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Abstract

It is shown that the micro-displacement gradient allows the propagation of two-dimensional localized long nonlinear strain
waves in a medium with microstructure. These waves may exist even in the presence of dissipation and energy input in the
microstructured medium but with selected values of theenawiplitude and velocity. An increase or a decrease in the wave
amplitude and velocity happens faster at the initial stage than that of the plane localized wave. However, their steady values
selected by the energy input/output, are higher for the plane waweste thisarticle: A.V. Porubov et al., C. R. Mecanique
332 (2004).
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Résumé

Selection d’ ondes de déformation non linéaires a deux dimensions dans des milieux a microstructure. On montre que
dans un milieu élastique a microstructure le gradient deovdéplacement permet la propagation de longues ondes localisées
non linéaires de déformation en deux dimensions. Ces ondes penvent exister méme en présence de dissipation et d’apport
d’énergie mais pour devaleurs précises de I'amplitude de I'onde etviiasse de propagation. Une augmentation on une
diminution de ces deux quantités se produit plus rapidérdans la phase initiale de gggagation que pousnne onde plane
localisée. Cependont, les valeurs stationnaires sélectionnées par I'apport et perte d'énergie sont plus élevées que pour les ondes
planes.Pour citer cet article: A.V. Porubov et al., C. R. Mecanique 332 (2004).
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1. Introduction

One of the most important problem in microstructured medium is to define the values of the parameters of
a microstructure or, more generally, to verify the model used to describe it [1,2]. One possibility is to use the
measurements of the parameters of strain wavepggating in such a medium. Indeed the amplitude and the
velocity of the wave depend upon the parameters of the microstructure. Certainly waves that keep their shapes
and velocities while propagating are of special interbsually these waves may exist under balance conditions
between nonlinearity, dispersion, dissipation/energy input. When the wave propagation is described by two-
dimensional equations, an additional factor affecting theadmehavior is diffraction. The balances define the shape
of the wave. Thus the balance betweawnlinearity and dispersion allows the existence of a bell-shaped wave,
while diffraction supports either a plane localized wave or a two-dimensional fully localized wave. Nonlinearity,
dispersion and the other terms in the governing equations describe various features of the model of a microstructure.
Hence even the shape of the wave qualitatively reflects the presence or absence of these features. More detailed
information may be obtained having analytical solutions of the governing equations since this allows us to establish
relationships between the amplitude and velocity of the strain wave and the parameters of the microstructure.

The above mentioned possibility has been illustrated recently in [3] for a one-dimensional model of a
microstructured medium. Here we introduce weak transverse variations, and consider the evolution of two-
dimensional (2D) localized strain waves. First the goiregmonlinear equation is obtained for longitudinal strain
waves. In the absence of dissipation and energy input it is nothing but the well-known Kadomtsev—Petviashvili
equation [4,5] that admits 2D localized wave solution having the shape of a Mexican hat. Then an asymptotic
solution is obtained to describe the influence of weak dissipation/energy input on the 2D localized wave. The
possibility of a selection of the wave is exhibited when its amplitude and velocity tend to the finite values prescribed
by the coefficients of the governing equation. A comparison is presented with the evolution of the plane localized
strain wave.

2. Derivation of the governing equations

The governing equations are obtained using the model developed in [3]. The micromorphic materials [6,7] are
considered when in a reference configuration, the fundamental strains are given by the Cauchy—Green macro-
strain tensor, the distortion tensor, and the micpldicement gradient tensdihe macro-motion is supposed to
be small but finite, and the Murnaghan model [8] is used to describe the so-called physical nonlinearity in the
expansion of free or potential energy. The microstructure is assumed sufficiently weak to be considered in the
linear approximation. A dissipation and an energy input are introduced through the additive linear terms in all three
tensors similar to the Voigt model [9], the simplest extension of the Hooke law to viscoelastic media.

Now we are interested in the weak transverse variations. Since it is assumed that the influence of a microstructure
is weak, we can modify the 1D equation from [3] adding only transverse macro-terms following from the classic
theory of elasticity. Considering only long waves with characteristic lefigth 1 we choosd. as a scale foxk,
the direction of the wave propagation, whitedenotes a scale for the transverse varigbl&hen the parameter
k = L?/Y? « 1 characterizes weak transverse atidns. Let us denote displacements alangnd y axis by
U(x,y,t),V(x,y,t) respectively. Then a scaW is introduced as for longitudinal strains= U, andW « 1
that is natural for the Murnaghan materials. The scale for another sir&ifV, is chosen equal toW. Also L/cq
is used as a scale for time cg = (A + 2u)/p is a characteristic velocity,, n are the Lamé coefficienty, is
the macro-density. We also introduce a typical sizef a microstructure element and the dissipation parameter
d having the dimension of a length. Three positive dimensionless parameters will be used in the following:

e = W < 1 accounting for elastic straing;= p2/L? « 1, characterizing the ratio beeen the microstructure
size and the wavelength; = d/L, characterizing the influence of the dissipation.
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Then the governing nonlinear equations for long waves in non-dimensional form from [3] may be generalized
to the weakly transverse case as
Vit — Uxx — kb1wyx — 81 (v?) | — y@2Vxxr + 8003Vrxxx — 804Vxxrs
+ Y 8(a5vsxxxs + 6VUxx1re) = 0(821 527 J/Z, KZ) (2)
(b1 + ) wer — Wy Zblvyy +O(e, 8, y,k) (2

where the nonlinear term coefficient depends upon the Murnaghan moduli, and dispersion tefms anduvy
describe a tribute of the micro-displacement gradient arala¥inertia respectively. Bnsverse terms coefficient

b1 = (A+wn)/(A+2u). Dissipative termu,,, arises thanks to dissipative additions in the macro-strain tensor, while
remaining terms account for the influence of dissipativespa the distortion tensomal the micro-displacement
gradient tensor. Relationships for the coefficientsnay be found in [3].

3. Two-dimensional localized wave selection

Let us consider weak transverse variations when arzal between nonlinearity anésgersion is achieved,

8§ =0(e), ¢ € y <« 1. Assume that, = e, and all dissipative terms are of the same order. Introducing fast and
slow variable® =x — ¢, y, t =¢f, T = y1, we obtain from Egs. (1), (2):
2vgr + a1(v?),, — (@3 — aa)vageo + b1vyy = ¥ [ov900 — (05 + a6)vsy — 2vp7 | + O(y?) 3)

At y = 0 we obtain the Kadomtsev—Petviashvili (KP) equation [4,5] that admits two-dimensional travelling
localized wave solutions a3 — a4 > 0. The asymptotic solution at nonzerds sought as a function a@f, y and
T,wherecyg =1, ¢ =c(T),

UZUO(Q‘,)’,T)+VU1(§:)7:T)+"' (4)
Then the following reduction of the KP equation figy holds in the leading order,
2cvo,cc + Ot;|_(v(%)ng — (a3 — a4)vo,4¢ + b1vo,yy =0 (5)
whose known exact two-dimensional localized travelling wave solution is [5]:
_ 24b1c(a4 — a3)[3ba (o3 — o) — 2b1c¢® + 4c?y?] )
- a1(3b1(a3 — ag) + 2b1cL2 + 4c2y?)2

The shape of the solution shown in Fig. 1 is similar to a Mexican hat along the direction of propagsios,
but the solution decays monotonically in the tramseadirection. The following linear equation for holds in the
next order,

vo

2cv1,¢¢ + 201 (vov1) e — (03 — @a)v1 ac + b1v1 yy = @50 ccc — (05 + ) Vo5 — 20,0 T (7)

The solvability condition may be obtain asllfwvs. Let us integrate Egs. (5), (7) overfrom —oo to ¢.
Multiplying the first equation by; and subtracting the second equation multiplied/§yone obtains

o0 o0
/ d¢ / vo(avo,cc — (o5 + ) v0,4; — 2v0,7) dy =0 8)
—o0

—00
Substituting from Eq. (6) into Eq. (8), one obtains the following equatiom (@,
3(az — aa)?cr = —8c%(4as + agle + ajlaz — aal) (9)

The behavior of the solution of this equation depends upon the sigasarfidas + ag. Thus a vanishing of
occurs at positive signs of the coefficients while an unbounded growth takes place when both of them are negative.
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Fig. 2. Amplification and selection of the 2D localized wave along the direction of propagation in theyplafe

Whenas + ag < 0, a5 > 0 thenc vanishes if its initial value is less theri = —aj[az — a4]/(4(as + ap)). If
¢(0) > ¢* unbounded growth occurs. An interesting scenario takes place #envg > 0, o < 0. In this case
the amplification of an initial localized wave with velocity < ¢* happens by dinite value of the amplitude
equal to 8*/«a1, while the attenuation of the initial wave to the same amplitude takes place agher*. We
call this phenomenon of the selection of the localized wave, since the valdeisfdefined by the equation
coefficients or by the features of the microstructure. The amplitude of the 2D localized wave tends to the value
v* = 205[as — az]/(a1(as + ap)). The amplification is shown in Figs. 2 and 3 in the playes 0, ¢ =0
respectively. One can see that the increase in amplitsugecompanied by the decrease in the width of the wave.
Whenas — a4 < 0, Eq. (3) does not admit 2D localized wave solutiong at 0 but a plane localized wave
solution may exist that depends upon a variable, = 1, ¢, =m and{; = ¢(T). When the plane wave moving
along thex-direction is studied, one can assume- 0. Then we getin the leading order from Eq. (3) the Korteweg—
de Vries equation whose localized travelling wave solution is

3
vo = —X costr2he (10)
o]
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Fig. 3. Transverse amplification of the 2D localized wave in the ptaged.

whereb = /c/(2(a3 — aa)), hencec < 0. In the next order the solvability condition is [5]
o
/ vo(a3vo,c; — (a5 + ap)vo,a; — 2vo,7) dZ =0 (11)
—00

The equation for(T') follows from Eqg. (11) of the form
105a3 — ag)’cr = —4c2(10[a5 + agle + Ta5[oz — a4]) (12)

One can see that the selected valuecofc = 7a5[as — a3]/(10[as + ag]), and the selected amplitude=
21as[az — 4]/ (1001 [as + ag]) differ from those of the 2D localized wave. Alsois negative now, hence the
wave velocity is greater tharp. The features of the wave amplification or attenuation are similar to those shown
in Fig. 2 with the exception of the evolution of depressions near the core of the 2D localized wave solution.

4. Discussion

First we note the significanbte played by micro-inertia and micraspplacement gradient gradient in the sign
of a3z — a4 [3]. A negative sign allowing plane wave propagation is always achieved in presence of micro-inertia
only, while micro-displacement gradieis responsible for a positive sign through, hence the existence of 2D
localized wave. Nonlinearity affects the sign of the wave amplitude thus allowing either a compressive or a tensile
strain wave to move. The sign ef is defined by the values of the Murnaghan moduli. It is difficult to measure the
long wave parameters but it is easy to qualitatively digtish the features of the evdilon 2D localized and plane
localized waves. Therefore even qualitative differences in the 2D waves behavior allow us to establish the above
mentioned features of the microstruture.

A more important problem is to verify dissipative part of the model of a microstructure. Again the signs of
the dissipative terms coefficients may be estimated studying the evolution of localized waves. One can see that the
amplitude of the selected plane wave is higher than thidieo2D localized wave. However, an increase or decrease
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of the amplitude is higher for the 2D wave. It is easy to see it considering a particular case corresponding to the
Voigt model, a2 > 0 oras = ag = 0. Then we get the solutions of Egs. (9), (12) in the form

1
‘To+rrT

whereQ = 1/co, while P = 8a3/(3(a3 — a4)) for 2D localized wave an@ = 4o /(15(ce3 — a4)) for plane wave.

We see a decay afin both cases but a 2D wave decreases faster at an initial stage by the time prescribed by an
initial velocity and the value af3 — a4. Presumably, this happens because of the change of the width of the wave
in the transverse direction.
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