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Abstract

The method developed by Debiane and Kharif for the calculation of symmetric gravity-capillary waves on infinite d
extended to the general case of non-symmetric solutions. We have calculated non-symmetric steady periodic gravity-capillary
waves on deep water. It is found that they appear via bifurcations from a family of symmetric waves. On the other hand w
that the symmetry-breaking bifurcation of periodic steady class 1 gravity wave on deep water is possible when it ap
the limiting profile, if it is very weakly influenced by surface tension effects.To cite this article: R. Aider, M. Debiane, C. R.
Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Brisure de symétrie dans les vagues de gravité avec une faible tension de surface et les vagues de gravité-capillarité
périodiques en eau profonde. La méthode développée par Debiane et Kharif pour le calcul desondes de gravité-capillarit
symétriques en profondeur infinie a été étendue aux cas de vagues à profils non-symétriques. Nous avons calculé de
gravité-capillarité non-symétriques périodiques et de formes permanentes. Elles apparaissent via des bifurcations à partir d’un
solution symétrique. D’autre part, nous avons trouvé qu’en présence d’une très faible tension de surface, la brisure d
d’une onde de gravité périodique de classe 1 en profondeur infinie est possible à l’approche de sa forme limite.Pour citer cet
article : R. Aider, M. Debiane, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

A wave is said to be symmetric when, iff (x) represents the shape of the wave, the origin of the horizo
axis can be chosen such thatf (x) = f (−x). Levi-Cevita [1] has demonstrated that progressive gravity wa
of permanent form of small amplitudes cannot be non-symmetric, validating Stokes conjecture [2]. Fo
amplitude Longuet-Higgins [3] has shown numerically that a class 1 gravity waves (one crest in window o
equal to a wavelength) have no asymmetric bifurcation, and hence no bifurcation at all, over a certain r
the amplitude, confirming the calculus of Chen and Saffman [4]. Zufiria [5] is the first to obtain non-symm
gravity wave on infinite depth. It appears via symmetry-breaking bifurcations from a family of symmetric w
One of the methods he used is based on the quadratic relations between the Stokes coefficients disc
Longuet-Higgins [6]. The other method is based on the Hamiltonian structure of the water-wave problem. H
found that for gravity waves six is the minimum number of crests (which correspond to class 6 wave)
needed to have non-symmetric waves. The purpose of this work is first to show that a class 1 gravity wave
water can have an asymmetric bifurcation when very weak surface tension effects are taken into accoun
other hand we demonstrate numerically the existence ofand calculate non-symmetricgravity-capillary waves on
deep water. It is found that they appear via the same bifurcation scenario as the one found by Zufiria
gravity waves. The family of solutions from which they bifurcate is a class 6 symmetric wave. The method w
consists of determining the Fourier coefficients in Stokes expansion through a set of integral relations de
Longuet-Higgins [6] for gravity waves. Then, following Debiane and Kharif [7], the term due to surface te
is reduced to a simple function of the slope of the local tangent to the profile of the free surface. Finally a se
nonlinear algebraic equations is derived and solved by Newton’s method. Keller’s method [8] is used to s
a bifurcated branch.

2. Formulation

We consider a bidimensional periodic gravity-capillary wave propagating with the velocityC on the surface
of inviscid and incompressible fluid of infinite depth. The motion is assumed to be irrotational so that it
represented by a velocity potentialΦ. The free surface elevation is denoted byη. Units of length and time ar
chosen such that as the wave number and the body acceleration are equal to unity. In order to study
permanent form, we choose a Cartesian coordinate system(O,X,Y ) moving with the velocityC in the horizontal
directionOX. In this frame of reference the profile of non-symmetric wave of wavelength 2π can be represente
by the parametric equations:

X(ϕ) = −ϕ −
∞∑

n=1

[
pn sin(nϕ) + qn cos(nϕ)

]
, η(ϕ) = p0

2
+

∞∑
n=1

[
pn cos(nϕ) − qn sin(nϕ)

]

with ϕ = Φ

C
(1)

Proceeding in the same way as Debiane and Kharif [7] we derive the following system of 2N + 1 algebraic
equations solved for the coefficientspn (n = 0,1,2, . . . ,N) andqn (n = 1,2, . . . ,N):




�j (pk, qk) = pj +
N∑

n=1

npnp|n−j | +
N∑

n=1

nqnq|n−j | + jκ(cj + sj ) = 0

Ij (pk, qk) = qj +
N∑

n=1

nqnp|n−j | −
N∑

n=1

npnq|n−j | + jκ(rj − dj ) = 0

j = 1,2, . . . ,N (2)
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Q = 1+ η(0) = 1+ p0

2
+

N∑
n=1

pn (3)

whereκ = k2T/ρg is the dimensionless capillary number (the inverse of the Bond number). Hereρg is the weight
density,k the wave number andT the surface tension. Eq. (3) defines the continuation parameterQ, given by
Longuet-Higgins [3], which is convenient for computing non-symmetric waves, since its behavior is monoto
the system (2)cn, sn, dn andrn are the Fourier coefficients of the function eiθ(ϕ), whereθ(ϕ) = arctan(ηx) is the
slope of the local tangent to the free surface:

cosθ + i sinθ = c0

2
+

∞∑
n=1

[
cn cos(nϕ) + sn sin(nϕ)

] + i

{
r0

2
+

∞∑
n=1

[
rn cos(nϕ) + dn sin(nϕ)

]}
(4)

The system (2), (3) can be solved by the iterative Newton’s method. However, starting the iteration pro
an infinitesimal profile leads to symmetric waves becausethe non-symmetric solution branches are not conne
to the trivial solution. Nevertheless, the access to thesebranches can be achieved via bifurcation from symmetric
ones.

The solutions describing the symmetric waves correspond toqn = 0 for all n. Thus the coefficientsrn anddn

are all equal to zero and Eqs. (2) are reduced to:

pj +
N∑

n=1

npnp|n−j | + jκ(cj + sj ) = 0, j = 1,2, . . . ,N (5)

For this system one can use as parameter of continuation the parameterQ as well as the wave steepnessε, defined
by:

ε = 1

2

(
η(0) − η(π)

) =
N∑

n=0

p2n+1 (6)

The system (5), (6) is solved by Newton’s method; thecj andsj are calculated by the algorithm of Fast Four
Transform (F.F.T) and an infinitesimal wave is used as an initial iterate.

A property of the system (5) is that if a set{pn, κ} is a solution, then the set{p(m)
n , κ ′} defined by:

κ ′ = κ

m2 , p
(m)
0 = p0

m

p(m)
nm = pn

m
, m,n positive integers, p

(m)
nm+l = 0, l = 1,2, . . . ,m − 1

(7)

is also a solution. In reality the two sets describe the same wave in different scales.{p(m)
n , κ ′} defines a classm

wave, of wavelengthL/m and which has the same steepness as the wave given by the set{pn, κ} of wavelengthL.
It presentsm crests in horizontal window of extentL, and has the property that themth harmonic is dominant.

3. Bifurcation

If we putqn = 0 in the Jacobian matrix of the system (2), we obtain:

J (pn,0) =
[

S(pn,0) 0
0 A(pn,0)

]
with S = ∂�j

∂pn

(pn,0), A = ∂Ij

∂qn

(pn,0) (8)

A bifurcation from a family of symmetric solutions to a different family can take place ifJ (pn,0) becomes singula
This can occur in two ways. The first is when the determinant of the sub-matrixS vanishes, and this may correspo
to a bifurcation into another symmetric branch. The second way is that the bloc A becomes singular, in wh
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a bifurcation to a non-symmetric solution is possible. Once a bifurcation point is located, the tangent vec
bifurcated branch is computed using the Keller’s method [8].

4. Results

4.1. Gravity wave with surface tension

A branch of symmetric solutions of wavelength 2π is generated by solving the system of Eqs. (5), (6) w
κ = 3 × 10−4, value which corresponds to a wavelength in water of 100 cm. The wave steepnessε is varied from
0.001 to 0.4435. The F.F.T algorithm used requires a numberM, of intervals of the sampling of the variableϕ,
equal to a power of 2. For small amplitudeM = 1024 ensures a good convergence. As the wave steepness inc
its crest develops a region of high curvature as the limiting wave is approached, and the influence of the
tension manifests itself by the appearance of ripples. It ensues that the wave can be regarded as a class
wave (Stokes wave) on which capillaries ride inthe neighborhood of the crest (Fig. 1). The valueM = 4096 is
used for intermediate wave steepness andM = 8192 as the highest wave is approached. The latter was calcu
by Debiane and Kharif [9] and is reached forε = 0.4439. When we progress on the solution branch, we fo
that the matrixS(pn,0) becomes singular forε = 0.4335. This is not a bifurcation point but rather a limit po
coinciding with a stationary wave speed. A second singularity have been detected in the neighborhoo
limiting wave, where the vanishing of the determinant ofA(pn,0) is located atε = 0.442297. At this point the
matrix A(pn,0) has a null eigenvalue confirming the existence of a bifurcation into non-symmetric wave
calculations at this critical point were carried out withN = 702 coefficients and a samplingM = 16 384. The
bifurcation persists for different pairs(N,M). For instance, for the combinations(610,8192) and(502,4096) the
corresponding critical values ofε are 0.443205 and 0.443401. The bifurcating branch of non-symmetric solu
was followed by pseudo-arclength continuation. Fig. 2 shows the profile of a wave corresponding to this new
of solutions. Enlargements display the dissimilarity of the two sides of a crest, breaking the symmetry of th

4.2. Gravity-capillary waves

Following Zufiria [5] who found, for pure gravity waves, that class 6 is the minimum class to have symm
breaking, we started computations with a class 6 wave. We then used the relations (7) withm = 6 and replaced

Fig. 1. Profile of periodic and symmetric gravity wave with weak
surface tension on infinite depth.

Fig. 1. Profil d’une onde de gravité périodique et symétrique avec une
faible tension de surface en profondeur infinie.

Fig. 2. Profile of non-symmetricgravity wave with weak surface
tension on infinite depth.

Fig. 2. Profil d’une onde de gravité non-symétrique avec une fa
tension de surface en profondeur infinie.
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Fig. 3. Bifurcation diagram for periodic capillary-gravity
waves on infinite depth forκ = 1/12.

Fig. 3. Diagramme de bifurcation d’ondes gravité-capillarité
périodiques en profondeur infinie pourκ = 1/12.

Fig. 4. Profile of periodic, symmetric and regular gravity-capilla
wave of class 6 with wavelength 2π/6.

Fig. 4. Profil d’une onde de gravité-capillarité de classe 6 pé
dique, symétrique et régulière de longueur d’onde 2π/6.

Fig. 5. Profile of periodic, symmetric and irregular grav-
ity-capillary wave with wavelengthπ .

Fig. 5. Profil d’une onde de gravité-capillarité périodique,
symétrique et irrégulière de longueur d’ondeπ .

Fig. 6. Profile of periodic, symmetric and irregular gra
ity-capillary wave with wavelength 2π .

Fig. 6. Profil d’une onde de gravité-capillarité périodiqu
symétrique et irrégulière de longueur d’onde 2π .

pk by p
(6)
k in the Jacobian (8). Because of the type of structure that we expect in the bifurcation diagram we ha

chosen the valueκ = 1/12 corresponding to(6,2) mode interaction. No symmetry-breaking was found when
computations were made usingκ = 1/6 andκ = 1/18, values corresponding to(6,1) and(6,3) modes interaction

Because we shall deal in our computations with families of waves for which the six crests are not equaε
is not the true wave steepness and so the solution branches were followed using the parameterQ. The bulk of
the computations have been performed usingN = 30 andM = 1024. The bifurcation diagram in(Q,C) plane is
represented in Fig. 3. From the trivial solution, we have followed the branch, calledΓ 1, of symmetric regular wave
of class 6 and of wavelength 2π/6. The corresponding wave profile, shown in Fig. 4, is symmetrical about all c
and all troughs. These waves are called regular because all the crests and the troughs are equal.Γ 1 has a singularity
for Q = 0.666. The treatment of this point, denotedP 1 on Fig. 3, leads to a bifurcation into a new branch, which
call Γ 2, corresponding to waves of wavelengthπ . This is a period-tripling bifurcation resulting from the interacti
of the harmonics 6 and 2. Their profiles are not regular but remain symmetric with respect to the principal cre
and the principal troughs (Fig. 5). During the continuation along ofΓ 2 another bifurcation point, denotedP 2, have
been detected forQ = 0.55 and the branch which emanates from it, calledΓ 3, is generated. The correspondi
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Fig. 7. Profile of periodic non-symmetric gravity-capillary wave on infinite depth.

Fig. 7. Profil d’une onde de gravité-capillarité périodique et non-symétrique en profondeur infinie.

waves are symmetric, irregular and of wavelength 2π . Their profile is shown in Fig. 6. The symmetries preser
by this period-doubling bifurcation are about one secondary crest and two principal troughs only. TakingΓ 3 in the
direction of decreasingQ, a bifurcation to non-symmetric branch, denoted byΓ n, is found at the pointP 3 located
atQ = 0.4146. Fig. 7 shows the shape of the wave described by this new solution. As can be seen the pro
not exhibit any symmetry axis. Note that the structure of bifurcation tree is the same as the one found by
for pure gravity waves.
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