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Abstract

A method is presented for modelling fluid–solid interaction with large transformations of a slender solid body. The fluid
described by the unsteady Navier–Stokes equation, and the solid deformation is described by an incompressible hypere
Hookean model. Although the fluid and solid mesh are non-conformal with respect to each other, both domains can b
using a Lagrange multiplier. Accuracy and robustness are improved by a computationally inexpensive adaptive meshin
which is applied to the fluid mesh at the position of the solid interface. To illustrate the applicability of this method, 2D
model problems are presented that are closely related to dynamical heart-valve computations.To cite this article: R. van Loon et
al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une méthode de couplage fluide–structure pour la modélisation numérique en trois dimensions des valves cardiaqu
Dans cet article, on présente une méthode pour la modélisation numérique de couplages fluide–solide lorsque le solide e
mince. L’écoulement est décrit par les équations de Navier–Stokes instationnaires, la déformation du solide l’étant par u
du type Neo-Hookien hyper élastique incompressible. Bien que les maillages fluide et solide ne soient pas en confor
par rapport à d’autres on peut coupler les regions respectives via un multiplicateur de Lagrange. Par rapport à d’autres
de ce type, on améliore précision et robustesse par l’utilisation d’une méthode de maillage adaptative, peu coûteuse, ap
maillage fluide au voisinage de l’interface avec le solide. Pour évaluer les possibilités de la méthode, on l’applique à la rés
problèmes modèles, bi et tri-dimensionnels, tous étroitement liés à la simulation numé rique du mouvement des valves c
en régîme dynamique.Pour citer cet article : R. van Loon et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Many attempts have been made to capture the dynamics of an aortic heart valve, but although progress
in the past, still no models are available for computing one or more cardiac cycles with a realistic three-dime
geometry and realistic material parameters. Many techniques are involved in modelling this problem. The
should incorporate large rotations, translations and deformations of the valve. Furthermore, the compliant ao
to which the valve is attached, influences the opening and closing behaviour of the three leaflets by transient v
in radius. In order to capture closure of the valve, a contact algorithm should be incorporated into the model an
the interaction between blood and valve should be addressed.

A first attempt in modelling this fluid–structure problem was taken by Peskin [1] introducing a method wh
now known as the Immersed Boundary Method [2]. In an Eulerian–Lagrangian framework, the valve was repr
introducing a set of points, in which forces were imposed on the fluid domain. The points were interconne
a generalised Hooke’s law and were able to move across the fixed fluid mesh. This method was extende
problems and applied to several valve and heart simulations in e.g. [3,4]. Makhijani et al. [5] also proposed
dimensional model in which fluid and solid were solved fully coupled. They used a combination of an Ar
Lagrangian Eulerian approach (ALE) and remeshing for describing the large movements of the solid. In
method as exploited by e.g. [6–8], the Eulerian grid is translated according to the movement of a Lagrangian
is corrected by taking into account the grid velocity in the convective term. Since the shape of the elemen
Eulerian grid degenerates in case of large solid body translations, a combination with remeshing is needed
volume method was used for the fluid and combined with a finite element method for the solid. A finite elemen
of a 3D patient specific aortic root and valve was presented by Nicosia et al. [9]. The computations were perfo
an uncoupled manner and included the opening and closing behaviour. The aortic valve and root were mode
Hughes–Liu shell elements with linear elastic material behaviour. For stability reasons the peak diastolic pres
reduced.

Recently, a fully coupled 3D model of an aortic root and valve was published by De Hart et al. [10–12].
approach fluid and solid were described in an Eulerian and Lagrangian framework, respectively, and couple
Lagrange multiplier. This variation of the fictitious domain approach, as exploited in e.g. [13,15,17,16,14], co
a fictitious solid domain immersed in a fluid domain, with meshes that are non-conformal with respect to eac
The influence of a stented valve [10], a stentless valve [11] and constitutive behaviour of the solid [12] on th
movement and deformation was analysed. In this last work the influence of a fiber reinforced hyper elas
Hookean material law representing the leaflet structure of collagen fibers and matrix material was analysed. A
this fluid–structure interaction method looks promising with respect to the solid movement during systole, ca
the transvalvular pressure drop during diastole is still a problem. In the work of Stijnen et al. [18] this proble
overcome for a stiff mechanical valve. By introducing an inner fluid curve that coincides with the position of th
boundary at the moment of closure, the coupling between fluid and solid is strong enough to describe a pres
in the fluid. Van Loon et al. [19] extended this approach for flexible solid structures by introducing a local fluid
adaptation which provides for the creation of this inner fluid curve every time step. This method has the ad
advantage that shear stresses can be computed at both sides of the solid.

In this article the method as proposed by Van Loon [19] is extended to 3D. Furthermore, the adaptive
ing algorithm has changed in the sense that the fluid mesh does not keep its topology anymore, which i
the methods robustness in 3D. First the governing equations will be given after which the adaptive meshi
rithm is treated. Finally, several model problems in 2D and 3D are presented which address the potenti
method.

2. Mathematical formulation

2.1. Governing equations

2.1.1. Fluid
Consider a fluid domainΩf with the governing equations for the fluid given by the unsteady Navier–S

equation. The balance of momentum, continuity equation and constitutive law then read,
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(
∂uf

∂t
+ uf · ∇uf

)
= ∇ · σ f in Ωf (1)

∇ · uf = 0 in Ωf (2)

σ f = 2ηD − pf I , with D = 1

2

(∇uf + (∇uf
)T)

(3)

with ρ, η, uf , pf , andI the density, dynamic viscosity, unity tensor, fluid velocity and fluid pressure, respec
The gradient operators with respect to the reference and current configuration are denoted by∇0 and∇, respectively.
Symbols with respect to the fluid will be denoted withf in this paper. Since modelling of the pulsatile blood flow
the aortic root is our goal, inertia and convection terms cannot be neglected, because the physiological StroSr)
and Reynolds (Re) number read approximately 0.06 and 4500 in this region of the arterial tree. Note that, al
blood shows a non-Newtonian behaviour, it will be modelled as a Newtonian fluid since it is not of importance
models presented in this work.

2.1.2. Solid
Next the solid domainΩs is considered. The theory in this article is developed for fluid–structure intera

problems concerning flexible solids. Hence, deformations are too large to use an infinitesimal theory leadi
choose a hyperelastic, Neo-Hookean constitutive model for describing the solid behaviour:

∇ · σ s = 0 in Ωs (4)

det(F ) = 1 in Ωs (5)

σ s = G
(
F · F T − I

) − psI with F = (∇0x)T (6)

The quantitiesx, ps andG denote the position, pressure and shear modulus, respectively. The superscripts will be
used to denote the solid. Since heart valves are neutrally buoyant, gravity effects can be neglected. Further
inertia and convection term in the solid are neglected with respect to the elastic term. In the scope of this pape
necessary to model the complex material structure and behaviour typical for heart valves. A homogeneous,
material law is sufficient for the purpose of presenting the fluid–structure interaction method.

2.1.3. Fluid–structure coupling
Finally, the coupling between fluid domainΩf and the imbedded solid domainΩs is considered. The interactio

between fluid and solid is modelled by applying a no-slip conditionuf − us = 0 at the boundary of the solid. Eqs. (
and (4) are coupled by applying this constraint in a ‘weak’ manner, by means of a Lagrange multiplier. This m
is defined over a surfaceγ f , where integrals over fluid and solid velocity are forced to be equal, namely∫

γ f

qλ · (uf − us
)
dγ f = 0 (7)

whereqλ is a trial function. Note thatγ f is defined along the boundary of the solid such thatγ f ⊂ Ωs , but also
γ f ⊂ Ωf . In this light the physical meaning of the multiplier is the traction force between the fluid and the sol
a more extensive discussion on the weak formulation and the exact coupling of solid and fluid, the reader is
to [16,19].

2.2. Discretisation

The solid domain, fluid domain and Lagrange multiplier domain now need to be discretised. In this sectio
dimensional domains for fluid and solid are considered. However, with respect to the two-dimensional model p
in the next section, the approach treated in this section can easily be reduced to the two-dimensional case.

For convenience, we will first introduce some definitions concerning the mesh. Noting that the bounda
domain will be indicated by the prefix∂ , we consider an open domainΩ ⊂ R

3 and its boundary∂Ω ⊂ R
3. This

domain can be subdivided intoNΩ elementsΩe, and the corresponding elemental facesΛi , edgesΓj and nodesnk ,
such that,
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�Ω =
NΩ⋃
e=1

�Ωe,
ΩS = {e ∈ N: Ωe �=i ∩ Ωi = ∅}, ∀i ∈ N

∂Ωe =
NΛ⋃
i=1

eΛ̄i,
ΛS = {k ∈ N: Λk = eΛi, Λk �=l ∩ Λl = ∅}, ∀eΛi, ∀l ∈ N

∂Λi =
NΓ⋃
j=1

i
�Γj ,

Γ S = {k ∈ N: Γk = iΓj , Γk �=l ∩ Γl = ∅}, ∀iΓj , ∀l ∈ N

∂Γj =
Nx⋃
k=1

xk,
xS = {k ∈ N: xk �=l �= xl}, ∀l ∈ N

whereNΛ is the number of faces per element,NΓ is the number of edges per face andNx is the number of noda
points per edge. The above states that elements in the mesh are non-overlapping and all edges and faces a
except forΓi ⊂ ∂Ω andΛi ⊂ ∂Ω , which can be curved. A local variable is denoted using two subscripts likeiΓj ,
while a global variable is denoted using only one subscript likeΓi . The setsΩS, ΛS, Γ S andxS consist of all global
elements, faces, edges and nodal numbers, respectively.

Now that definitions with respect to the mesh are made, domainsΩf ⊂ R
3 andΩs ⊂ R

3 can be discretised in the
initial configurations independently from one another to obtain the conformal meshesΩSf andΩSs , respectively.
MeshΩSf consists of tetrahedral elements andΩSs consists of hexahedral elements.

2.2.1. Adaptive meshing
In the following, a procedure is introduced for adapting the fluid mesh based on the position of the solid

Note that this procedure is only applicable ifΩSf consists of tetrahedral elements. The shape of elements inΩSs ,
however, can be chosen arbitrarily. The objective of adapting the mesh is to create a surfaceγ f ⊂ Ωf at which the
fluid and solid will be coupled.

Consider the solid domainΩs and fluid domainΩf such thatΩs ∩ Ωf �= ∅. An arbitrary surface in the soli
domain can now be chosen as a collection ofNs elemental faces,

γ s =
Ns⋃
i=1

Λ̄s
i with i ∈ ΛS

s

at which coupling between fluid and solid should be established. The fluid mesh will be adapted based on the
of boundaryγ s . Therefore, a set of edges that intersect boundaryγ s and the corresponding intersection points can
defined as,

Sf = {
i ∈ Γ Sf : �Γ f

i ∩ γ s �= ∅, �Γ f
i ∩ γ s �= �Γ f

i

}
Xi = {

x: x ∈ �Γ f
i ∩ γ s

} ∀i ∈ Sf

Thus, the points found inXi are the intersection points of a fluid edge�Γ f
i with γ s . If Xi contains more than one inte

section point, only one, arbitrarily chosen, point is taken into account in the rest of this adaptive meshing alg
A parameterεi is introduced such that,

εi = ‖xi − xn1,i
‖

‖xn2,i
− xn1,i

‖ , ∀xi ∈ Xi

where the begin node and end node of edge�Γ f
i are indicated byn1,i ∈ xSf andn2,i ∈ xSf . If the length of edgeΓ f

i

is defined as‖Γ f
i ‖ ≡ ‖xn2,i

− xn1,i
‖, it can be stated that,∀εi ,

Sf 1 = {
i ∈ Sf : εi < ε̂

∥∥Γ
f
i

∥∥}
Sf 2 = {

i ∈ Sf : εi > (1− ε̂)
∥∥Γ

f
i

∥∥}
Sf 3 = {

i ∈ Sf : ε̂
∥∥Γ

f ∥∥ < εi < (1− ε̂)
∥∥Γ

f ∥∥}

i i
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Fig. 1. Fluid edge of length
 that is subdivided into parts A and B depending onε̂. If the fluid edge is intersected in part A then the closest fl
node is shifted, if part B is dissected then a new fluid node is added.

Fig. 2. Different configurations for subdividing tetrahedrons with 1 intersection into 2 triangles (a), with 2 intersections into 3 triangles (b(c).

Fig. 3. Basic configurations for tetrahedrons with 1 intersection (a), 2 intersections (b), 3 intersections (c), (d), and 4 intersections (e). Edges
are created by subdividing the triangular faces. Since there are two ways of subdividing a face with two intersected edges, many t
subdivisions are possible, but for each configuration (a)–(e) one example is given (f)–(j), respectively.

The arbitrary parameter 0< ε̂ � 0.5 should be defined by the user and is explained graphically in Fig. 1. After de
these three sets of edges the actual adaptation of the mesh can be initiated, by first repositioning and add
such that,

xn1,i
= xi , with xi ∈ Xi, ∀i ∈ Sf 1

xn2,i
= xi , with xi ∈ Xi, ∀i ∈ Sf 2

x̂n̂i
= xi , with xi ∈ Xi, ∀i ∈ Sf 3

in which x̂n̂i
is the position of a newly created noden̂i on edgeΓ f

i . With respect to the repositioning of the beginn
or ending point of an edge, we impose that the position of a node is allowed to be changed only once, even if
is shared by several intersected edges.

By adding new nodes, a cascade in topological changes takes place in the fluid mesh. Every edgeΓ
f
i , with a newly

created node at the intersection point, will be subdivided into two new edges,Γ̂
f

i,1 andΓ̂
f

i,2, such that,

Γ̂
f

i,1 = {
x ∈ Ωf : x = (1− α)xn1,i

+ αx̂n̂i
, 0� α � 1

}
Γ̂

f

i,2 = {
x ∈ Ωf : x = (1− α)x̂n̂i

+ αxn2,i
, 0� α � 1

}
Depending on the number of intersections (one or two per face), an elemental face can be subdivided int
three subfaces as shown in Fig. 2. Note that there are two different ways of dividing a face into three s
(Fig. 2(b), 2(c)), one of which can be chosen arbitrarily (or based on, for example, angles). With respec
tetrahedral elements, we consider five different configurations one of which can always be obtained by ro
an intersected element (Fig. 3(a)–(e)). More configurations are thinkable but in case surfaceγ s is smooth these wil
not occur and therefore will not be treated here. Depending on the number and distribution of the intersecti
a tetrahedron, two to six new non-overlapping subtetrahedrons will be created that replace the old tetrahed
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edges of these tetrahedrons will be straight and the sum of their volumes will be equal to the volume of the
tetrahedron. Every single subface will be the face of a newly created tetrahedron. As mentioned earlier, t
different ways of creating new subfaces and hence there are many different solutions for subdividing a tetr
into subtetrahedrons. For each of the presented configurations (Fig. 3(a)–(e)) a corresponding example is
Fig. 3(f)–(j). Note that for small values of parameterε̂ more new elements will be created in the new mesh den
by ΩSf ∗

. However, the created elements will be increasingly ill-shaped. Now, using the elemental facesΛ
f
i ⊂ Ωf ,

of the adapted fluid mesh, the new subdomainγ f ⊂ Ωf can be defined as,

γ f = {
x ∈ Λ

f
i : xn1,i

∈ γ s, xn2,i
∈ γ s, xn3,i

∈ γ s
}
, ∀i ∈ ΛSf ∗

(8)

wheren1,i ∈ xSf , n2,i ∈ xSf andn3,i ∈ xSf are the nodes at the vertices of a triangular faceΛ
f
i . Sinceγ s is part of

the solid, which moves through the fluid domain during computations, domainγ f , which is based onγ s , will also
change every time step.

2.2.2. Elements
For the three-dimensional model problems discussed in Section 3, the 15 noded quadratic tetrahedrons (P +

2 − P1)
and 27 noded quadratic hexahedrons (Q+

2 −Q1) of the Crouzeix–Raviart family are used [20,21]. For the two dim
sional model problems their 2D equivalents are used, i.e. the 7 noded triangle for the fluid and the 9 noded qua
for the solid. For all of these elements the pressure is enforced to be continuous inside an element but can be
uous from one element to another. This property will be shrewdly used for capturing a moving pressure discon
in the fluid domain as will be demonstrated in the next section.

The fluid mesh and solid mesh are generated independently from each other. The solid is modelled with an
Lagrangian formulation which results in an update of the material points of the mesh every time step, i.e. t
mesh moves across the Eulerian fluid mesh in time. The initially generated fluid meshΩSf is adapted every timeste

to the new position of the solid boundaryγ s , creating surfaceγ f at which Eq. (7) applies. The adapted meshΩS
f ∗

is

used for the computation and after each time step the position of the solid is updated and a new adapted meΩS
f ∗∗

is created based onΩSf and the new position of the solid. Finally, solutions are mapped fromΩS
f ∗

to ΩS
f ∗∗

using
the basis functions of the tetrahedral elements.

By taking the discretisation of the coupling elements based on the discretisation inΩS
f ∗

, the coupling is enhance
since the number of coupling of elements that are connected to a fluid element is one. Piecewise linear disco
basis functions are used to describe the Lagrange multiplierλ. Care should be taken with respect to the coarsene
the fluid and solid discretisations. The mesh size of the fluid and Lagrange multiplierhf should not differ too much
from the mesh size of the solidhs . If the ratiohf /hs � 1, accuracy improves but the condition of the algebraic sys
deteriorates and, vice versa, ifhf /hs � 1 the condition of the algebraic system improves but accuracy goes do

An implicit Euler time integration scheme is used for the solid as well as the fluid. The finite element pa
SEPRAN [22] is used and extended for building the matrix and mapping the solutions. The set of equations i
fully coupled, leading to a linear system whos matrix is non-symmetric and sparse. We solve this linear syste
a direct method based on a sparse multifrontal variant of Gaussian elimination (HSL/MA41) [23].

3. Numerical experiments

By means of several model problems, the abilities and inabilities of the described method will be analysed
a simple plain strain example is presented, showing large rotations and translations of a slender body in a
fluid flow. Secondly, the shear stresses at both sides of a similar slender body are computed in two differe
The third model problem considers the axisymmetric modelling of a fluid domain which is halfway divided by
solid membrane. A pressure applied to the fluid domain will cause the solid membrane to strain resulting in
pressure drop when the problem reaches equilibrium state. Finally, a three-dimensional problem is present
mimics the third model problem. The adaptive meshing procedure is highlighted and results are compared
problem three.
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Fig. 4. Streamline plots of the pulsatile fluid flow interacting with a thin solid slab.

Fig. 5. Vector field of rigid plate in fluid domain (a) and the corresponding shear stress graphs at both sides of the plate (b). The problem
once as a fluid–structure interaction model and once as a fluid problem with Dirichlet BC’s in a set of internal nodes.

3.1. Model problem 1: motion of a solid slab

A rectangular plain strain fluid domain is considered with no-slip conditions at bottom and top wall. At th
the velocity (plug flow) is prescribed as a sinus function of time, which results in a pulsatile flow. The fluid d
is discretised into quadratic triangular elements and the solid domain into quadratic quadrilateral elements
slender body is considered, only one of the solid boundaries is defined asγ s and the influence of the fluid undernea
the fictitious solid body can be neglected. The flow induces the flexible slab, that is attached to the upper flu
to move. The slab in its turn interacts with the fluid which highly influences the flow behaviour as shown
streamline plots (Fig. 4). In this example the Reynolds number is 1000 based on the height of the channe
average peak velocity at the inlet. Note that in order to circumvent boundary influences, the height:length rat
domain is taken as 20:1. However, very coarse triangulations are used towards the inlet and outlet boundary

3.2. Model problem 2: shear stresses along a rigid plate

This problem shows the ability of the method to capture the shear stresses at both sides of a slender bo
a rectangular fluid domain is modelled but now with an immersed stiff solid plate skewly positioned in the
of this domain (Fig. 5(a)). The same elements are used as in the former problem and again one bounda
length of the plate) is defined asγ s . A stationary solution for the Navier–Stokes equation is found by applyi
velocity plug flow at the inlet. The problem is solved twice, once using the method described in this paper, a
by applying homogeneous Dirichlet boundary conditions in all fluid nodes ofγ f and not taking the solid equation
into account. For both problems the shear stress is computed at both sides of the solid and the results are co
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Fig. 5(b). Although the computation with fluid–structure interaction shows some small mesh-dependent osc
the differences with the fluid computation are negligible.

3.3. Model problem 3: pressure drop in fluid domain (axisymmetric)

This model is used to emphasise the capability of the method to capture steep pressure gradients inside
domain. A circular fluid domain is considered with a thin solid membrane dividing this domain halfway. This pr
can be solved using an axisymmetric model, which results again in a rectangular fluid domain where the up
is the symmetry axis. The solid domain is defined from the axis to the bottom wall. The solid as well as th
are prohibited from moving/flowing through the axis but are free to move along the axis. The solid is attache
fluid wall at which a no-slip condition applies. Unlike the former model problems a stress in axial direction is a
depending on time, by taking the first quarter of a sinus function and then keeping the pressure at a constant
that equilibrium is reached. The fluid will start to flow and the pressure will build up in the left side of the fluid do
inducing the solid to bend (Fig. 6). After some oscillating movement due to inertia forces, solid and fluid re
equilibrium state. At this point in time the pressure in the left part of the fluid domain will be the applied stre
pressure in the right part of the domain will be zero and the fluid flow in the whole domain will be zero.

3.4. Model problem 4: pressure drop in fluid domain (3D)

A similar circular fluid domain with thin solid membrane can be modelled in three dimensions. A qua
the cylinder is discretised in 15 noded quadratic tetrahedral elements, the 3D analogue of the 2D extended
triangles, as used in the former problems. The solid membrane is modelled by defining a mesh consisting of he
elements. The same boundary conditions apply as in the third model problem, which results in a fluid domain
symmetry edges and a wall with no-slip condition and a solid fixed at the fluid wall. One of the two boundary s
of the solid that divide the fluid domain in two parts is taken asγ s resulting in a fluid surfaceγ f after adapting the
fluid mesh. In Fig. 7(a) it is clearly seen that these surfaces are non-conformal with respect to each other. As m

Fig. 6. Axisymmetric model of a solid membrane in a fluid domain with applied pressure at the left wall. The solid stopped moving but
still flows.

Fig. 7. The non-conformal surfacesγ s andγ f , which are part of the fluid and solid mesh, respectively. A Lagrange multiplier is defined over
surfaces by which fluid and solid are coupled (a). Clockcounterwise from the upper right picture, the inner fluid surface,γ f is shown for time steps
t = 0.6, t = 4.8, t = 10.8 andt = 18, respectively (b).
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Fig. 8. The solid membrane surface,γ f , and the newly created inner fluid surface,γ f .

Fig. 9. Thez-displacement of the center of the solid membrane as a function of time.

earlier, the position ofγ s changes in time coupling as will surfaceγ f , which is based on the intersection ofγ s with
the fluid mesh (Fig. 7(b)). As for the axisymmetric example in equilibrium state, the fluid domain is divided into
with the applied pressure and a part with zero pressure as shown in Fig. 8. By following the time evolution of th
of the membrane located on the axis, we can make a comparison between model problem three and mode
four. The axial displacements are graphically presented as a function of time in Fig. 9. There is hardly any di
in these transients except for the equilibrium position. This is caused by the coarseness of the coupling sur
the axis point in the 3D mesh. The initial solid and fluid mesh consist of 80 and 3600 elements, respectively
adaptation, with parameterε̂ = 0.2, a variation of 200 to approximately 400 fluid elements is added to this numb
well as 150 to 175 coupling elements.

4. Conclusion

A method is proposed suitable for modelling the fluid dynamics of a flexible heart valve in a fluid domain.
rotations and translations of a slender solid body, induced by a pulsatile fluid flow, can be captured at high R
numbers. Furthermore, accurate shear stress information at both sides of the solid can be computed as wel
pressure gradient across the solid. The potential of the method is demonstrated, considering three 2D an
model problem.

We consider a thin solid body immersed in a fluid domain. The finite element meshes of solid and fluid are ge
independently from one another and are therefore non-conformal with respect to each other, which makes
easier. Both domains are coupled by applying a Lagrange multiplier along the boundary of the solid, which e
the interpolated fluid and solid velocities to be equal. In addition, an adaptive meshing scheme is introduce
adapts the fluid mesh to the position of the solid. This mesh adaptation is only applied locally, only near the
of the solid and is computationally inexpensive and robust since the fluid and solid mesh do not have to be co
Furthermore, steep pressure gradients across the solid can be captured, making use of the discontinuou
description of the quadratic fluid elements. Similarly, gradients of the velocity and therefore shear stresse
discontinuous. In this paper, the mathematical formulation is presented in 3D, but demonstrated using 2D
model problems.

Before the methodology, as presented here, can be used for analysing heart valve dynamics, some criti
should be addressed first. Although different model problems show situations analogue to systole and d
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combination is not yet possible. In order to model the closing behaviour of a valve, a contact algorithm is
Furthermore, the computing time for 3D problems is very large, which leads to concessions in mesh res
However, the boundary layer, that scales with 1/

√
Re, will become very small at the leaflet, making it very ha

to compute shear stresses accurately. The cure for this problem can be sought in different areas: for exam
appropriate solver could be used for solving the fully coupled set of equations. Currently, iterative solvers like G
and CG with an incomplete LU decomposition need much fill-in in order to converge and the direct solver
this paper is also clearly not ideal. Another way of saving CPU time, would be a more efficient way of meshin
adaptive meshing could be extended such that the element size in the vicinity of the solid can be reduced
with which shear stresses can be computed accurately. Finally, more efficient alternatives should be foun
fifteen noded tetrahedrons.
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