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Abstract

The study deals with a rotor—stator contact inducing vibration in rotating machinery. A numerical rotor-stator system,
including a non-linear bearing with Hertz contact and clearance is considered. To determine the non-linear responses of this
system, non-linear dynamic equations can be integrated numerically. However, this procedure is both time consuming and costly
to perform. The aim of this Note is to apply the Alternate Frequency/Time Method and the ‘path following continuation’ in
order to obtain the non-linear responses to this problem. Then the orbits of rotor and stator responses at various speeds are
investigatedTo cite thisarticle: J.-J. Sinou, F. Thouverez, C. R. Mecanique 332 (2004).
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Résumé

Dynamiquenon-linéaired’ un ensemblerotor—stator comportant un roulement non-linéaire avec jeu. Une étude portant
sur la dynamique non-linéaire d’'un systeme dans les machines tournantes est présentée. Nous considérons un systéme rotor—
stator comportant un roulement non-linéaire avec jeu et contact de Hertz. Afin de déterminer la réponse non-linéaire de
ce systeme, les équations dynamiques non-linéaires peuvent étre intégrées numériquement. Cependant, cette procédure est
colteuse en terme de temps de calcul et de ressources. Le but de ce papier est de proposer I'application d'une méthode de
balance harmonique pour déterminer la réponse non-linéaire du systéme. Ainsi, les orbites du rotor et du stator sont obtenus
pour différentes vitesses de rotatidtour citer cet article: J.-J. Sinou, F. Thouverez, C. R. Mecanique 332 (2004).
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1. Introduction

The motivation of this study comes from vibration problems induced by rotor—stator contact in turbo-machinery.
In fact, various types of non-linear phenomena and effects appear, such as rotor—stator contact and clearance bearing
[1,2]. During recent years, the understanding of dyeamic behaviour of systems with non-linear phenomena
has been developed in order to predict dangerous or favourable conditions and to exploit the whole capability
of structures through systems working in the non-linear range. In general, time-history response solutions to the
full set of non-linear equations can determine vibrationphitudes, but are both time consuming and costly when
parametric design studies are needed. Due to the fact that such non-linear systems occur in many disciplines of
engineering, considerable work has been devoted to development of methods for the approximation of frequency
responses. One of the most popular method is the Alternate Frequency/Time domain (AFT) method [3], based on
the balance of harmonic components. In this study, a rotor/stator system with bearing, including Hertz contact and
clearance is presented first. Secondly, the efficiency of both the AFT method and the path following continuation
is demonstrated in order to obtain the non-linear behaviour of a rotor—stator system with bearing, including Hertz
contact and clearance; this method allows us to save time, in comparison with a classical Runge—Kutta integration,
by transforming non-linear differential equations into a set of non-linear algebraic equations in terms of Fourier
coefficients.

2. Analytical model
2.1. Non-linear contact

In this model, the Hertz thegis considered in order to evaluate cacttbetween the balls and the races [4]. As
illustrated in Fig. 1, each ball can be located by its angular pos#tiofhen, the radial non-linear contact force
generated on theth ball can be defined as follows:

Fradial(Ar) = K (A, —8)%2 if A, =5 (contact)  Fragia(A,) =0 otherwise (no contact) 1)

wheres andA, are the radial clearances value and the relativatdistance between the inner and the outer races
of thekth bearing.A, can be expressed by considering horizontal eertical displacemerof the inner and outer

Fig. 1. Description of the bearing: (a) location of ttth ball, (b) rolling bearing.
Fig. 1. Description du roulement : (a) localisation d&$4'bille, (b) roulement a billes.
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races of the&th bearing. One had, = coY6k) (xinner— Xoutep + SiN(Bx) Vinner— Youten . The effective stiffnesK 4
is the combined stiffness of a ball to inner race and outer race contacts and is defined by [4]:

Ky =1/(1/K*+1/k2?) 2

L
The ball-bearing model under consideration in thiglgthas equi-spaced balls rolling on the surfaces of the inner
and outer races. When the outer ring i€fband the shaft rotates, the anglechanges with time. Then, each ball
is located by its angular positigh = w.t + 27 (k — 1)/ N. Then the precessional angular veloeityof the balls is
given byw. = Rw, /2(R + R;), wherew., w,, R, R;, N are the rotational speed of the bearing, the rotational speed
of the rotor, the outer diameter of inner ring, the diameter of balls, and the number of balls, respectively. Next, the
global bearing reaction can be obtained by sungaill the individual ontact expressions of eakth bearing. The
total restoring force componentsinandy directions are

N N
Feontactx = Z FradialCO0), Feontacyy = Z FradialSin(6y) (3
k=1 k=1

2.2. Rotor—bearing-stator model

The rotor-bearing—stator system under study has the outer race of the ball bearing fixed to a rigid support and the
inner race fixed rigidly to the shaft. A constant vertical radial force acts on the bearing due to gravity. The excitation
is due to an unbalanced force which introduces a rotational frequency. The bearing is composed of 16 balls and
is modelled as explained previously, by considering the non-linearity due to the Hertz contact with clearance. The
complete rotor—bearing—stator behaviour can be represented with the following equations:

msXs + csXs + ksxy = Feontactx s mpXy + crXp +kpxp = meewz cojwt) — Feontactx (4)
mgys + csys + ksys = Fcontac]{y —msg, myyr +cryr +kryr = meewz sin(wt) — Fcontac]{y —myg

This non-linear system can be also written as follows

N f (5)

wherex={x; ys x- yJ'.M,CandK are the mass, the damping and the stiffness matfitsandf include
non-linear terms, gravity and unbalanced force, respectively.

MX 4+ Cx+Kx =

3. Non-linear method

Both the harmonic balance method and the continuation schemes are well-known numerical tools to study non-
linear dynamics problems. However, the AFT method seems rarely used in engineering applications, and more
particularly in systems with clearanaad Hertz contact. The general idea is to represent each time history response
by its frequency content in order to obtain a set of equatimttuding balancing terms with the same frequency
components, and to start an iterative approach to obtain roots of these equations [3]. In this study, the AFT method
is used to find the response solutions of non-linear rotor-bearing—stator equations.

3.1. Alternate frequency/time domain method

The non-linear system (5) can be written in the following way:
M5 4+ Cx 4+ Kx + N (x, 0, 1) — (X, 0, T) = g(X, @, T) =0 (6)

whereM, C andK are the mass, damping and stiffness matrit¥sis the vector containing non-linear expressions
due to the non-linear contact. Setting: x; + AX, X =X; + AX andX = X; + AX, the displacementsandAx are
represented with truncated Fourier serieharmonics:
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x=Xo+ Y [Xai—1c0%iwr) + Xz siniwr)] (7)
i=1
Ax=AXo+ Y [AXzi_1C08iwr) + AXy; sin(ier)] (8)
i=1

in which Xg, X2;—1 andXy;, AXg, AXp;_1 andAXy; are the Fourier coefficients afand Ax, respectively.
The numbern of harmonic coefficients is selected in order to only take into account the significant harmonics
expected in the solutiori2m + 1) x 4 linear algebraic equations are obtained:

AX +FN- —F 4 (A+3)AX +QAw =0 (9)
in which A andJ are the Jacobian matrices associated with the linear and non-linear parts of (6). They are given by:
2 .
. . —w*M + K joC
A =diagKB;---B;---B with B; = . ; , and
9K B / m) / —wjC —(wj)°M +K
af N
_ - -1
J=(T®]I)- [8)( (r—~ol)
Table 1
Numerical model of physical parameters
Iltem Units Value
& & Damping ratio for the rotor and the stator — 0.01
mee Unbalance magnitude kgm 508
s Clearance m 2.E5
Ky Radial bearing stiffness Nn 10.E+10
wg, wp Natural frequency of the ator and the stator rad 150; 500
g Gravity my/s? 9.8
0.0121
— Rotor
————— Stator
0.01}f
ZOOM (x100)
__0.008}
E
3
30.006f
2
<
o.004r [
0.002¢ /
0 ' : ‘
0 20 40 60 80

Frequency (Hz)

Fig. 2. Amplitudes of vibrations veus the rotational frequency.
Fig. 2. Amplitudes des vibratiorgar rapport a la vitesse de rotation.
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Fig. 3. Orbits of the rotor and the stator at differémtguencies (continuous line: rotor, dashed line: stator).

Fig. 3. Orbites du rotor et du stator poufféientes fréquences (lignes continuesotor, lignes en pointillés- stator).
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Fig. 4. X, Y — displacements of the rotor and stator: (a) frequeads.4 Hz; (b) frequency= 47.8 Hz.
Fig. 4.X,Y — déplacements du rotor et stator : (a) fréqueads, 4 Hz; (b) fréquence= 47,8 Hz.

F andQ represent the Fourier coefficientsfofand the Fourier coefficients of the derivativegofvith respect to
o, respectivelyFNt represents the Fourier coefficients vector of the non-linear funéttbnX and AX contain
the Fourier coefficients and Fourier incrementscaind Ax , respectivelyFN is difficult to directly determine
from the Fourier coefficients for many non-linear elements. HowEWrcan be calculated by using an iterative

—1
process [3]X DT x(t) — £NL (1) 2EL ENL \where DFT defines the Discrete Fourier Transform. The DFT from

time to frequency domain is given by

1/(2m + 1)
1/(2m + 1) cos(j — Lyin/(2m + 1))

fori=1

fori=2,4,...,2m

I =
1/@2m+1sin((j — DG —Dr/@m+1) fori=1,3,....,2m+1
forj=12,....,2m+1 (10)
The error vectoR and the associated convergence are given by
R=AX+FN\- —F (11)
m
s1= |RZ+) (RZ,_,+R3,) (12)
j=1
and
m
Sa= | AXZ+ ) (AX3,_;+AX3) (13)
\ =1

3.2. Path continuation

Usually, the system behaviour is of interest over a range of values for at least one parameter (in this study, the
considered parameter is the speed of shaft rotatjoin order to save time and to obtain more easily the solution
of the system by considering variations of parameter values, the path following technique [3] can be used. In this
study, estimation of the neighbouring point is obtained by using the Lagrangian polynomial extrapolation method
with four points. So, four points on the solution branch ab¢ained a priori in order to begin the extrapolation
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Fig. 5. Evolution of the contact and associated contact farcedch ball (black zone: contact; white zone: non-contact).
Fig. 5. Evolution du contact et de la force de contact associéeghaaue bille (zone noire : contact ; zone blanche : pas de contact).

scheme. Any point on the solution branch is representéd aty;), X; andw; being the Fourier coefficients and
the frequency parameter, respectivelye®rc length between two consecutive poitXs; 1, w;+1) and(X;, w;) is
given by

3sit1= \/(Xi+l —Xi)TXit1 — Xi) + (wit+1— w;)? fori=0,1and 2 (14)
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Then, the arc length parameters are given by
So=0; S1=06s1; So=81+68s2; S3=S82+4+68s3; Sa=S53+ As (15)
and by using the Lagrangian extrapolation schethe following estimated point at the distante can be defined

by:
3 35S, X
T —9J i .
Xa wal :Z<H<S,»—S,~>>'[wi] fori=0,1,...,3 (16)
i=1 \ j=0
i#]
4. Application

The AFT method is applied to the rotor-bearing—stator system defined previously. The value parameters are
given in Table 1. Fig. 2 illustrates the frequency respooisthis system obtained by using the AFT method with
the path following continuation. The resonance peak is observed near 50.5 Hz. We can see that at frequencies
between 11-19 Hz, unbalanced and gravity forces arbetame order amplitude, so that the rotor and stator
responses are complex, as illustrated in Fig. 3 andign 4a). In order to obtain the non-linear responses for
the frequency range 11-19 Hz, computations are performed by using various power harmonics: with 7 or more
frequency components, there is no visible difference between the orbits obtained with Runge—Kutta process and
AFT method. When reducing the number of harmonics further to 6, only the AFT method found a totally different
solution. This emphasises the problem of the AFT method: it is therefore a method that in general can only be used
if some a priori knowledge about the system is available. The calculation by using the AFT method with 6, 8 and
10 harmonics components heeds about 200, 220 and 240 CPU seconds, respectively. The calculation by using the
4th-order Runge—Kutta process needs about 1800 CPU seconds.

At frequencies between 30-80 Hz, rotor and stator are always in contact and orbits are circular and the first
frequency components are sufficient £ 1), as illustrated in Fig. 3 and in Fig. 4(b). At frequencies between 1—
11 Hz, the same behaviour can be observed, and rotor—stator are always in contact due to the gravity effect. So,
Fig. 5 shows the contact evolution for each ball of the begwihile increasing the rotmn speed. At frequencies
between 11-19 Hz, the rotor—stator contact is a compihenomenon with a succession of contact and no-contact
periods. At frequencies between 50-80 Hz, rotor and stator are always in contact. As explained previously, an
interesting point is the contact’s ewion during the transit phase around 11-HA As illustrated in Fig. 5(b)—(e),
complex non-linear behaviour is obtained.

5. Summary and conclusion

The Alternate Frequency/Time domain method and the following path continuation method were briefly
described. They seem interesting when time history response solutions of the full non-linear equations are both
time consuming and costly. Moreover, extensive parametric design studies can be done in order to appreciate the
effect of specific parameter variation on the response of non-linear systems. This method was applied to a rotor—
bearing—stator system with nonlinear ball bearing including Hertzian contact and radial clearance. Complex orbits
and evolutions of the local contact between the balls and the raceways were obtained.
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