U -UC)- VUf]n+1/2 = (U’ - UG)n+l/2 ' V(Uf)n+1/2 5 d'VX[Uf]n+1/2U;{+1/2
1 . J +1 — J f

+§<_d|vx[UG]n+1/2+ . ”)

Atjn+l/2 n+1/2
o2 f 2
Ins1 = Ing1y2 Upgal® = WU 017

2AtJpy1)2 |U’{+l/2|2 n+1/2

f 2 f2
Jn — Jn+l/2 |Un+l/2| — U |
2AtJpy1y2

7 n+1/2:
U a0l

Because of the continuous mass conservation equation, and of the grid evoluti%%—{lawdivx(UG), the additional
terms are second order corrections. But they restore energy conservation, since we can now easily check the identity

; Ul - Ul T )
Lypap2= f PT + [P(U —-U ).VU- ]n+1/2‘Un+1/2
xf(Q({”nﬂ/z)
= ; f 2 . 12
B / 2At]n+l/2p(]”+l|Un+l‘ Jn|Un | )

Xf(-QO/JVH—l/Z)
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Remark 1. In [7], the use of the variable/JpU/ was advocated as a possible way of preserving energy conservation
within the fluid. But in practice, such a choice complexifies the calculation of the viscous term.

Remark 2. All nonlinear energy correction terms introduced above are second order. In a Newton’s solution of the
resulting problem, they can be omitted from the tangent stiffness matrix. In other words, they will be only added in
the residuals, and never in the preconditioners.

4. Multidomain solver

After space and time discretization, we are faced at each time step with the numerical solution of a large scal
coupled problem whose abstract form writes formally

At?
(structure)

M/
(— +Kf>Xf —Bp,Gr=F/

MS
( KS)xS + Bt G — FS
+ rsvr

Ar?
(fluid)

Br;X* — BryX/ =0 (interface matching)

This problem involves two nonlinear operatd¢$ andM/, for structural stiffness and fluid convection respectively.

For the sake of simplicity, the fluid problem has been written in terms of displacements (instead of velocity), and the
possible incompressibility constraints have been hidden. Traditionally, such a coupled problem is solved by elimina
tion of the fluid displacemenx/ and interface force& -, through the solution of a Dirichlet problem expressing
them as a nonlinear function of the interface displacen®gnk* of the structure

f Mg f _pt.\1 f
(5 )= 75) (o)
G[‘ _BFf 0 _BFSX

This formally reduces the coupled problem to a single structural problem with added terms in the mass and stiffnes
operator coming from the elimination of the fluid unknowns

M , M_/; I:f B -1 0
s — S—
[( t2+K> B} (0 |)<At ) F.f> (I)BFS}X — (15)

But, in complex three dimensional situations, unless using a very small modal basis for describing the structura
motion, the direct solution of the above system is untractable. Domain decomposition techniques give simple ways «
solving it as a succession of local problems. In a Dirichlet Neumann algorithm, the system K'Ssisolved by an
iterative algorithm using the structural mattid* /Ar2 + K*) as a preconditioner, therefore dropping the added mass
and stiffness contributions of the fluid to the structure during the preconditioning step. The corresponding algorithrr
takes the simple form

M -1
XS:XS—,O<At2+KS> R

=X — ,0|:XX - (XI; + K‘Y>_l{B’FS [(0 1D/ ™! <?>1|BFSXS - F” (16)

In each iteration, a Dirichlet problem with operator
M/
pf = (az +K —Br;
—Bry¢ 0
must first be inverted on the fluid in order to compute the residual

Ms N t -1 0 s
R=|:<At2+K‘>—BFS(O 1yD/ <|>BR}X —F
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and a Neumann problem is then solved in the structure to compute the solution (éate? + K*)~1R, hence the
name Dirichlet Neumann given to this type of algorithm.

This in fact reduces the original coupled problem to a fixed point formulation written with respect to the interface
displacemenB, X*

MS -1 ~1/0
Brsxsz[pr<A—t2+KS> B}S][(O 1yDS (I)]BFSX‘H—R (17)

It was proved in [10] that the Dirichlet Neumann operator

o (850) o 00 ()

appearing in this fixed point problem is bounded (at least in a linear framework), ensuring the convergence of an
accelerated fixed point algorithm, jf is properly chosen in (16). This theoretical analysis also shows the key im-
portance of a correct treatment of the added mass terms for stability. These terms express that any acceleration
the structure implies a motion on its interface, and is slowed down by the incompressibility condition inside the fluid
which generates a pressure field in opposition to this motion.

The problem encountered in many numerical experiments is to properly choose the coeffiaenimproper
choice leading to a large number of fixed point iterations (16) at the corresponding time step (typically fifty or more).
This difficulty was finally overcome in [11] who have proposed to solve the Dirichlet Neumann problem (17) not
by an accelerated fixed point iteration, but by a quasi Newton algorithm, the inversion of the tangent matrix being
replaced by the solution of a simplified linear fluid structure problem obtained by replacing the real fluid by a perfect
incompressible fluid, and by linearizing the structural stiffness. The simplified fluid structure problem respects the
basic coupling mechanism between the fluid and the structure, in particular the added mass effect, and is easy t
solve. Its solution is usually obtained after a small number of GMRES iterations [17], solving successively a Poisson
equation for the fluid pressure and a linear structural problem with known and factored stiffness matrix. In practice, the
global solution of (17) at each time step only requires of the order of 10 Quasi Newton iterations, each quasi Newton
iteration involving an average of 8 GMRES iterations. The major cost in this algorithm is to compute the residual of
the nonlinear Dirichlet Neumann problem (17), and is therefore directly proportional to the number of quasi Newton
iterations, and rather insensitive to the number of linear GMRES iterations. Such a performance is illustrated (Figs. 6
and 7) on the numerical solution of a blood flow inside an anevrism.

number of iterations

20 1

L L L L L L L L L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
time

Fig. 6. Quasi Newton compared to accelerated fixed point iterations. Fig. 7. A pressure wave inside a complex anevrism.
Fig. 6. Nombre d'itérations comparé entre quasi-Newton et point fixe. ~ Fig. 7. Onde de pression a I'intérieur d’un anévrisme.
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5. Conclusion

Energy conserving nonlinear time integration schemes have been introduced, described and justified for fluit
structure problems. We have generalized this strategy to all components of the system: compressible stiffness, i
compressibility constraint, frictionless contact, fluid convection in a moving grid. We have also reviewed a recent
extension of Dirichlet Neumann algorithms which reduces the solution of the global coupled problem to a sequenc
of structural and fluid problems. Different numerical simulations on challenging three-dimensional problems have
illustrated the numerical efficiency of these procedures.

In the context of biomechanics, the problem is now to develop better structural models for handling membrane
locking phenomena for general grids as obtained from medical imaging, to upgrade the physiological model of the
structures, to get a better insight on the adequate boundary conditions, and to develop proper identification strategi
based on medical imaging to upgrade the predictability of the models.

References

[1] O. Gonzalez, Exact energy and momentum conserving algorithms for general models in nonlinear elasticity, Comput Methods Appl. Mech
Engrg. 190 (13-14) (December 2000) 1763-1783.
[2] S. Mani, Truncation error and energy conservation for fluid structure interactions, Comput. Methods Appl. Mech. Engrg. 192 (43) (2003)
4769-4804.
[3] P. Le Tallec, S. Mani, Conservation laws for fluid structure interactions, in: T. Kvamsdal (Ed.), International Symposium on Computational
Methods for Fluid Structure Interactions, Trondheim, 1999, pp. 61-78.
[4] R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin, 1990.
[5] E. de Langre, Fluides et Solides, Editions de I'Ecole Polytechnique, Palaiseau, 2001.
[6] J.C. Simo, N. Tarnow, The discrete energy-momentum method. Conserving algorithms for non linear elastodynamics, Z. Angew. Math.
Phys. 43 (1992) 757-792.
[7] P. Le Tallec, P. Hauret, Energy conservation in fluid—structure interactions, in: P. Neittanmaki, Y. Kuznetsov, O. Pironneau (Eds.), Numerical
Methods for Scientific Computing, Variational Problems and Applications, CIMNE, Barcelona, 2003, pp. 94-107.
[8] P. Hauret, Méthodes numériques pour la dynamique des structures nonlinéaires incompressibles a deux échelles, PhD thesis, Ecole Polyte
nique, 2004.
[9] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford Univ. Press, 1999.
[10] P. Le Tallec, J. Mouro, Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Engrg. 190 (24-25)
(2001) 3039-3068.
[11] J.F. Gerbeau, M. Vidrascu, A quasi-newton algorithm based on a reduced model for fluid—structure interaction problems in blood flows,
M2AN 37 (2003) 663-680.
[12] K.-J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982.
[13] M.A. Crisfield, Nonlinear Finite Element Analysis of Solids and Structures, vol. 2, Advanced Topics, Wiley, 1997.
[14] T.A. Laursen, V. Chawla, Design of energy conserving algorithms for frictionless dynamic contact problems, Int. J. Numer. Methods Engrg. 40
(1997) 863-886.
[15] F. Armero, E. Petdcz, Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems, Comput. Methods
Appl. Mech. Engrg. 158 (1998) 269-300.
[16] T.A. Laursen, G.R. Love, Improved implicit integrators for transient impact problems; geometric admissibility within the conserving frame-
work, Int. J. Numer. Methods Engrg. 53 (2) (January 2002) 245-274.
[17] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, 1996.



