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Abstract

A general review of the current research in vortex dynamics is presented, based on contributions given during a workshop
held in May 2003 at Porquerolles, France. This article aims at providing a picture of the work performed on this subject in the
French community. Various cases are covered, from 2D vortehpato 3D vortex tubes; from isolated vortices to shear flows.
Different contexts are considered: pure Euler and Naviekestflows as well as stratified, rotating and magnetic fldwsite
thisarticle: 1. Delbende et al., C. R. Mecanique 332 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Tourbillons en hydrodynamique. Nous présentons une revue des recherches actuellement menées dans le domaine de la
dynamique des tourbillons. Elleappuie sur les travaux exposés lors dedaférence « Tourbiins en hydrodynamique » qui
s’est tenue a Porquerolles en mai 2003. Leststgbordés couvrent un large éventaitfatique : du tourbillon bidimensionnel
au tube de vorticité tridimensionnel, qudbit isolé ou au sein de couches cisailléess écoulements sont étudiés dans le cadre
des équations d’Euler ou de Navier—Stokes et sont éventuellement soumis a des effets de stratification, de Coriolis ou de champ
magnétiquePour citer cet article: |. Delbende et al., C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Porquerolles is an attractive little resort on the Levant Islands, well known for its delightful wines and noisy
frogs. This southern most archipelago of the FrenchidRa was already noticed by the ancient greeks as the
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‘Stoechades Islands’. It offered a perfect location for the conference held in May 2003 on various aspects of fluid
vortices. From the large spectrum of fluid problenasered, it appeared that maflows can be approached in
terms of the dynamics of an isolated vortex or several vortices. For instance, some aircraft wake properties can
be understood in terms of the action of strain upon vortex wave propagation. This ‘vortex approach’ has been
advantageously adopted in various domains, such as geophysics (atmospherical wakes, sand ripples), aeronautics
(vortex breakdown, trailing vortices), and magnetologhinamics. In a more generatting, this point of view is
also pertinent e.g. for shear flows (wakes, jets), tletece problems (singularities ithe Euler equation, vortex
merging, strained fields) and control issues.

In this review article, we present an overall picture of the French contributions in this field, starting from basic
concepts in 2D and 3D vortex flows, to more complex situations.

1. Pure two-dimensional vortices

Vortex dynamics can be considered to be two-dimensional whenever the flow shows a trivial behavior along
one axis. Typical cases are geophysical, stratified and Hele—Shaw flows. Though pure 2D motions have peculiar
topological constraints, their study is enlightening for a general understanding of fluid dynamics. Cascade processes
in turbulent flows, mixing, boundaryyar and Hamiltonian problems argpical examples where a 2D model is
the first step toward a 3D theory.

A first theoretical viewpoint for 2D flows considers a system of point vortices. This approach presents important
mathematical challenges as well as physical interest. For example, geophysical cyclones can be modelled using
such a Hamiltonian dynamical approach on a sphere. Particular attention is given to cluster formation on a plane
and a sphere. Simple cases with four vortices and given symmetries are analysed in [1]: by carefully studying the
phase space, a bifurcation energy threshold is fourcitt below which clugr formation occurs.

As far as turbulence is concerned, the Euler dynamics of point vortices does not include the merging process
and therefore cannot offer a satisfactory model. Indeed, the turbulent flow behavior is constrained by two cascades.
The inverse energy cascade, which followss@/2 law in momentum space, manifests itself in real space through
vortex mergings, forming large-scale coherent structures. In addition, the direct enstrophy cascade towards small
wavelengths is related to filamentary structures which are also present during merging. Following conservation
rules, a dilute vortex gas model has been proposed [2] which phenomenologically includes the action of merging.
Vortices interact like point vorticewhen they are far apart and fusion ocewhen equal-sign vortices are close
enough. Assuming that the vortex density decreases withrtmse ¢, scaling behaviors for the mean circulation
and vortex radius are then deduced from this simple dynamics. This model is corroborated by numerical simulations
which, in addition, provide the value of T for &. This latter value cannot be a priori determined by the heuristic
model, since a careful understanding of the vortex merging dynamics is first needed.

Recent experiments have analyzed the merging of twimtating vortices in an almost pure 2D geometry [3].

Two identical vortices are generated in a water tankahyimpulsive rotation of two plates. Different steps are
identified during the fusion. First, éhtwo vortices rotate around each other as point vortices and viscosity only
intervenes by increasing the radius of each vortex core. When a critical ratio between the vortex radius and the
distance between vortices is reachadast convective stage begins: the two vortices approach each other while
vorticity filaments are ejected. This critical ratio for merging seems to correspond to the appearance of unstable
modes in an equivalent Euler system. The full dynamics can be advantageously approached by direct numerical
simulations (DNS) where streamlines are considered in the rotating frame of the co-rotating vortices [4]. An inner
region around the vortices is identified and the velocity field can be thus separated in two components: one coming
from the inner vorticity region, the other one from the outer region. The ejected vorticity is found to induce a
velocity field that brings the two vortices closer, in agreement with experimental results [3]. This dynamics is self
sustained since the decrease of vortex separation favors the transfer of vorticity into the filaments. Interestingly,
for high Reynolds numbers, the vortex separation distance displays a plateau-like behavior before complete fusion
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Fig. 1. Left: vorticity field during merging foRe= 15000 at time = 70; right: vortex distance with respect to time.

is achieved (see Fig. 1). An important change in the streamfunction topology is also observed during this interval:
the flow at the center of the system changes from a hyjiemoan elliptic configuratin. This third stage of the
merging, recently observed in experiments, is called #geoisd diffusive stage and viscosity is again important
there.

In many experimental situations such as [3], vorticity is assumed to be marked by dye tracers. However
dye is a passive scalar following an advection—diffusion equation. In 2D this is only an approximation for the
vorticity evolution. Simultaneous numerical studies of vorticity and passive scalar distributions in turbulent flows
are able to differentiate between the two cases [5]réMarecisely, the conditional probability laws for second-
order Lagrangian derivative of vorticity and passive acgradients are computedflooth elliptic and hyperbolic
regions of turbulent flows. It is observed that the numerical vorticity gradients present faster temporal fluctuations
than passive scalar gradients. This property is conserved even when random velocity fields are considered.

2. Geophysical vortices

Large-scale vortices play an essential role in the dyina of oceans and the atmosphere. In these stratified
and rotating geophysical flows, the large-scale stm&s produced by shear iasilities are generally 2D due to
strong effects of Coriolis and buoyancy forces that inhibit vertical motions. For instance, the wind flowing around
mountain islands, revealed by the cloud patterns, generates a vortex street reminiscent of the classical Bénard—von
Karman street. However some geophysical wakes displafegts/e destabilization of cyclonic or anticyclonic
vortices.

The geophysical flow dynamics is mainly characterized by two length schlése obstacle size and; =
/gh/282¢ the deformation radius wherg is the gravity,k the fluid depth and2q the Earth rotation. Three
dimensionless parameters are relevant: the Burger nuiiber (2R;/D)? (ratio of the gravity and rotation
effects), the Reynolds numbBe= U D/v (U is the velocity scale and the kinematic viscosity) and the Rossby
numberRo = U/ D£$2g (ratio of the advective and Coriolis terms).

Large-scale geophysical wake® (> R; or equivalentlyBu « 1) can be studied in the rotating shallow-
water context. This situation is approached by a rotating two-layer experiment as well as numerical simulations.
Experimentally, a thin fresh-water layer lies on a thick salt-water layer. The presence of the bottom layer is only
here to ensure that the interface between the freshsaltdvater behaves like a free-surface. A vortex street is
created by towing an obstacle within the upper layer. As the Burger number increaseButerf.1 to 1, the
asymmetry between cyclonic and anticyclonic vortices is enhanced: the cyclones become more elliptic whereas
the anticyclones remain axisymmetric. Numerical simulations combining a pseudo-spectral scheme with a volume
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penalization method to take the obstacle into account are in good agreement with the previous experiments near
Reynolds numbeRe = 400 and Rossby numb&o = 0.25 [6].

In order to investigate a large Burger numbu (> 1) situation, another experimental setup has been devised:
an elongated cylinder is pulled in a rotating tank to produce the geophysical Bénard—von Karman street. At
intermediate Reynolds numbeRg~ 150), order one Rosshy numbeRo(~ 0.4-4) and large Burger numbers
(Bu ~ 10°-10%), the previously reported asymmetry is reversed between cyclones and anticyclones. Cyclones
are found stable and axisymmetric whereas anticyclohasacterized by a weak elliptic distribution of vorticity
become unstable. This destabilization occurs in the vortex core as in the elliptic instability while the vortex
periphery remains unaffected. Moreover, unlike the centrifugal instability, the vertical wavelength increases with
the Rossby numbdRo [7]. Therefore this asymmetry is probably due to the inertial elliptic instability rather than
to the centrifugal instability.

Vortices can also be observed at very different geophysical scales e.g. during the formation of sand ripples on a
beach. This process has been mimicked in an annui&rfiéed with a sand layer on top of which an upper layer
of fluid oscillates. An initial pattern emerges consisting of small amplitude and wavelength ‘rolling grain ripples’.
PIV measurements described in [8] show that a vortekésldrom each of the crests in alternate directions during
each half period. These new observationstradict the usually inferred mechanism for crest formation based on
the presence of two counter-rotating vortices between twoessive crests. However, this initial pattern eventually
gives way to the formation of large amplitude and wavelength ‘vortex ripples’.

3. Pure three-dimensional vortices

Vortices are classically known to sustain propagating waves called Kelvin or inertial waves. Most features
pertaining to the vortex three-dimsional dynamics deperah the phase and group velocities as well as on the
spatial structure of these waves. Such aspects have been studied [9] on a typical smooth vorticity profile: the
Lamb—Oseen vorteXs = I" (1 — exp(—(r/a)?))/2nr whereI", a denote the circulation and vortex core size,
respectively. In the remaining part of this section we use dimensionless quantities baSeahdm. A viscous
stability analysis in terms of normal modgsér) exp(ikz + imé — iwt) with @ = w, + iw; confirms that all modes
(k,m) are stabled; < 0). If the axisymmetric modesn = 0) are weakly affected by viscosity, this is not the
case of double helix modés:| = 2 and higher modepr| > 2, which generally undergo a significant damping.

The influence of the Reynolds numbge = I"/2x v on helical modesi = +1) is quite dependent an, /m the

angular velocity in the vortex cross-section. For left-handed helical waves ¢ 0), the following trends are
observed. Modes withy, /m > 1 propagate along the vortex in the positive axial direction and are particularly
damped for long axial wavelength— O where their spatial struate becomes concentrated neat 0. Helical

modes with O< w, /m < 1 are singular (critical layer) anddhly damped. Finally modes with, /m < 0 propagate

along the vortex in the negative axial direction. Among these, the so-called bending or slow mode corresponds to
the translation of the vortex axis without modification of its internal structure. This mode, which is characterized by
a group velocity tending towards zero for— 0, is barely modified by viscosity. Right-handed wavies® < 0)

have similar properties and opposite group velocities. An initial value simulatidRefer 1000 confirms the above
features by displaying the response dafeanb—Oseen vortex to an initially locaéd left-handed perturbation after
several overturn periods. Because of its negative grolgeitg and its small damping, the slow wave mode rapidly
emerges from a localized perturbation. A fraction of the energy, concentrated in the singular modes, does not
propagate and is rapidly damped. Another small fractiooigained in a concentrated structure propagating in the
positive direction.

The transient evolution of perturbations supgroved to the Lamb—Oseen vortex can be characterized by
another approach [10]. Instead of resorting to standarchal modes analysis, one uses the so-called non-normal
approach based on an optimizatiorlplem: given a perturbation of the forti(r, r) exp(ikz 4+ im#6), find the
optimized timer corresponding to a maximum amplification gdirir) = E(r)/E(0) of the disturbance kinetic
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energyE(r). Given the parameter&, m) and Reynolds numbeRe, this optimization problem is solved by an
iterative procedure. The curve of maximum amplification versus axial wavenufibemodesn = 1 possesses a
peak at a short wavelengitr 1.4 which is almost independent of the Reynolds number. However the maximum
amplificationG (r) and the optimized time corresponding to these wavenumbérsn) evolve withRe leading

to significant growth even at moderaRe. The initial optimal perturbation can be described as spiral sheets
subsequently evolving at the optimized timento a strong bending wave in the vortex core. This evolution is
reminiscent of the Orr mechanism active in boundary layers.

4. Three-dimensional vortices in the presence of a strain field

The previous section addresses the dynamics of pettanisgpropagating on a given vortex profile assuming
that the action of other vortices and boundaries can been disregarded. However, a closer look at this dynamics under
the influence of external factors may be necessary. This is true for the problem of four vortices in a counter-rotating
configuration. Such a seemingly ‘baroque’ configuration appears commonly in aircraft wakes during landing or
take-off and is known to have time dependent i.e. periodic, stationary or divergent solutions. It is interesting
to analyze its stability in order to promote the disruption of this configuration in real cases. The problem has
been studied [11] using an analogue to the linearizatexdilament method developed for the Crow instability
of two counter-rotating vortices. The long wavelength approximation provides a non-autonomous eighth-order
dynamical system which describes the mean positionseofdtir vortices. The non-noral technique mentioned
in the previous section is then employed for this timeeatetent problem since it by-passes the assumption of an
exponentially growing normal mode. The results indicht the weak Crow instability of the stronger vortices,
i.e. the aircraft outboard vortices, can be enhanced byrisepce of a second vortex pair, i.e. the aircraft inboard
vortices. The optimal amplifications are obtained for unrealistic aircraft engineering conditions. However, some net
amplification is clearly possible for realistic situations: the Crow instability may thus be controlled by manipulating
the other vortex pair. Nevertheless such encouraging results may be modified in the nonlinear regime.

The potential flow due to other vortices or boundaries may also lead to profound modification of the internal
dynamics of a given vortex. Inside the vortex, an external strain may be approximated under tHe.striéjny z)
wherez denotes the vortex axis. If the strain is purely 2D — 8 andy = 0), the basic vortex streamlines deform
and become elliptic. This effect leads to a generic core mechanism: the elliptic instability. This aspect has been
experimentally explored [12] using a deformable shell filled with water which is rotated at constant angular speed
while two or three rollers are positioned at the periphery so that a dipolar or tripolar excitation is applied to the
flow. This set-up generates a columnar vortex submitted to a dipolar or tripolar strain. Instability modes arise from
the resonance of two vortex Kelvin waves caused bypitesence of the external strain. When the aspect ratio
and the number of rollers are varied, several modes have been observed due to resonances between azimuthal
wavenumbersig = -1, m = 1), (m =0, m = 2), (n = 1, m = 3). For the triangular forcing, resonance modes
were found for the pairs{ = —1, m = 2) and (= = 0, m = 3). With increasing Reynolds number, such modes
first undergo a nonlinear saturation towards a stationarg,dta¢n sustain a secondary instability, and eventually
reach a stage where the vortex structure breaks down imédi scales. The explosion is thereafter followed by a
relaminarization of the flow, generating a new elliptical or tripolar vortex and thus a new instability cycle. These
observations are in close agreemetith a weakly nonlinear analysis thouge explosion is clearly still to be
elucidated. More recently another gednal configuration has been consigd, namely a sphere [13]. A spin-
over mode is evidenced whereby an S-shaped vortex gltadiita and saturates nonlindgr Intermittent behavior
has also been observed in this experiment. This new set-up is of great interest since it is an experimental analogue
of the earth’s liquid iron core subjected to tidal deformations. The question is raised whether this phenomenon has
a link with the earth’s magnetic field reversals and more generally with the dynamo problem.

Another possible strain corresponds to the three-dimensional axisymmetrig fase—a = —f > 0 e.g. the
celebrated Burgers vortex. Strangely enough, the stalfityis classical Navier—Stokes solution had not been
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considered. In [14], the Burgers vortex is shown to be asymptotically stable to any three-dimensional perturbations
though significant transient growth may be present. This result is obtained by using an extended spatio-temporal
Lundgren transformation and a time-dependent non-diioeakzation, which reduce this problem to the linear
stability of the Lamb—Oseen vortex up to a time-dependent factor affecting the axial gradient terms. The
transformed problem can then be solved by an optimization problem. A spatio-temporal Lundgren’s transformation
was also used to detect solutions which possess a finite time singularity in the context of the Euler or Navier—Stokes
equations. This singularity which may stand at the heart of the turbulence problem has been observed in numerical
simulations. In order to avoid the possible numerical origin of such a divergence, another viewpoint has been
adopted [15]: a change of space—time variables is usé@nsform the singular betiar in the Euler equations
into regular behavior of a transformed Euler problem. Introducing the new time vakiable log([t* — t]/1*),
the Euler equations can be transformed into a system of equations which are autonomous in the logarithm of time,
in such a way that the time of the hypothetical singularitis sent to infinity. The form of the transformed velocity
U is dictated by the conservation of circulatior, z, 1) = /T/(t* —t) U(R, z) whereR denotes the transformed
lengthR = r//T (t* — 1). It is argued that for an axisymmetric flow with swirl, the constraints arising from the
conservation of energy and circulation are compatible with a solution collapsing on a line [16]. Leaving the axial
space variable unaffected by the similarity transformation, it is shown that the problem can be reformulated in
terms of a streamfunction and a circulation variable, following the Bragg—Hawthorne procedure. This leads a set
of explicit equations. If such equations possess a smootitigolsatisfying certain conditions, the original Euler
equations then possess a finite-time singularity.

Going back to experimental considerations, the Burgers vortex profile is difficult to isolate in an experimental
situation similarly to what was achieved for the elliptic instability [12]. In [17], a stretched vortex is generated in
a water channel. A boundary layer first develops due to an inflow of mas®fuXhe separation, roll-up and
suction of this boundary layer then generates a vortexhwisisymmetrically attached to two holes located at each
side wall. The fluxQ», entering these two openings equals the entire mass@huxThe vortex velocity field is
much more involved than a pure Burgers vortex since the axial stretéhingraries along the vortex axis as well
as along the radial direction. Note that the vortex core is much smaller than the size of the holes. An asymptotic
analysis coupled to a closure assumption has led to a theoretical model which nicely fits the PIV measurements
obtained in the water channel. Experiments have atsmlronducted so as to characterize the dynamics of this
basic stretched vortex or of the waves it may support. For instance, the power dissipated due to the axial gradient
has been measured to be of the same order as therptissipated due to the azimuthal velocity.

When the mass flux21 is not completely sucked into the two holes, the vortex can be @ntigrger but
close toQ») or an almost periodic cycle of vortex creation and destruction app@arka(ger than a critical value
proportional toQg/ 3) [18]. This latter case is characterized by tlmgration of the vortex, its downstream motion
followed by its detachment from the two holes and an abrupt breakdown the underlying mechanism of which is
not fully understood. This burst generates small scales. From a velocity sighaheasured around the explosion
location during a long enough period (two thirds of the rotation period), one can finel &energy spectrum. This
experimental result can be associated with the numerical procedure followed by Lundgren. Another experiment
[19] has been deviced to generate a stretched vortex. Two co-rotating disks generate a background vorticity while
suction is applied through the holeclated at the center of each symmetrigkdiThis motion produces a symmetric
stretching which concentrates the Ekman vorticity and creates a vortex filament. The pressure gradient which is
imposed to get a constant mass flux through the holes has been shown to depend on the vortex: for low disk rotation,
the pressure increases with rotation due to a pure stretching effect. For higher rotation, the vortex is strong enough
and counterbalances this effect by a centrifugal effect in the vortex center leading to a decrease of the pressure
gradient with rotation.
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5. Three-dimensional vortices in the presence of an axial jet

In fully turbulent flows as well as in aircraft wakes, coherent vortices may sustain an axial jet component which
alters considerably their stability properties. The prototype of such trailing vortices — also an asymptotic solution —
is the Batchelor vortex, also known as fpeortex:

_ g (r/a)?
V() =0,  Vo(r)= % 15/70 V.(r)=We 1,
whereI” denotes the circulation andthe core size, identical for both jet and swirling components. The Reynolds
numberRe = Wa/v is based on the maximum axial velocitly. The inviscid stability of this flow is governed by
the swirl numbey = I"'/(2raW): the trailing vortex becomes inviscidly unstable below a critical value 1.5
with respect to helical perturbations with azimuthal wavenumber0.

While inviscid instabilities are well documented, the systematic investigation of viscous instabilities is quite
recent [20]. It has been shown that viscous instabilities are likely to grow at any swirl lelRel-asoco (which
is a singular limit). More precisely, the critical swirtJel above which the flow is stable is shown to behave
asymptotically agc ~ 0.14Rel/3, the critical mode being: = —1. The structure of the modes prevailing at high
swirl consists of viscous oscillations localizedand the vortex centerline (for radial distance: Re~1/6). They
can be analyzed in analogy with the wavefunction of a quantum particle in a semi-infinite potential sink [21].
Located in the core, these modes should exist for anljngavortex, and might be linked with vortex meandering,

a well-known phenomenon in aerodynamics, which is stillxpteined. At low swirl level, other viscous modes
prevail: ‘ring modes’ which can be studied in analogy with the quantum double-infinite sink problem. Even though
the associated growth rates are rather small, these findings considerably widen the rather confined instability
domain predicted in the inviscid frame.

When two trailing line vortices are present as in the far wake of an aircraft, the mutual effect consists, besides
the downwards pair translation, of alfigtic deformation of the structuresnlpure vortices, i.e. without axial flow,
this effect is known to enhance the elliptic instability with maximum dimensional growtlarraiq%y. This effect
has been examined in the case where an axial flow is superimposed on the vortex [22]. For the Rankine vortex
with top-hat jet profile, the elliptical instability persists. In contrast, when the vorticity is not localized in space as
e.g. in the Batchelor vortex, the mode structure imeslcritical layers which aréhought to dampethe elliptical
instability. Other resonance modes might arise.

Axial strain applied to a Batchelor vortex flow is likely to enhance instability [22]. More specifically, axial
compression preserves the axisymmetry of the flow which remains a Batchelor vortex, but it is able to lower
the instantaneous swirl numbers) below its critical value at B. For sufficiently small strain rateg <« 1,
the instantaneous growth rate is shown to batesl to the growth rate of an unstretched fida a quasi-static
approximation. The predicted growtiiinviscid helical instabilities hasden corroborated by DNS of the Navier—
Stokes equations using Lundgren variables, linearized in the vicinity of the compressed/stretched Batchelor vortex
atRe~ 670, showing the effective growth of interwoven filaments (see Fig. 2). These findings have been proposed
as a simple mechanism to explain the sudden burst of intense vortex structures as observed in fully turbulent flows.
Assuming that the large-scale motion acts as a strain field on the vortex, it could lead to the disruption of initially
stable vortices with high initial swirl level.

When one is interested with the long-time behavior afitrg vortices, it is naturato investigate the nonlinear
dynamics of the primary instability. A range of swimumbers is particularly interesting: when<lg < 1.5,
the vortex destabilizes through the inviscid ingligh mechanism, but nonlineaeffects eventually lead to
restabilization due to a decrease of the mean axial flbus tan effective increase of swirl above the critical
value 1.5. In [23], this latter property has been interpreted in the framework of local instability with respect to
radial distance in the short-wave limit. More precisely, a buffer zone has been shown to existgvhehat the
periphery of the vortex, where the Leibovich—Stewartson criterion, a necessary condition for stability in trailing
vortices, is locally satisfied. By DNS of the full Navier—Stokes equatiorfiReat 3120, it has been shown how
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Fig. 2. Time evolution of a initially stable Batchelor vortex when submitted to time varying strR®-at670 (half-period of axial compression
followed by half-period of axial stretching).

the turbulence initiated in the core region takes epgmgferentially from the axial flow component and is then
dispersed through the buffer zone as inertial waves, without any pumping of azimuthal velocity. This induces a
swirl rate increase and a restabilization of the turbulent core, features to which the persistence of trailing vortices
in aircraft wakes is ascribed.

6. Three-dimensional vortices in the presence of stratification

In stratified flows encountered in geophysical conteatsajor question which is still unanswered concerns
the relationship and difference between a pure two-dimensional turbulence and geophysical turbulence in which
motions are almost quasi-horizontal due to the strong influence of stable density stratification or Earth rotation.

Numerical simulations reveal the presence of a horizontally layered structure in stratified flows, which enhances
energy dissipation. In addition, large scale structures have always a limited vertical extent like ‘pancakes’ and layers
appear to be decoupled. An instabilibechanism may be responsible foistdiecoupling. Such an assumption has
been tested in the simpler context of the relaxation of a pair of long co- or counter-rotating vertical columnar
vortices in a stratified fluid. When the vortices are cewmnbtating, the Crow instability (see Section 4) and the
short scale elliptic instability are inhibited by stratification. However, a third instability called zigzag instability
arises. This process which can be interpreted in terms of slow bending Kelvin modes, slices the columnar vortex
pair into horizontal layers of pancake-like dipoles [24-26]. A typical wavelength scaleE Jikg whereU is the
horizontal velocity scale anft¥ = /gd,0/p the Brunt-Vaisala frequency. An equivalent experimental situation
has been studied in a tank filled with a linearly stratified salt solution in which a columnar vertical pair of vortices
is created by rotating two flaps. This flow is characterized by two dimensionless parameters: the horizontal Froude
numberF, = U/NR (ratio of buoyancy and inertial forces) and the Reynolds nurifeet U R/v whereU, R
andv are the initial propagating speed, the dipole radius and the mean kinematic viscosity, respectively.

When the two vortices are corotating, numerical and theoretical studies show for a large range of Reynolds
numbers Re~ 100-15000) the existence of two kinds o$iabilities [27]. For weak stratificationFy, > 2), the
dominantinstability is of the elliptic type with two unstable modes. For strong stratificafijor @), a zig—zag-like
phase instability occurs instead, involving a single unstable symmetric mode.

Another experiment has beearried on a counter-rotating pair of vortices in a stratified fluid, placed on a
rotating platform. Two other types of instabilities have been observed solely affecting the anticyclonic vortex: an
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Fig. 3. (a) Experimental configuration. The inset illustrates azialutielocity contours (left) and meridional velocity field (right) of the
axisymmetric flow determined by numerical simulation [30]. (b) Velo@igyd and radial vorticity at a fixed radius showing a steady corotating
pair of vortices. (c) Unrolled quantities as in (b).

axisymmetric centrifugal mode and a new asymmetric oscillatory mode. A stability analysis of the Lamb—Oseen
vortex indicates that the mechanism for the asymmetric instability is centrifugal.

7. Shear layers and sheets
7.1. Vorticesin shear layers

The famous inviscid Rayleigh criterion statesecessary instability condition: an unstable 2D prafi(e)e,
must present an inflexion point. In mixing layers this instability is called the Kelvin—Helmholtz instability. Such
a mechanism is characterized by a vorticity fieldy) €%*e. and gives rise to a chain of co-rotating cat’s eye
vortices. The flow driven by two counter-rotating disks displays vorticity patterns bearing a resemblance to the
above mentioned vortices. This has been shown in two testedies where the geonmnigts of the forcing system
are different: in [28], the flow is produced by the counter-rotation of the bottom disk and the top disk attached to
the lateral wall; in [29,30], the lateral wall is fixed (see Fig. 3). The common non-dimensional parameters are the
height-to-radius aspect ratis = H/R and the ratio of the angular disk velocities= £2iop/$2pot. The resulting
pattern in [28] is a superposition of vertical co-rotatingrtices connected to the boundary layers through spiral
arms. Experimental and numeal results performed for variousand small values of” collapse on the same
instability curve for spirals and vortices. This proves that such structures are two aspects of the same instability due
to the following mechanisnhe centrifugal effects afach rotating disk create a detached boundary layer over the
slower disk, leading to a free shear layer of velocityr, z)ey in the bulk of the flow. Treating the-dependence
as parametric, the basic profilg(r) can give rise to vertical Kelvin—Helmholtz vortices. In contrast, the resulting
pattern in [29] where the two disks are exactly counter-rotating is a chain of radial co-rotating vortices. For different
I' = O(1), the basic state is unstable through the Kelvin-Aitedltz instability of the quatorial azimuthal shear
layer created between the two recirculating zones due to Ekman pumping. The analysis is performed using a basic
velocity profileug (z) neglecting the-dependence. The resu#tee compatible with the emergence of radial vortices
at the Kelvin—Helmholtz threshold. In these examples, the instability of the free sheanjdyer) gives rise to
vortices of different orientations depending on the geometry of the forcing.

The above analysis is based on simplified basic m®efithere stretching and curvature are neglected. By
contrast, the effect of an external hyperbolic strain flow is introduced in [31,32] for the Kelvin—Helmholtz
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Fig. 4. Vorticity isocontours of the most amplified perturbatiom &t20 for a stretched shear layer. Topr at 0; bottom: atr = 20.

instability in the context of inviscid and viscous dynamics. Due to stretching, the basia:flow)e, is now
unsteady. The evolution of perturbations is to be studied in the non-normal analysis framework in order to obtain
the maximum amplification gain at a given time. The inviscid study is performed on a basic broken-line velocity
profile perturbed by 2D unsteady disturbances defined by a streamfugation) €. A negative stretching
(compressive zone) stabilizes the mixing layer while a positive stretching is destabilizing. In the viscous limit,
the basic state is chosen to be the standardtgiily)) profile with a time-varying widtt8 () due to the unsteady
stretching. Evaluation of the maximum amplification gain of perturbations is performed using the adjoint operator.
This viscous approach demonstrates that the main conclusions of the inviscid case are not affected. A view of the
disturbance which is optimal at= 20, is shown at = 0 andr = 20 in Fig. 4.

Two classical flows evade the inflexion point criterion and present a strong analogy: Taylor—Couette (TC) and
plane Couette (PC) flows. Both are produced by the diffibmotion of their boundaries: differential rotation
of the two co-axial cylinders in TC, differential trdation of the two plates in PC. A recent research axis has
taken advantage of the analogy between the two flows: known patterns in TC such as rolls and banded turbulence
have been demonstrated in PC, both experimentally and numerically. In PC, the dynamics is governed by one
non-dimensional parameter, the Reynolds nunitee= AuAy/v where 2Au denotes the differential translation
velocity and 2\y the spanwise distance between the two plat®3.Q, there are three dimensionless parameters:
the aspectratig = rin/rout, the ratio of angular velocitigs = £2oyt/ 2in and the Reynolds numb&e = rin 2ind /v
whererin and$2in (resp.rout and2oyt) are the inner (resp. outer) radius and angular velocitys 2he gapwidth. In
[33,34], the PC flow perturbed by a thin spanwise-oriented ribbon shows a first bifurcation towards 3D streamwise
rolls at Re >~ 230. This bifurcation is followed by various others towards a series of stable and unstable steady
states presenting different wavenumbers and symnsettiewever transition to turbulence occurs around a higher
Reynolds numberRe ~ 300) and is as sudden and unexplained as that occurring in PC flows without ribbon.
Hence, there is apparently no connection between theReynolds number bifurcations of the ribbon-perturbed
PC and the transition to turbulence in the classical PC flioiB5], transient growth is studied in counter-rotating
TC flows as a function of aspect ratipand Reynolds numbeRe. The PC case is recovered fgpr= 1. For
Re < 500, the greatest transient amplification is achieved for a valug ofl, meaning that transient growth
is enhanced by curvature. The optimal inputs are concentrated in the meridional velocity components while the
optimal outputs are dominated by the azimuthal velocity component. This modification is due to the creation of
streaks by the vortices which is also the essential mechanism for the transition to turbulence in PC flow.
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7.2. Vortex sheet roll-up

Vortex sheets can be numerically studied using Lagrangian vortex methods: vorticity is represented as a
collection of N vortex points and the evolution is governed by a systenvodrdinary differential equations.
The induced Lagrangian velocity, of a particle p situated atr, is given by the Biot-Savart lawd, =
Z;"le(rq —r,,8) A 2, wheref2, is the vector vorticity weight. The @en kernel for the vector Laplacian

operatorK op(r) = —r /22 or Kap(r) = —r /4713 must be regularized so that the= 0 singularity is smoothed.
A small regularization parametéris thus introduced: in the 2D study [36], the kerket, §) = —r /27 (r2 + §2)
is used, while in the 3D study [37K (r, §) = —r /4w /r® + 8.

In [36], an initially unstable vortex sheet discretized as a line of point vortices is considered. The vortex sheet
develops a Kelvin—Helmholtz instability. During its norear time evolution, a perturbation is added to test the
sensitivity of the sheet against a secondary instability. Th&igeon of this perturbation towards secondary vortices
depends on the local strain rate: stretching inhibits growth while compression enhahtteis itound that the
growth rate and the characteristic length scale of thersdary instability are fixed by the regularization parameter
8. During the subsequent nonlinear time evolution, the stretching rate varies in time and space and is directly related
to the density of vortex points along the sheet. This density is concentrated in peaks distributed along the sheet and
gives rise to an intermittent distribution of vorticity. Such a phenomenon resultsifi @elocity spectrum similar
to that found in 2D turbulence.

The vortex method has been tested in 3D in the case where a circular jet is emitted into a medium with
lateral flow [37] (like a chimney exhaust in the wind): a leading vortex ring forms and is eventually stretched.

A ‘remeshing’ procedure is then necessary, whereby particules are redefined wifh,newights at the nodes of

a regular mesh, in such a way that the physical properties of the flow are preserved. This procedure also prevents
particles from becoming locally too dense or too sparse. The number of particles is controlled by an empirical
vorticity threshold below which the particles are suggsed. This method qualitatively accounts for the dynamics

of ajet bent by a lateral flow, including the formation of vortex rings and of two curved streamwise counter-rotating
vortices.

8. Vortices in wakes

Cylinder wakes have often been considered as the archetype of wake flows, especially regarding the sequence
of instabilities arising whkn the Reynolds humb&e= U D/v (D denotes the diameter) is gradually increased.
Above the critical valud&re; = 47, the celebrated Bénard—von Karman vosgret occurs. The alternate saturated
primary vortices form a quasi-periodic pattern of streamwise wavelengthwhich may then sustain secondary
instabilities: whenRe > 190 a three-dimensional symmetric (or A-) mode of spanwise wavelengts Aop
grows; forRe > 260 it is replaced by an anti-symmetric (or B-) mode of much smaller wavelémpgti A2p.

A thin flat plate wake [38] differs significantly from that of a cylinder: both types of modes can be observed
at the same Reynolds number above threshold, and the wavelengthithe anti-symmetric mode is about the
same as thats of the symmetric oneiz ~ s~ App). A temporal study of theseesondary instabilities has been
numerically performed [39]: one spatial period of the basic flow is first obtained by a 2D DNS of a Bickley wake
(velocity deficit proportional to cogity/d)) in the vicinity of which the 3D evolution Navier-Stokes operator
is linearized. The maximum growth rates of the leading symmetric and anti-symmetric modes are found to be
equivalent. They are attained at comparable wavenumbers. This supports the occurrence of both patterns for the
same experimental conditions with@ut the same wavelength. The locHiptic instahlity theory applied at the

1 This result seems to contradict the conclusions of [31,32]. The liftar is due to the geometry: the stretching is 2D in [36] while it is 3D
in [31,32].
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elliptic point in the primary vortex cores (where the local strain raje)iallows one to evaluate a maximum growth

ratec = %y in very good agreement with the growth rates obtained numerically. By contrast, the local hyperbolic
theory in the braid leads to growth rates up to 5 timegda a feature which is never observed numerically.
Hyperbolic regions can at most sustain intense transient growth, but their long time perturbation growth seems
always slaved to that of the elliptic point.

Sphere wakes are very different from cylinder or plate wakes. For 2Fe < Re; = 280, the flow
behind a sphere consists of two stationary counter-rotating streamwise vortices. Riowertex loops are
shedded periodically. This now well-documented dynamics is relevant in bubbly or particle-laden flows for low
concentrations. At higher concentrations, neighboring objects interact, as in the following experiment [40]. Two
spheres are placed side by side in a uniform flow. Whesy #re sufficiently spaced, their wakes are uncoupled.
Several regimes are then observed as the spacing between the spheres is gradually reduced: in-phase oscillations,
anti-phase oscillations, and eventually strong med@niortex-induced vibrations. In this latter case, a DNS
shows that the inter-sphere flow sticks to one of the spheres, or to the other: the observed vibrations may be linked
to this bi-stability property. For touching spheres, a sngake is obtained. Other exjiaents reveal the dynamics
of the flow in the vicinity of a single sphere moved orthogonally towards a solid plane or a free-surface and abruptly
stopped [41].

The backward-facing step constitutes a basic model of baytalger separation since it contains a feature at the
heart of any wake flow structure: a recirculation region. This situation is also present in many industrial problems.
This flow has been investigated experimentally in the stationary regime [42]. The presence of a three-dimensional
stationary structure periodic in the spanwise diretti@s been ascertained by PIV measurements. This pattern
causes the recirculation length, which is proportidnaReynolds number, to vary along the span with a spatial
period independent of the step height and of the Reyrldsber. Moreover counter-rotating longitudinal vortices
have been detected. The observed structures seem consistent with the presence of a Gortler instability due to the
curvature of streamlines just dowresam of the recirculation region.

A similar problem has been numerically investigated [43]: the boundary layer gets separated due to a bump
mounted on a flat plate. The problem, however, is kept purely two-dimensional here and the work focuses on
the stability of the recirculation region. Below a critical Reynolds numReyr, the computed steady flow is
convectively unstable. Above thiRe., the flow undergoes an unsteady transition leading to a time periodic
shedding of vortices downstream at low frequency. An analysis of the computational results indicates that such
oscillations are due to a change of tapgy about to take place at the re-attachment region i.e. the breakup of the
recirculation zone. It is inferred that this breakup may trigger an abrupt transition towards an absolute instability
leading to self-sustained modes at low frequency. By adding a smaller bump behind the first one, it is possible
to delay this transition by re-accelerating the boundaygiand to produce a true global mode transition with a
clean periodic motion at a global frequency distinct from the previous low frequency and predicted by a nonlinear
frequency criterion.

9. Vortices and control

At the end of the previous section, the flow has been manipulated by adding a small bump which affected
the overall structure. This is a typical control strategy used to enhance or to reduce some features at the lowest
possible cost. For instance, it is advantageous to reduce the longitudinal vortices produced by the edges of a road
vehicle. Indeed such structures significantly change #técle drag coefficient. Such a control strategy can be
for instance applied to the Bénard—von Karman vortex street in a cylinder wake [44]. An experimental procedure
has been actually attempted where the cylinder is made to rotate in an oscillatory manner with given frequency
and amplitude. When the amplitude is high enough to lodkéshedding frequency to the forcing frequency, the
vortex street is indeed suppressed and the drag is amasily reduced. Howevereloscillation amplitude is still
large.
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The vortex breakdown phenomenon is another hydrodynamic aspect which could be also tentatively analysed
in the context of control methods. This transition is olbsérfor instance over delta wings where the leading edge
vortex may suddenly burst at a given axial location, thus engendering a loss of the lift. It can be shown [45] in
a linear setting how this situation could be analyzed as a global bifurcation. This bifurcation depends on various
factors. First it is related to the local wave stability properties: the flow must be able to transfer energy upstream and
downstream. Second the inlet and outlet conditions playpnmole in the way these waves are reflected at these
boundaries. It is the complete picturetican explain a possible transition thine¢d. This theoretical investigation
emphasizes the role of boundary conditions. It is alsows on a toy problem how, by adding a controller at
the inflow boundary, the continuous adjugint of the inlet condition mightuppress or at least delay the global
bifurcation.

Another interesting aspect of control in fluid dynamics can be found in the paradigm of conducting fluids,
where an external magnetic field can be used to drive the fluid through the Lorentz force action. Two similar
flows have been investigated. On the one hand, the magnetohydrodynamics mixer [46] consists in forcing a highly
viscous conducting fluid in a tank usingternal inductors. On the other i@, the oscillating buoyant drop [47]
corresponds to a liquid sphere with oscillating solid boundahigsoth cases, the advection problem leadsto a 1.5
degree-of-freedom Hamiltonian system, which can be eniantly analyzed by means of Melnikov’s method. The
parameters leading to efficient mixing are analytically determined in the limit of small-amplitude oscillations. For
larger amplitudes, global chaos is observed. For example, numerical simulations show that an oscillating drop can
be entirely contaminated by species initially located near its periphery.

The surface-tension-driven convection in an elealty conducting liquid layer is another configuration in
which an external magnetic field is used to control the flbiae usual control parameter for surface-tension-driven
convection is the Marangoni numbketa = yg2H?/pvk, wherep is the fluid densityH the liquid depthyg the
thermal flux« the thermal diffusivity ang’ = dX'/dT with X the surface tension arid the fluid temperature. In
2D, when no magnetic field is imposed, the first Marangoni instabilityia leads to steady rolls. AvlaZ > Ma’
these rolls accelerate, giving rise to an exponentialgnoof their kinetic energy, a mechanism known as the
‘flywheel phenomenon’. In 3D at zero magnetic field, the senis different: the first instability yields hexagons
that become unstable whéfa is increased. No flywheel effect is obsedv®lumerically and theoretically, one can
study the instability of the 2D rolls wards the 3D hexagonal patterns. The action of an external magnetic field
parallel to the initial rolls is first to delay the growth of the instability. Moreover this instability does not result in
hexagons but in a chaotic intermittent flow with phasesxpiomential growth interrupted by roll breakdown and
re-organisation [48,49]. When the magjndield is perpendicular to the liquid layer, the Lorentz force reduces the
flywheel phenomenon.
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