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Abstract

It is shown that the micro-displacement gradient allows the propagation of two-dimensional localized long nonlinea
waves in a medium with microstructure. These waves may exist even in the presence of dissipation and energy in
microstructured medium but with selected values of the wave amplitude and velocity. An increase or a decrease in the w
amplitude and velocity happens faster at the initial stage than that of the plane localized wave. However, their stea
selected by the energy input/output, are higher for the plane waves.To cite this article: A.V. Porubov et al., C. R. Mecanique
332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Selection d’ondes de déformation non linéaires à deux dimensions dans des milieux à microstructure. On montre que
dans un milieu élastique à microstructure le gradient de micro-déplacement permet la propagation de longues ondes loca
non linéaires de déformation en deux dimensions. Ces ondes penvent exister même en présence de dissipation
d’énergie mais pour des valeurs précises de l’amplitude de l’onde et savitesse de propagation. Une augmentation on
diminution de ces deux quantités se produit plus rapidement dans la phase initiale de propagation que pourune onde plane
localisée. Cependont, les valeurs stationnaires sélectionnées par l’apport et perte d’énergie sont plus élevées que po
planes.Pour citer cet article : A.V. Porubov et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

One of the most important problem in microstructured medium is to define the values of the param
a microstructure or, more generally, to verify the model used to describe it [1,2]. One possibility is to u
measurements of the parameters of strain waves propagating in such a medium. Indeed the amplitude and
velocity of the wave depend upon the parameters of the microstructure. Certainly waves that keep thei
and velocities while propagating are of special interest. Usually these waves may exist under balance condit
between nonlinearity, dispersion, dissipation/energy input. When the wave propagation is described
dimensional equations, an additional factor affecting the wave behavior is diffraction. The balances define the sh
of the wave. Thus the balance betweennonlinearity and dispersion allows the existence of a bell-shaped w
while diffraction supports either a plane localized wave or a two-dimensional fully localized wave. Nonlin
dispersion and the other terms in the governing equations describe various features of the model of a micro
Hence even the shape of the wave qualitatively reflects the presence or absence of these features. Mor
information may be obtained having analytical solutions of the governing equations since this allows us to e
relationships between the amplitude and velocity of the strain wave and the parameters of the microstruct

The above mentioned possibility has been illustrated recently in [3] for a one-dimensional mode
microstructured medium. Here we introduce weak transverse variations, and consider the evolution
dimensional (2D) localized strain waves. First the governing nonlinear equation is obtained for longitudinal str
waves. In the absence of dissipation and energy input it is nothing but the well-known Kadomtsev–Petv
equation [4,5] that admits 2D localized wave solution having the shape of a Mexican hat. Then an asy
solution is obtained to describe the influence of weak dissipation/energy input on the 2D localized wa
possibility of a selection of the wave is exhibited when its amplitude and velocity tend to the finite values pre
by the coefficients of the governing equation. A comparison is presented with the evolution of the plane lo
strain wave.

2. Derivation of the governing equations

The governing equations are obtained using the model developed in [3]. The micromorphic materials [
considered when in a reference configuration, the fundamental strains are given by the Cauchy–Gree
strain tensor, the distortion tensor, and the micro-displacement gradient tensor.The macro-motion is supposed
be small but finite, and the Murnaghan model [8] is used to describe the so-called physical nonlinearit
expansion of free or potential energy. The microstructure is assumed sufficiently weak to be considere
linear approximation. A dissipation and an energy input are introduced through the additive linear terms in
tensors similar to the Voigt model [9], the simplest extension of the Hooke law to viscoelastic media.

Now we are interested in the weak transverse variations. Since it is assumed that the influence of a micro
is weak, we can modify the 1D equation from [3] adding only transverse macro-terms following from the
theory of elasticity. Considering only long waves with characteristic lengthL � 1 we chooseL as a scale forx,
the direction of the wave propagation, whileY denotes a scale for the transverse variabley. Then the paramete
κ = L2/Y 2 � 1 characterizes weak transverse variations. Let us denote displacements alongx and y axis by
U(x,y, t),V (x, y, t) respectively. Then a scaleW is introduced as for longitudinal strainsv = Ux , andW � 1
that is natural for the Murnaghan materials. The scale for another strainw = Vy is chosen equal toκW . Also L/c0
is used as a scale for timet, c2

0 = (λ + 2µ)/ρ is a characteristic velocity,λ, µ are the Lamé coefficients,ρ is
the macro-density. We also introduce a typical sizep of a microstructure element and the dissipation param
d having the dimension of a length. Three positive dimensionless parameters will be used in the fol
ε = W � 1 accounting for elastic strains;δ = p2/L2 � 1, characterizing the ratio between the microstructur
size and the wavelength;γ = d/L, characterizing the influence of the dissipation.
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Then the governing nonlinear equations for long waves in non-dimensional form from [3] may be gene
to the weakly transverse case as

vtt − vxx − κb1wxx − εα1
(
v2)

xx
− γα2vxxt + δα3vxxxx − δα4vxxtt

+ γ δ(α5vxxxxt + α6vxxtt t) = O
(
ε2, δ2, γ 2, κ2) (1)

(b1 + µ)wtt − µwxx = b1vyy + O(ε, δ, γ, κ) (2)

where the nonlinear term coefficientα1 depends upon the Murnaghan moduli, and dispersion termsvxxxx andvxxtt

describe a tribute of the micro-displacement gradient and micro-inertia respectively. Transverse terms coefficie
b1 = (λ+µ)/(λ+2µ). Dissipative termvxxt arises thanks to dissipative additions in the macro-strain tensor,
remaining terms account for the influence of dissipative parts in the distortion tensor and the micro-displacemen
gradient tensor. Relationships for the coefficientsαi may be found in [3].

3. Two-dimensional localized wave selection

Let us consider weak transverse variations when a balance between nonlinearity and dispersion is achieved
δ = O(ε), ε � γ � 1. Assume thatα2 = εα∗

2, and all dissipative terms are of the same order. Introducing fas
slow variablesθ = x − t, y, τ = εt, T = γ τ , we obtain from Eqs. (1), (2):

2vθτ + α1
(
v2)

θθ
− (α3 − α4)vθθθθ + b1vyy = γ

[
α∗

2vθθθ − (α5 + α6)v5θ − 2vθT

] + O
(
γ 2) (3)

At γ = 0 we obtain the Kadomtsev–Petviashvili (KP) equation [4,5] that admits two-dimensional trav
localized wave solutions atα3 − α4 > 0. The asymptotic solution at nonzeroγ is sought as a function ofζ, y and
T , whereζθ = 1, ζτ = c(T ),

v = v0(ζ, y, T ) + γ v1(ζ, y, T ) + · · · (4)

Then the following reduction of the KP equation forv0 holds in the leading order,

2cv0,ζ ζ + α1
(
v2

0

)
ζζ

− (α3 − α4)v0,4ζ + b1v0,yy = 0 (5)

whose known exact two-dimensional localized travelling wave solution is [5]:

v0 = 24b1c(α4 − α3)[3b1(α3 − α4) − 2b1cζ
2 + 4c2y2]

α1(3b1(α3 − α4) + 2b1cζ 2 + 4c2y2)2
(6)

The shape of the solution shown in Fig. 1 is similar to a Mexican hat along the direction of propagation,x-axis,
but the solution decays monotonically in the transverse direction. The following linear equation forv1 holds in the
next order,

2cv1,ζ ζ + 2α1(v0v1)ζζ − (α3 − α4)v1,4ζ + b1v1,yy = α∗
2v0,ζ ζζ − (α5 + α6)v0,5ζ − 2v0,ζT (7)

The solvability condition may be obtain as follows. Let us integrate Eqs. (5), (7) overζ from −∞ to ζ .
Multiplying the first equation byv1 and subtracting the second equation multiplied byv0, one obtains

∞∫

−∞
dζ

∞∫

−∞
v0

(
α∗

2v0,ζ ζ − (α5 + α6)v0,4ζ − 2v0,T

)
dy = 0 (8)

Substituting from Eq. (6) into Eq. (8), one obtains the following equation forc(T ),

3(α3 − α4)
2cT = −8c2(4[α5 + α6]c + α∗

2[α3 − α4]
)

(9)

The behavior of the solution of this equation depends upon the signs ofα∗
2 andα5 + α6. Thus a vanishing ofc

occurs at positive signs of the coefficients while an unbounded growth takes place when both of them are
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Fig. 1. Two-dimensional localized wave solution.

Fig. 2. Amplification and selection of the 2D localized wave along the direction of propagation in the planey = 0.

Whenα5 + α6 < 0, α∗
2 > 0 thenc vanishes if its initial value is less thenc∗ = −α∗

2[α3 − α4]/(4(α5 + α6)). If
c(0) > c∗ unbounded growth occurs. An interesting scenario takes place whenα5 + α6 > 0, α∗

2 < 0. In this case
the amplification of an initial localized wave with velocityc0 < c∗ happens by afinite value of the amplitude
equal to 8c∗/α1, while the attenuation of the initial wave to the same amplitude takes place whenc0 > c∗. We
call this phenomenon of the selection of the localized wave, since the value ofc∗ is defined by the equatio
coefficients or by the features of the microstructure. The amplitude of the 2D localized wave tends to th
v∗ = 2α∗

2[α4 − α3]/(α1(α5 + α6)). The amplification is shown in Figs. 2 and 3 in the planesy = 0, ζ = 0
respectively. One can see that the increase in amplitudeis accompanied by the decrease in the width of the wa

Whenα3 − α4 < 0, Eq. (3) does not admit 2D localized wave solutions atγ = 0 but a plane localized wav
solution may exist that depends upon a variableζ , ζx = 1, ζy = m andζτ = c(T ). When the plane wave movin
along thex-direction is studied, one can assumem = 0. Then we get in the leading order from Eq. (3) the Kortew
de Vries equation whose localized travelling wave solution is

v0 = −3c

α1
cosh−2 bζ (10)
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Fig. 3. Transverse amplification of the 2D localized wave in the planeζ = 0.

whereb = √
c/(2(α3 − α4)), hencec < 0. In the next order the solvability condition is [5]

∞∫

−∞
v0

(
α∗

2v0,ζ ζ − (α5 + α6)v0,4ζ − 2v0,T

)
dζ = 0 (11)

The equation forc(T ) follows from Eq. (11) of the form

105(α3 − α4)
2cT = −4c2(10[α5 + α6]c + 7α∗

2[α3 − α4]
)

(12)

One can see that the selected value ofc, c̃ = 7α∗
2[α4 − α3]/(10[α5 + α6]), and the selected amplitudẽv =

21α∗
2[α3 − α4]/(10α1[α5 + α6]) differ from those of the 2D localized wave. Alsoc is negative now, hence th

wave velocity is greater thanc0. The features of the wave amplification or attenuation are similar to those s
in Fig. 2 with the exception of the evolution of depressions near the core of the 2D localized wave solution

4. Discussion

First we note the significant role played by micro-inertia and micro-displacement gradient gradient in the si
of α3 − α4 [3]. A negative sign allowing plane wave propagation is always achieved in presence of micro-
only, while micro-displacement gradient is responsible for a positive sign throughα3, hence the existence of 2
localized wave. Nonlinearity affects the sign of the wave amplitude thus allowing either a compressive or a
strain wave to move. The sign ofα1 is defined by the values of the Murnaghan moduli. It is difficult to measure
long wave parameters but it is easy to qualitatively distinguish the features of the evolution 2D localized and plan
localized waves. Therefore even qualitative differences in the 2D waves behavior allow us to establish th
mentioned features of the microstruture.

A more important problem is to verify dissipative part of the model of a microstructure. Again the sig
the dissipative terms coefficients may be estimated studying the evolution of localized waves. One can se
amplitude of the selected plane wave is higher than that of the 2D localized wave. However, an increase or decre
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of the amplitude is higher for the 2D wave. It is easy to see it considering a particular case correspondin
Voigt model,α2 > 0 orα5 = α6 = 0. Then we get the solutions of Eqs. (9), (12) in the form

c = 1

Q + PT

whereQ = 1/c0, while P = 8α∗
2/(3(α3 − α4)) for 2D localized wave andP = 4α∗

2/(15(α3 −α4)) for plane wave.
We see a decay ofc in both cases but a 2D wave decreases faster at an initial stage by the time prescribe
initial velocity and the value ofα3 − α4. Presumably, this happens because of the change of the width of the
in the transverse direction.
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