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Abstract

A general review of the current research in vortex dynamics is presented, based on contributions given during a w
held in May 2003 at Porquerolles, France. This article aims at providing a picture of the work performed on this subje
French community. Various cases are covered, from 2D vortex patches to 3D vortex tubes; from isolated vortices to shear flo
Different contexts are considered: pure Euler and Navier–Stokes flows as well as stratified, rotating and magnetic flows.To cite
this article: I. Delbende et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Tourbillons en hydrodynamique. Nous présentons une revue des recherches actuellement menées dans le doma
dynamique des tourbillons. Elle s’appuie sur les travaux exposés lors de la conférence « Tourbillons en hydrodynamique » qu
s’est tenue à Porquerolles en mai 2003. Les sujets abordés couvrent un large éventail thématique : du tourbillon bidimensionn
au tube de vorticité tridimensionnel, qu’ilsoit isolé ou au sein de couches cisaillées. Ces écoulements sont étudiés dans le ca
des équations d’Euler ou de Navier–Stokes et sont éventuellement soumis à des effets de stratification, de Coriolis ou
magnétique.Pour citer cet article : I. Delbende et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Porquerolles is an attractive little resort on the Levant Islands, well known for its delightful wines and
frogs. This southern most archipelago of the French Riviera was already noticed by the ancient greeks as
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‘Stoechades Islands’. It offered a perfect location for the conference held in May 2003 on various aspects
vortices. From the large spectrum of fluid problems covered, it appeared that many flows can be approached
terms of the dynamics of an isolated vortex or several vortices. For instance, some aircraft wake prope
be understood in terms of the action of strain upon vortex wave propagation. This ‘vortex approach’ ha
advantageously adopted in various domains, such as geophysics (atmospherical wakes, sand ripples), a
(vortex breakdown, trailing vortices), and magnetohydrodynamics. In a more general setting, this point of view is
also pertinent e.g. for shear flows (wakes, jets), turbulence problems (singularities in the Euler equation, vorte
merging, strained fields) and control issues.

In this review article, we present an overall picture of the French contributions in this field, starting from
concepts in 2D and 3D vortex flows, to more complex situations.

1. Pure two-dimensional vortices

Vortex dynamics can be considered to be two-dimensional whenever the flow shows a trivial behavio
one axis. Typical cases are geophysical, stratified and Hele–Shaw flows. Though pure 2D motions have
topological constraints, their study is enlightening for a general understanding of fluid dynamics. Cascade p
in turbulent flows, mixing, boundary layer and Hamiltonian problems are typical examples where a 2D model
the first step toward a 3D theory.

A first theoretical viewpoint for 2D flows considers a system of point vortices. This approach presents im
mathematical challenges as well as physical interest. For example, geophysical cyclones can be mode
such a Hamiltonian dynamical approach on a sphere. Particular attention is given to cluster formation on
and a sphere. Simple cases with four vortices and given symmetries are analysed in [1]: by carefully stud
phase space, a bifurcation energy threshold is found toexist below which cluster formation occurs.

As far as turbulence is concerned, the Euler dynamics of point vortices does not include the merging
and therefore cannot offer a satisfactory model. Indeed, the turbulent flow behavior is constrained by two c
The inverse energy cascade, which follows ak−5/3 law in momentum space, manifests itself in real space thro
vortex mergings, forming large-scale coherent structures. In addition, the direct enstrophy cascade towa
wavelengths is related to filamentary structures which are also present during merging. Following cons
rules, a dilute vortex gas model has been proposed [2] which phenomenologically includes the action of m
Vortices interact like point vorticeswhen they are far apart and fusion occurs when equal-sign vortices are clo
enough. Assuming that the vortex density decreases with timet ast−ξ , scaling behaviors for the mean circulati
and vortex radius are then deduced from this simple dynamics. This model is corroborated by numerical sim
which, in addition, provide the value of 0.75 for ξ . This latter value cannot be a priori determined by the heur
model, since a careful understanding of the vortex merging dynamics is first needed.

Recent experiments have analyzed the merging of two co-rotating vortices in an almost pure 2D geometry [
Two identical vortices are generated in a water tank byan impulsive rotation of two plates. Different steps a
identified during the fusion. First, the two vortices rotate around each other as point vortices and viscosity
intervenes by increasing the radius of each vortex core. When a critical ratio between the vortex radius
distance between vortices is reached, a fast convective stage begins: the two vortices approach each other
vorticity filaments are ejected. This critical ratio for merging seems to correspond to the appearance of
modes in an equivalent Euler system. The full dynamics can be advantageously approached by direct n
simulations (DNS) where streamlines are considered in the rotating frame of the co-rotating vortices [4]. A
region around the vortices is identified and the velocity field can be thus separated in two components: one
from the inner vorticity region, the other one from the outer region. The ejected vorticity is found to ind
velocity field that brings the two vortices closer, in agreement with experimental results [3]. This dynamics
sustained since the decrease of vortex separation favors the transfer of vorticity into the filaments. Inter
for high Reynolds numbers, the vortex separation distance displays a plateau-like behavior before comple
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Fig. 1. Left: vorticity field during merging forRe = 15000 at timet = 70; right: vortex distance with respect to time.

is achieved (see Fig. 1). An important change in the streamfunction topology is also observed during this
the flow at the center of the system changes from a hyperbolic to an elliptic configuration. This third stage of th
merging, recently observed in experiments, is called the second diffusive stage and viscosity is again import
there.

In many experimental situations such as [3], vorticity is assumed to be marked by dye tracers. H
dye is a passive scalar following an advection–diffusion equation. In 2D this is only an approximation
vorticity evolution. Simultaneous numerical studies of vorticity and passive scalar distributions in turbulen
are able to differentiate between the two cases [5]. More precisely, the conditional probability laws for secon
order Lagrangian derivative of vorticity and passive scalar gradients are computed for both elliptic and hyperbolic
regions of turbulent flows. It is observed that the numerical vorticity gradients present faster temporal fluc
than passive scalar gradients. This property is conserved even when random velocity fields are considere

2. Geophysical vortices

Large-scale vortices play an essential role in the dynamics of oceans and the atmosphere. In these strat
and rotating geophysical flows, the large-scale structures produced by shear instabilities are generally 2D due t
strong effects of Coriolis and buoyancy forces that inhibit vertical motions. For instance, the wind flowing a
mountain islands, revealed by the cloud patterns, generates a vortex street reminiscent of the classical Bé
Kármán street. However some geophysical wakes display a selective destabilization of cyclonic or anticyclon
vortices.

The geophysical flow dynamics is mainly characterized by two length scales:D the obstacle size andRd =√
gh/2Ω0 the deformation radius whereg is the gravity,h the fluid depth andΩ0 the Earth rotation. Thre

dimensionless parameters are relevant: the Burger numberBu = (2Rd/D)2 (ratio of the gravity and rotation
effects), the Reynolds numberRe = UD/ν (U is the velocity scale andν the kinematic viscosity) and the Ross
numberRo = U/DΩ0 (ratio of the advective and Coriolis terms).

Large-scale geophysical wakes (D � Rd or equivalentlyBu � 1) can be studied in the rotating shallo
water context. This situation is approached by a rotating two-layer experiment as well as numerical simu
Experimentally, a thin fresh-water layer lies on a thick salt-water layer. The presence of the bottom layer
here to ensure that the interface between the fresh- andsalt-water behaves like a free-surface. A vortex stree
created by towing an obstacle within the upper layer. As the Burger number increases fromBu = 0.1 to 1, the
asymmetry between cyclonic and anticyclonic vortices is enhanced: the cyclones become more elliptic
the anticyclones remain axisymmetric. Numerical simulations combining a pseudo-spectral scheme with a
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penalization method to take the obstacle into account are in good agreement with the previous experim
Reynolds numberRe = 400 and Rossby numberRo = 0.25 [6].

In order to investigate a large Burger number (Bu � 1) situation, another experimental setup has been dev
an elongated cylinder is pulled in a rotating tank to produce the geophysical Bénard–von Kármán st
intermediate Reynolds numbers (Re ≈ 150), order one Rossby numbers (Ro ≈ 0.4–4) and large Burger numbe
(Bu ≈ 103–104), the previously reported asymmetry is reversed between cyclones and anticyclones. C
are found stable and axisymmetric whereas anticyclones characterized by a weak elliptic distribution of vortici
become unstable. This destabilization occurs in the vortex core as in the elliptic instability while the
periphery remains unaffected. Moreover, unlike the centrifugal instability, the vertical wavelength increas
the Rossby numberRo [7]. Therefore this asymmetry is probably due to the inertial elliptic instability rather
to the centrifugal instability.

Vortices can also be observed at very different geophysical scales e.g. during the formation of sand ripp
beach. This process has been mimicked in an annular tank filled with a sand layer on top of which an upper lay
of fluid oscillates. An initial pattern emerges consisting of small amplitude and wavelength ‘rolling grain rip
PIV measurements described in [8] show that a vortex is shed from each of the crests in alternate directions du
each half period. These new observationscontradict the usually inferred mechanism for crest formation base
the presence of two counter-rotating vortices between two successive crests. However, this initial pattern eventu
gives way to the formation of large amplitude and wavelength ‘vortex ripples’.

3. Pure three-dimensional vortices

Vortices are classically known to sustain propagating waves called Kelvin or inertial waves. Most fe
pertaining to the vortex three-dimensional dynamics dependon the phase and group velocities as well as on
spatial structure of these waves. Such aspects have been studied [9] on a typical smooth vorticity pro
Lamb–Oseen vortexVθ = Γ (1 − exp(−(r/a)2))/2πr whereΓ , a denote the circulation and vortex core siz
respectively. In the remaining part of this section we use dimensionless quantities based onΓ anda. A viscous
stability analysis in terms of normal modesf (r)exp(ikz + imθ − iωt) with ω ≡ ωr + iωi confirms that all mode
(k,m) are stable (ωi < 0). If the axisymmetric modes (m = 0) are weakly affected by viscosity, this is not t
case of double helix modes|m| = 2 and higher modes|m| > 2, which generally undergo a significant dampin
The influence of the Reynolds numberRe ≡ Γ/2πν on helical modes (m = ±1) is quite dependent onωr/m the
angular velocity in the vortex cross-section. For left-handed helical waves (k/m > 0), the following trends are
observed. Modes withωr/m > 1 propagate along the vortex in the positive axial direction and are particu
damped for long axial wavelengthk → 0 where their spatial structure becomes concentrated nearr = 0. Helical
modes with 0< ωr/m < 1 are singular (critical layer) and highly damped. Finally modes withωr/m < 0 propagate
along the vortex in the negative axial direction. Among these, the so-called bending or slow mode corres
the translation of the vortex axis without modification of its internal structure. This mode, which is character
a group velocity tending towards zero fork → 0, is barely modified by viscosity. Right-handed waves (k/m < 0)
have similar properties and opposite group velocities. An initial value simulation forRe = 1000 confirms the abov
features by displaying the response of aLamb–Oseen vortex to an initially localized left-handed perturbation aft
several overturn periods. Because of its negative group velocity and its small damping, the slow wave mode rapi
emerges from a localized perturbation. A fraction of the energy, concentrated in the singular modes, d
propagate and is rapidly damped. Another small fraction is contained in a concentrated structure propagating in
positive direction.

The transient evolution of perturbations superimposed to the Lamb–Oseen vortex can be characterize
another approach [10]. Instead of resorting to standardnormal modes analysis, one uses the so-called non-no
approach based on an optimization problem: given a perturbation of the formf (r, t)exp(ikz + imθ), find the
optimized timeτ corresponding to a maximum amplification gainG(τ) = E(τ)/E(0) of the disturbance kineti
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energyE(t). Given the parameters(k,m) and Reynolds numberRe, this optimization problem is solved by a
iterative procedure. The curve of maximum amplification versus axial wavenumberk for modesm = 1 possesses
peak at a short wavelengthk ≈ 1.4 which is almost independent of the Reynolds number. However the max
amplificationG(τ) and the optimized timeτ corresponding to these wavenumbers(k,m) evolve withRe leading
to significant growth even at moderateRe. The initial optimal perturbation can be described as spiral sh
subsequently evolving at the optimized timeτ into a strong bending wave in the vortex core. This evolutio
reminiscent of the Orr mechanism active in boundary layers.

4. Three-dimensional vortices in the presence of a strain field

The previous section addresses the dynamics of perturbations propagating on a given vortex profile assum
that the action of other vortices and boundaries can been disregarded. However, a closer look at this dynam
the influence of external factors may be necessary. This is true for the problem of four vortices in a counter-
configuration. Such a seemingly ‘baroque’ configuration appears commonly in aircraft wakes during lan
take-off and is known to have time dependent i.e. periodic, stationary or divergent solutions. It is inte
to analyze its stability in order to promote the disruption of this configuration in real cases. The proble
been studied [11] using an analogue to the linearized vortex filament method developed for the Crow instabi
of two counter-rotating vortices. The long wavelength approximation provides a non-autonomous eight
dynamical system which describes the mean positions of the four vortices. The non-normal technique mentione
in the previous section is then employed for this time dependent problem since it by-passes the assumption o
exponentially growing normal mode. The results indicate that the weak Crow instability of the stronger vortic
i.e. the aircraft outboard vortices, can be enhanced by the presence of a second vortex pair, i.e. the aircraft inbo
vortices. The optimal amplifications are obtained for unrealistic aircraft engineering conditions. However, so
amplification is clearly possible for realistic situations: the Crow instability may thus be controlled by manipu
the other vortex pair. Nevertheless such encouraging results may be modified in the nonlinear regime.

The potential flow due to other vortices or boundaries may also lead to profound modification of the i
dynamics of a given vortex. Inside the vortex, an external strain may be approximated under the strain(αx,βy, γ z)

wherez denotes the vortex axis. If the strain is purely 2D (α = −β andγ = 0), the basic vortex streamlines defo
and become elliptic. This effect leads to a generic core mechanism: the elliptic instability. This aspect h
experimentally explored [12] using a deformable shell filled with water which is rotated at constant angula
while two or three rollers are positioned at the periphery so that a dipolar or tripolar excitation is applied
flow. This set-up generates a columnar vortex submitted to a dipolar or tripolar strain. Instability modes ari
the resonance of two vortex Kelvin waves caused by thepresence of the external strain. When the aspect
and the number of rollers are varied, several modes have been observed due to resonances between
wavenumbers (m = −1, m = 1), (m = 0, m = 2), (m = 1, m = 3). For the triangular forcing, resonance mod
were found for the pairs (m = −1, m = 2) and (m = 0, m = 3). With increasing Reynolds number, such mo
first undergo a nonlinear saturation towards a stationary state, then sustain a secondary instability, and eventu
reach a stage where the vortex structure breaks down into small scales. The explosion is thereafter followed b
relaminarization of the flow, generating a new elliptical or tripolar vortex and thus a new instability cycle.
observations are in close agreement with a weakly nonlinear analysis thoughthe explosion is clearly still to b
elucidated. More recently another geometrical configuration has been considered, namely a sphere [13]. A spi
over mode is evidenced whereby an S-shaped vortex gradually tilts and saturates nonlinearly. Intermittent behavior
has also been observed in this experiment. This new set-up is of great interest since it is an experimental
of the earth’s liquid iron core subjected to tidal deformations. The question is raised whether this phenome
a link with the earth’s magnetic field reversals and more generally with the dynamo problem.

Another possible strain corresponds to the three-dimensional axisymmetric caseγ /2 = −α = −β > 0 e.g. the
celebrated Burgers vortex. Strangely enough, the stabilityof this classical Navier–Stokes solution had not b
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considered. In [14], the Burgers vortex is shown to be asymptotically stable to any three-dimensional pertu
though significant transient growth may be present. This result is obtained by using an extended spatio-
Lundgren transformation and a time-dependent non-dimensionalization, which reduce this problem to the line
stability of the Lamb–Oseen vortex up to a time-dependent factor affecting the axial gradient term
transformed problem can then be solved by an optimization problem. A spatio-temporal Lundgren’s transfo
was also used to detect solutions which possess a finite time singularity in the context of the Euler or Navie
equations. This singularity which may stand at the heart of the turbulence problem has been observed in n
simulations. In order to avoid the possible numerical origin of such a divergence, another viewpoint ha
adopted [15]: a change of space–time variables is used totransform the singular behavior in the Euler equation
into regular behavior of a transformed Euler problem. Introducing the new time variableλ = − log([t∗ − t]/t∗),
the Euler equations can be transformed into a system of equations which are autonomous in the logarithm
in such a way that the time of the hypothetical singularityt∗ is sent to infinity. The form of the transformed veloc
U is dictated by the conservation of circulation:u(r, z, t) = √

Γ/(t∗ − t)U(R, z) whereR denotes the transforme
lengthR = r/

√
Γ (t∗ − t). It is argued that for an axisymmetric flow with swirl, the constraints arising from

conservation of energy and circulation are compatible with a solution collapsing on a line [16]. Leaving th
space variable unaffected by the similarity transformation, it is shown that the problem can be reformu
terms of a streamfunction and a circulation variable, following the Bragg–Hawthorne procedure. This lea
of explicit equations. If such equations possess a smooth solution satisfying certain conditions, the original Eu
equations then possess a finite-time singularity.

Going back to experimental considerations, the Burgers vortex profile is difficult to isolate in an experi
situation similarly to what was achieved for the elliptic instability [12]. In [17], a stretched vortex is genera
a water channel. A boundary layer first develops due to an inflow of mass fluxQ1. The separation, roll-up an
suction of this boundary layer then generates a vortex which is symmetrically attached to two holes located at e
side wall. The fluxQ2 entering these two openings equals the entire mass fluxQ1. The vortex velocity field is
much more involved than a pure Burgers vortex since the axial stretching∂zVz varies along the vortex axis as we
as along the radial direction. Note that the vortex core is much smaller than the size of the holes. An asy
analysis coupled to a closure assumption has led to a theoretical model which nicely fits the PIV measu
obtained in the water channel. Experiments have also been conducted so as to characterize the dynamics o
basic stretched vortex or of the waves it may support. For instance, the power dissipated due to the axial
has been measured to be of the same order as the power dissipated due to the azimuthal velocity.

When the mass fluxQ1 is not completely sucked into the two holes, the vortex can be bent (Q1 larger but
close toQ2) or an almost periodic cycle of vortex creation and destruction appears (Q1 larger than a critical value
proportional toQ2/3

2 ) [18]. This latter case is characterized by the generation of the vortex, its downstream moti
followed by its detachment from the two holes and an abrupt breakdown the underlying mechanism of w
not fully understood. This burst generates small scales. From a velocity signalu(t) measured around the explosi
location during a long enough period (two thirds of the rotation period), one can find ak−5/3 energy spectrum. Thi
experimental result can be associated with the numerical procedure followed by Lundgren. Another exp
[19] has been deviced to generate a stretched vortex. Two co-rotating disks generate a background vortic
suction is applied through the hole located at the center of each symmetric disk. This motion produces a symmetr
stretching which concentrates the Ekman vorticity and creates a vortex filament. The pressure gradient
imposed to get a constant mass flux through the holes has been shown to depend on the vortex: for low disk
the pressure increases with rotation due to a pure stretching effect. For higher rotation, the vortex is strong
and counterbalances this effect by a centrifugal effect in the vortex center leading to a decrease of the
gradient with rotation.
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5. Three-dimensional vortices in the presence of an axial jet

In fully turbulent flows as well as in aircraft wakes, coherent vortices may sustain an axial jet componen
alters considerably their stability properties. The prototype of such trailing vortices – also an asymptotic so
is the Batchelor vortex, also known as theq-vortex:

Vr(r) = 0, Vθ (r) = Γ

2πa

1− e−(r/a)2

r/a
, Vz(r) = W e−(r/a)2

,

whereΓ denotes the circulation anda the core size, identical for both jet and swirling components. The Reyn
numberRe = Wa/ν is based on the maximum axial velocityW . The inviscid stability of this flow is governed b
the swirl numberq = Γ/(2πaW): the trailing vortex becomes inviscidly unstable below a critical valueqc ≈ 1.5
with respect to helical perturbations with azimuthal wavenumberm < 0.

While inviscid instabilities are well documented, the systematic investigation of viscous instabilities is
recent [20]. It has been shown that viscous instabilities are likely to grow at any swirl level asRe → ∞ (which
is a singular limit). More precisely, the critical swirl level above which the flow is stable is shown to beh
asymptotically asqc ≈ 0.14Re1/3, the critical mode beingm = −1. The structure of the modes prevailing at h
swirl consists of viscous oscillations localized around the vortex centerline (for radial distancer < Re−1/6). They
can be analyzed in analogy with the wavefunction of a quantum particle in a semi-infinite potential sin
Located in the core, these modes should exist for any trailing vortex, and might be linked with vortex meanderin
a well-known phenomenon in aerodynamics, which is still unexplained. At low swirl level, other viscous mode
prevail: ‘ring modes’ which can be studied in analogy with the quantum double-infinite sink problem. Even
the associated growth rates are rather small, these findings considerably widen the rather confined i
domain predicted in the inviscid frame.

When two trailing line vortices are present as in the far wake of an aircraft, the mutual effect consists,
the downwards pair translation, of an elliptic deformation of the structures. In pure vortices, i.e. without axial flow
this effect is known to enhance the elliptic instability with maximum dimensional growth rateσ = 9

16γ . This effect
has been examined in the case where an axial flow is superimposed on the vortex [22]. For the Rankin
with top-hat jet profile, the elliptical instability persists. In contrast, when the vorticity is not localized in spa
e.g. in the Batchelor vortex, the mode structure involves critical layers which arethought to dampenthe elliptical
instability. Other resonance modes might arise.

Axial strain applied to a Batchelor vortex flow is likely to enhance instability [22]. More specifically,
compression preserves the axisymmetry of the flow which remains a Batchelor vortex, but it is able to
the instantaneous swirl numberq(t) below its critical value at 1.5. For sufficiently small strain ratesγ � 1,
the instantaneous growth rate is shown to be related to the growth rate of an unstretched flowvia a quasi-static
approximation. The predicted growthof inviscid helical instabilities has been corroborated by DNS of the Navie
Stokes equations using Lundgren variables, linearized in the vicinity of the compressed/stretched Batchel
at Re ≈ 670, showing the effective growth of interwoven filaments (see Fig. 2). These findings have been p
as a simple mechanism to explain the sudden burst of intense vortex structures as observed in fully turbule
Assuming that the large-scale motion acts as a strain field on the vortex, it could lead to the disruption of
stable vortices with high initial swirl level.

When one is interested with the long-time behavior of trailing vortices, it is naturalto investigate the nonlinea
dynamics of the primary instability. A range of swirlnumbers is particularly interesting: when 1� q � 1.5,
the vortex destabilizes through the inviscid instability mechanism, but nonlineareffects eventually lead t
restabilization due to a decrease of the mean axial flow, thus an effective increase of swirl above the criti
value 1.5. In [23], this latter property has been interpreted in the framework of local instability with resp
radial distancer in the short-wave limit. More precisely, a buffer zone has been shown to exist whenq � 1 at the
periphery of the vortex, where the Leibovich–Stewartson criterion, a necessary condition for stability in
vortices, is locally satisfied. By DNS of the full Navier–Stokes equations atRe ≈ 3120, it has been shown ho
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Fig. 2. Time evolution of a initially stable Batchelor vortex when submitted to time varying strain atRe = 670 (half-period of axial compressio
followed by half-period of axial stretching).

the turbulence initiated in the core region takes energy preferentially from the axial flow component and is th
dispersed through the buffer zone as inertial waves, without any pumping of azimuthal velocity. This ind
swirl rate increase and a restabilization of the turbulent core, features to which the persistence of trailing
in aircraft wakes is ascribed.

6. Three-dimensional vortices in the presence of stratification

In stratified flows encountered in geophysical contexts, a major question which is still unanswered conce
the relationship and difference between a pure two-dimensional turbulence and geophysical turbulence
motions are almost quasi-horizontal due to the strong influence of stable density stratification or Earth rota

Numerical simulations reveal the presence of a horizontally layered structure in stratified flows, which en
energy dissipation. In addition, large scale structures have always a limited vertical extent like ‘pancakes’ an
appear to be decoupled. An instabilitymechanism may be responsible for this decoupling. Such an assumption h
been tested in the simpler context of the relaxation of a pair of long co- or counter-rotating vertical co
vortices in a stratified fluid. When the vortices are counter-rotating, the Crow instability (see Section 4) and
short scale elliptic instability are inhibited by stratification. However, a third instability called zigzag insta
arises. This process which can be interpreted in terms of slow bending Kelvin modes, slices the columna
pair into horizontal layers of pancake-like dipoles [24–26]. A typical wavelength scales likeU/N , whereU is the
horizontal velocity scale andN = √

g∂zρ/ρ the Brunt–Väisälä frequency. An equivalent experimental situa
has been studied in a tank filled with a linearly stratified salt solution in which a columnar vertical pair of vo
is created by rotating two flaps. This flow is characterized by two dimensionless parameters: the horizonta
numberFh = U/NR (ratio of buoyancy and inertial forces) and the Reynolds numberRe = UR/ν whereU , R

andν are the initial propagating speed, the dipole radius and the mean kinematic viscosity, respectively.
When the two vortices are corotating, numerical and theoretical studies show for a large range of R

numbers (Re ≈ 100–15000) the existence of two kinds of instabilities [27]. For weak stratification (Fh � 2), the
dominant instability is of the elliptic type with two unstable modes. For strong stratification (Fh < 2), a zig–zag-like
phase instability occurs instead, involving a single unstable symmetric mode.

Another experiment has beencarried on a counter-rotating pair of vortices in a stratified fluid, placed
rotating platform. Two other types of instabilities have been observed solely affecting the anticyclonic vor
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Fig. 3. (a) Experimental configuration. The inset illustrates azimuthal velocity contours (left) and meridional velocity field (right) of th
axisymmetric flow determined by numerical simulation [30]. (b) Velocityfield and radial vorticity at a fixed radius showing a steady corota
pair of vortices. (c) Unrolled quantities as in (b).

axisymmetric centrifugal mode and a new asymmetric oscillatory mode. A stability analysis of the Lamb–
vortex indicates that the mechanism for the asymmetric instability is centrifugal.

7. Shear layers and sheets

7.1. Vortices in shear layers

The famous inviscid Rayleigh criterion states a necessary instability condition: an unstable 2D profileu(y)ex

must present an inflexion point. In mixing layers this instability is called the Kelvin–Helmholtz instability.
a mechanism is characterized by a vorticity fieldωz(y)eiαxez and gives rise to a chain of co-rotating cat’s e
vortices. The flow driven by two counter-rotating disks displays vorticity patterns bearing a resemblance
above mentioned vortices. This has been shown in two recent studies where the geometries of the forcing system
are different: in [28], the flow is produced by the counter-rotation of the bottom disk and the top disk attac
the lateral wall; in [29,30], the lateral wall is fixed (see Fig. 3). The common non-dimensional parameters
height-to-radius aspect ratioΓ = H/R and the ratio of the angular disk velocitiess = Ωtop/Ωbot. The resulting
pattern in [28] is a superposition of vertical co-rotating vortices connected to the boundary layers through sp
arms. Experimental and numerical results performed for variouss and small values ofΓ collapse on the sam
instability curve for spirals and vortices. This proves that such structures are two aspects of the same insta
to the following mechanism:the centrifugal effects ofeach rotating disk create a detached boundary layer ove
slower disk, leading to a free shear layer of velocityuθ (r, z)eθ in the bulk of the flow. Treating thez-dependence
as parametric, the basic profileuθ (r) can give rise to vertical Kelvin–Helmholtz vortices. In contrast, the resu
pattern in [29] where the two disks are exactly counter-rotating is a chain of radial co-rotating vortices. For d
Γ = O(1), the basic state is unstable through the Kelvin–Helmholtz instability of the equatorial azimuthal shea
layer created between the two recirculating zones due to Ekman pumping. The analysis is performed usin
velocity profileuθ (z) neglecting ther-dependence. The resultsare compatible with the emergence of radial vorti
at the Kelvin–Helmholtz threshold. In these examples, the instability of the free shear layeruθ (r, z) gives rise to
vortices of different orientations depending on the geometry of the forcing.

The above analysis is based on simplified basic profiles where stretching and curvature are neglected
contrast, the effect of an external hyperbolic strain flow is introduced in [31,32] for the Kelvin–Helm
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Fig. 4. Vorticity isocontours of the most amplified perturbation att = 20 for a stretched shear layer. Top: att = 0; bottom: att = 20.

instability in the context of inviscid and viscous dynamics. Due to stretching, the basic flowu(y, t)ex is now
unsteady. The evolution of perturbations is to be studied in the non-normal analysis framework in order to
the maximum amplification gain at a given time. The inviscid study is performed on a basic broken-line v
profile perturbed by 2D unsteady disturbances defined by a streamfunctionφ(y, t)eikx . A negative stretching
(compressive zone) stabilizes the mixing layer while a positive stretching is destabilizing. In the viscou
the basic state is chosen to be the standard tanh(y/δ(t)) profile with a time-varying widthδ(t) due to the unstead
stretching. Evaluation of the maximum amplification gain of perturbations is performed using the adjoint op
This viscous approach demonstrates that the main conclusions of the inviscid case are not affected. A vie
disturbance which is optimal att = 20, is shown att = 0 andt = 20 in Fig. 4.

Two classical flows evade the inflexion point criterion and present a strong analogy: Taylor–Couette (T
plane Couette (PC) flows. Both are produced by the differential motion of their boundaries: differential rotatio
of the two co-axial cylinders in TC, differential translation of the two plates in PC. A recent research axis
taken advantage of the analogy between the two flows: known patterns in TC such as rolls and banded tu
have been demonstrated in PC, both experimentally and numerically. In PC, the dynamics is governed
non-dimensional parameter, the Reynolds numberRe ≡ �u�y/ν where 2�u denotes the differential translatio
velocity and 2�y the spanwise distance between the two plates. In TC, there are three dimensionless parame
the aspect ratioη ≡ rin/rout, the ratio of angular velocitiesµ ≡ Ωout/Ωin and the Reynolds numberRe ≡ rinΩind/ν

whererin andΩin (resp.rout andΩout) are the inner (resp. outer) radius and angular velocity. 2d is the gapwidth. In
[33,34], the PC flow perturbed by a thin spanwise-oriented ribbon shows a first bifurcation towards 3D stre
rolls at Re 	 230. This bifurcation is followed by various others towards a series of stable and unstable
states presenting different wavenumbers and symmetries. However transition to turbulence occurs around a hig
Reynolds number (Re 	 300) and is as sudden and unexplained as that occurring in PC flows without r
Hence, there is apparently no connection between the low-Reynolds number bifurcations of the ribbon-perturb
PC and the transition to turbulence in the classical PC flow.In [35], transient growth is studied in counter-rotati
TC flows as a function of aspect ratioη and Reynolds numberRe. The PC case is recovered forη = 1. For
Re � 500, the greatest transient amplification is achieved for a value ofη < 1, meaning that transient grow
is enhanced by curvature. The optimal inputs are concentrated in the meridional velocity components w
optimal outputs are dominated by the azimuthal velocity component. This modification is due to the crea
streaks by the vortices which is also the essential mechanism for the transition to turbulence in PC flow.
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7.2. Vortex sheet roll-up

Vortex sheets can be numerically studied using Lagrangian vortex methods: vorticity is represent
collection ofN vortex points and the evolution is governed by a system ofN ordinary differential equations
The induced Lagrangian velocityUp of a particlep situated atrp is given by the Biot–Savart law:Up =
∑N

q=1 K (rq − rp, δ) ∧ Ωq whereΩq is the vector vorticity weight. The Green kernel for the vector Laplacia

operatorK2D(r ) = −r/2πr2 or K3D(r ) = −r/4πr3 must be regularized so that ther = 0 singularity is smoothed
A small regularization parameterδ is thus introduced: in the 2D study [36], the kernelK (r , δ) = −r/2π(r2 + δ2)

is used, while in the 3D study [37],K (r , δ) = −r/4π
√

r6 + δ6.
In [36], an initially unstable vortex sheet discretized as a line of point vortices is considered. The vorte

develops a Kelvin–Helmholtz instability. During its nonlinear time evolution, a perturbation is added to test
sensitivity of the sheet against a secondary instability. The evolution of this perturbation towards secondary vortic
depends on the local strain rate: stretching inhibits growth while compression enhances it.1 It is found that the
growth rate and the characteristic length scale of the secondary instability are fixed by the regularization parame
δ. During the subsequent nonlinear time evolution, the stretching rate varies in time and space and is direct
to the density of vortex points along the sheet. This density is concentrated in peaks distributed along the s
gives rise to an intermittent distribution of vorticity. Such a phenomenon results in ak−4 velocity spectrum simila
to that found in 2D turbulence.

The vortex method has been tested in 3D in the case where a circular jet is emitted into a mediu
lateral flow [37] (like a chimney exhaust in the wind): a leading vortex ring forms and is eventually stre
A ‘remeshing’ procedure is then necessary, whereby particules are redefined with newΩq weights at the nodes o
a regular mesh, in such a way that the physical properties of the flow are preserved. This procedure also
particles from becoming locally too dense or too sparse. The number of particles is controlled by an em
vorticity threshold below which the particles are suppressed. This method qualitatively accounts for the dynam
of a jet bent by a lateral flow, including the formation of vortex rings and of two curved streamwise counter-r
vortices.

8. Vortices in wakes

Cylinder wakes have often been considered as the archetype of wake flows, especially regarding the
of instabilities arising when the Reynolds numberRe = UD/ν (D denotes the diameter) is gradually increas
Above the critical valueRec = 47, the celebrated Bénard–von Kármán vortexstreet occurs. The alternate satura
primary vortices form a quasi-periodic pattern of streamwise wavelengthλ2D, which may then sustain seconda
instabilities: whenRe > 190 a three-dimensional symmetric (or A-) mode of spanwise wavelengthλA ≈ λ2D
grows; forRe > 260 it is replaced by an anti-symmetric (or B-) mode of much smaller wavelengthλB � λ2D.

A thin flat plate wake [38] differs significantly from that of a cylinder: both types of modes can be obs
at the same Reynolds number above threshold, and the wavelengthλa of the anti-symmetric mode is about th
same as thatλs of the symmetric one (λa ≈ λs ≈ λ2D). A temporal study of these secondary instabilities has bee
numerically performed [39]: one spatial period of the basic flow is first obtained by a 2D DNS of a Bickley
(velocity deficit proportional to cosh2(y/d)) in the vicinity of which the 3D evolution Navier–Stokes opera
is linearized. The maximum growth rates of the leading symmetric and anti-symmetric modes are foun
equivalent. They are attained at comparable wavenumbers. This supports the occurrence of both patter
same experimental conditions with about the same wavelength. The local elliptic instability theory applied at the

1 This result seems to contradict the conclusions of [31,32]. The difference is due to the geometry: the stretching is 2D in [36] while it is
in [31,32].
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elliptic point in the primary vortex cores (where the local strain rate isγ ) allows one to evaluate a maximum grow
rateσ = 9

16γ in very good agreement with the growth rates obtained numerically. By contrast, the local hyp
theory in the braid leads to growth rates up to 5 times larger, a feature which is never observed numerica
Hyperbolic regions can at most sustain intense transient growth, but their long time perturbation growth
always slaved to that of the elliptic point.

Sphere wakes are very different from cylinder or plate wakes. For 210< Re < Rec = 280, the flow
behind a sphere consists of two stationary counter-rotating streamwise vortices. AboveRec, vortex loops are
shedded periodically. This now well-documented dynamics is relevant in bubbly or particle-laden flows f
concentrations. At higher concentrations, neighboring objects interact, as in the following experiment [40
spheres are placed side by side in a uniform flow. When they are sufficiently spaced, their wakes are uncoup
Several regimes are then observed as the spacing between the spheres is gradually reduced: in-phase o
anti-phase oscillations, and eventually strong mechanical vortex-induced vibrations. In this latter case, a D
shows that the inter-sphere flow sticks to one of the spheres, or to the other: the observed vibrations may
to this bi-stability property. For touching spheres, a single wake is obtained. Other experiments reveal the dynamic
of the flow in the vicinity of a single sphere moved orthogonally towards a solid plane or a free-surface and a
stopped [41].

The backward-facing step constitutes a basic model of boundary layer separation since it contains a feature at
heart of any wake flow structure: a recirculation region. This situation is also present in many industrial pro
This flow has been investigated experimentally in the stationary regime [42]. The presence of a three-dim
stationary structure periodic in the spanwise direction has been ascertained by PIV measurements. This pa
causes the recirculation length, which is proportional to Reynolds number, to vary along the span with a spa
period independent of the step height and of the Reynoldsnumber. Moreover counter-rotating longitudinal vortic
have been detected. The observed structures seem consistent with the presence of a Görtler instability
curvature of streamlines just downstream of the recirculation region.

A similar problem has been numerically investigated [43]: the boundary layer gets separated due to
mounted on a flat plate. The problem, however, is kept purely two-dimensional here and the work foc
the stability of the recirculation region. Below a critical Reynolds numberRec, the computed steady flow
convectively unstable. Above thisRec, the flow undergoes an unsteady transition leading to a time per
shedding of vortices downstream at low frequency. An analysis of the computational results indicates th
oscillations are due to a change of topology about to take place at the re-attachment region i.e. the breakup
recirculation zone. It is inferred that this breakup may trigger an abrupt transition towards an absolute in
leading to self-sustained modes at low frequency. By adding a smaller bump behind the first one, it is p
to delay this transition by re-accelerating the boundary layer and to produce a true global mode transition wit
clean periodic motion at a global frequency distinct from the previous low frequency and predicted by a no
frequency criterion.

9. Vortices and control

At the end of the previous section, the flow has been manipulated by adding a small bump which a
the overall structure. This is a typical control strategy used to enhance or to reduce some features at th
possible cost. For instance, it is advantageous to reduce the longitudinal vortices produced by the edges
vehicle. Indeed such structures significantly change the vehicle drag coefficient. Such a control strategy can
for instance applied to the Bénard–von Kármán vortex street in a cylinder wake [44]. An experimental pro
has been actually attempted where the cylinder is made to rotate in an oscillatory manner with given fre
and amplitude. When the amplitude is high enough to lock inthe shedding frequency to the forcing frequency,
vortex street is indeed suppressed and the drag is considerably reduced. However the oscillation amplitude is stil
large.
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The vortex breakdown phenomenon is another hydrodynamic aspect which could be also tentatively a
in the context of control methods. This transition is observed for instance over delta wings where the leading e
vortex may suddenly burst at a given axial location, thus engendering a loss of the lift. It can be shown
a linear setting how this situation could be analyzed as a global bifurcation. This bifurcation depends on
factors. First it is related to the local wave stability properties: the flow must be able to transfer energy upstre
downstream. Second the inlet and outlet conditions play a major role in the way these waves are reflected at th
boundaries. It is the complete picture that can explain a possible transition threshold. This theoretical investigatio
emphasizes the role of boundary conditions. It is also shown on a toy problem how, by adding a controller
the inflow boundary, the continuous adjustment of the inlet condition might suppress or at least delay the glob
bifurcation.

Another interesting aspect of control in fluid dynamics can be found in the paradigm of conducting
where an external magnetic field can be used to drive the fluid through the Lorentz force action. Two
flows have been investigated. On the one hand, the magnetohydrodynamics mixer [46] consists in forcing
viscous conducting fluid in a tank using external inductors. On the other hand, the oscillating buoyant drop [47
corresponds to a liquid sphere with oscillating solid boundaries. In both cases, the advection problem leads to a
degree-of-freedom Hamiltonian system, which can be conveniently analyzed by means of Melnikov’s method. T
parameters leading to efficient mixing are analytically determined in the limit of small-amplitude oscillation
larger amplitudes, global chaos is observed. For example, numerical simulations show that an oscillating
be entirely contaminated by species initially located near its periphery.

The surface-tension-driven convection in an electrically conducting liquid layer is another configuration
which an external magnetic field is used to control the flow.The usual control parameter for surface-tension-dri
convection is the Marangoni numberMa = γ q2H 2/ρνκ , whereρ is the fluid density,H the liquid depth,q the
thermal flux,κ the thermal diffusivity andγ = dΣ/dT with Σ the surface tension andT the fluid temperature. In
2D, when no magnetic field is imposed, the first Marangoni instability atMa1

c leads to steady rolls. AtMa2
c > Ma1

c

these rolls accelerate, giving rise to an exponential growth of their kinetic energy, a mechanism known as
‘flywheel phenomenon’. In 3D at zero magnetic field, the scenario is different: the first instability yields hexago
that become unstable whenMa is increased. No flywheel effect is observed. Numerically and theoretically, one ca
study the instability of the 2D rolls towards the 3D hexagonal patterns. The action of an external magnetic
parallel to the initial rolls is first to delay the growth of the instability. Moreover this instability does not res
hexagons but in a chaotic intermittent flow with phases of exponential growth interrupted by roll breakdown a
re-organisation [48,49]. When the magnetic field is perpendicular to the liquid layer, the Lorentz force reduces
flywheel phenomenon.
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