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Abstract

The thermo-elastic plastic behaviour of functionally graded plates under extremal thermal loading at different b
conditions is considered. The plates consist of two phases – ZrO2 ceramics and Ti6Al4V alloy. The layers are distribute
exponentially through the thickness. The mechanical and thermal properties of both materials strongly depend on tem
The stress–strain behaviour is investigated by the FEM. To predict the stable state of the structures of interest, seve
criteria are applied. Two cost functions are introduced to optimize the design of the plate. The main results are discu
graphically illustrated.To cite this article: L. Parashkevova et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Configuration optimale des plaques fonctionnellement graduées à plasticité thermo-élastique.Nous avons étudié le
comportement plastique thermo-élastique des plaques fonctionnellement graduées soumises à une charge thermique ex
avec différentes conditions aux limites. Les plaques étaient contenaient deux parties distinctes : la céramique ZrO2 et un alliage
Ti6Al4V, avec une distribution des couches suivant une loi exponentielle. Les propriétés mécaniques et thermiques de
matériaux dépendent fortement de la température. Le comportement tension–élongation est étudié avec la méthode
finis (MEF). Pour trouver les états stables ou instables de la structure en question, on applique quelques critères d’éc
fonctions sont introduites pour optimiser la configuration de la plaque. Les résultats principaux sont discutés et illustrés par le
graphiques.Pour citer cet article : L. Parashkevova et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The rapid development of aircraft and space technologies requires that the materials withstand
environments such as high temperature or large temperature gradients. The functionally graded materials
play an irreplaceable role to reduce the temperature through-thickness gradient. Material gradients, induced by th
change in material properties, make FGMs different in behaviour from homogeneous and traditional compo
materials. FGMs offer good possibilities for optimizing engineering structures to achieve high performance a
material efficiency. That is why they have successful applications as electronic devices, optical films, antiwear and
anticorrosion coatings and biomaterials.

The majority of the published works on plates with nonuniform through-thickness properties have been d
to layered composites [1–3] and temperature sensitive material properties. The works on application of functiona
graded materials with specially varying compositions can be related to the paper [4], where the effect of
composition in functionally graded shells is studied. The analysis based on a first order plate theory of
elastic behavior of functionally graded plates for moderately large deformations [5] shows that the beh
ceramic-metal FGM plate is not intermediate to that of homogeneous and metallic plates.

Two-phase laminated thin plates are considered in the present paper. The layers are distributed through
thickness according to an exponential law. Such a law covers uniform layers distribution, as well as a wide ran
of nonuniform distributions [2]. The aim of this Note is to obtain an optimal layers distribution, avoiding fa
and reducing thermal stresses.

2. Problem formulation

Consider a layered two-phase infinite thin plate. The two phases building the plate are thermal resista
alloy and ceramics. Perfect contact between the layers and plain strain condition is assumed (Fig. 1(a)).

The Cartesian coordinate system is introduced; theaxes are directed along the base and the thickn
respectively. All material properties (mechanical and thermal) of both constituents are temperature de
The initial temperature of the plate isT0. We assume that the laminated plate is suddenly heated from the
and upper surfaces by the surrounding media,the temperatures of which are denoted byT1 andT2, respectively
(Fig. 1(a)). Three kinds ofboundary conditions are considered: simply supported plate (Fig. 1(b)), bottom surface

Fig. 1. Cross section and boundary conditions.

Fig. 1. Sections transverses et conditions aux limites.
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the plate fixed to a rigid base (Fig. 1(c)) and full contact of the plate with a metal substrate (Fig. 1(d)). The fo
exponential laws, similar to the ones, given in [6], determine the thickness of the layers of both constituents:

dc
i = ωc

kcH

M
exp

[
δc(M − i)

]
, dm

i = ωm

kmH

M
exp

[
δm(i − 1)

]
, i = 1, . . . ,M (1)

whereδm(c) andωm(c) > 0 are dimensionless parameters and their variation permits to condense or to disp
layers into the range of the thicknessH = ∑M

i=1(d
c
i + dm

i ); dm
i anddc

i denote the thickness of theith metallic or
ceramics layer, respectively. It is assumed that the number of layersM for both materials is the same. The volum
concentrations of ceramics and metallic alloys are denoted bykc andkm, respectively, wherekc + km = 1. The
following relations of the parametersωj andδj hold:

ωj = M(expδj − 1)

expMδj − 1
, j = m,c (2)

The coupled thermo-mechanical problemis considered. The materials of both constituents are isotropic. Mise
yield condition and the associated flow rule are assumed.

The heat conduction equation has the form:

∂T

∂t
= λT

cT ρ
T,ii + kσp

˙̄εp + 3λ + 2µ

cT ρ
αT (T − T0)ε̇kk (3)

whereλT (T ) denotes thermal conductivity,cT (T ) is heat capacity,ρ(T ) is material density,̇̄εp is the effective
plastic strain rate,k is the Taylor–Qwinney coefficient,λ(T ) andµ(T ) are the Lame coefficients,αt (T ) is the
coefficient of linear thermal expansion andε̇kk is the elastic volumetric strain rate.

The Cauchy stress tensorσij fulfills the equilibrium equationsσij,j = 0. The following temperature initial an
boundary conditions are fulfilled:

T (x, y,0) = T0, T (x,0, t) = T2, T (x,H, t) = T1, x, y ∈ Ω (4)

whereΩ is the region occupied by the body under consideration. The criterionσequiv= σlim is applied to investigate
failure initiation of the multi-layered plate, where the equivalent stressσequivand the limit stressσlim for both phases
are explained below.

It is assumed that plastic zones should not be allowed in the metal alloy. Initiation of plastic state is dete
by the Mises yield condition:

σm
equiv= σp, σm

equiv=
√

2

2

√
S2, S2 = (σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2 (5)

denotes the equivalent stress in the metal alloy andσ1 � σ2 � σ3 are the principal stresses. In that caseσequiv =
σm

equiv andσlim = σp .
Several criteria are applied to evaluate failure of the brittle elastic ceramics material. For all criteriaσc

equiv= σBt,
i.e.,σequiv= σc

equiv andσlim = σBt, whereσBt is the tensile strength.
Mohr criterion [7]:

σc
equiv= σ1 − σBt

σBc
σ3 (6)

whereσBc is the compressive strength.
Deformation ctriterion [8]: σc

equiv= σ1 − ν(σ2 + σ3).
Maximal stress criterion [8]: σc

equiv= σ1.
Balandin criterion [9]: σc

equiv= (S2 + 2(σBc − σBt)S1)/(2σBc), S1 = σ1 + σ2 + σ3.
The last criterion as stated is a special case of Tsai-Wufailure criterion and Hoffman criterion [8] if both ar

transformed for isotropic materials.
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We introduce the function

G(y) = 1− σequiv

σlim
(7)

In order to avoid failure, the conditionG(y) > 0 should be fulfilled.
Optimal design analysis of the multi-layer plate is provided. The functionsΨ1 and Ψ2 are defined as cos

functions in the safe zone:

Ψ1(ωm,ωc, km) =
M̃∑

j=1

∫ y2j

y1j
G(y)dy

y2j − y1j

⇒ min, Ψ2(ωm,ωc, km) =
∑M̃

j=1

∫ y2j

y1j
G(y)dy

H
⇒ min (8)

wherey1j and y2j are they-coordinates of the upper and lower surfaces of a strip in thej th layer (metal or
ceramics). Inside the strip the functionG is positive.M̃ = 2M − Mf , whereMf is the number of totally damage
layers. The thickness of the stripy2j − y1j may be less than the thickness of thej th layer if in part of that layer
G � 0. The thickness of the strip is equal to the thickness of the layer, in caseG > 0 at each through-thickness poi
of the layer. IfG � 0 in the whole thickness of a particular layer,this layer does not contribute to the functionsΨ1
andΨ2. Criterion (8), concerningΨ1 takes into account existence of large deviations of the equivalent stress
the limit one in the single layers. Criterion (8), concerningΨ2 considers the average in the whole cross sec
deviation of the equivalent stress from the limit one. Criteria (8) lead to a plate structure with maximal using
material carrying capacity.

The conditionsΨ1(ωm,ωc, km) ⇒ max or Ψ2(ωm,ωc, km) ⇒ max lead to a plate structure with maxima
reduced stresses in the plate.

3. Numerical examples

A functionally graded plate consisting of two phases, titanium alloy Ti6Al4V and ceramics ZrO2, is considered
The plate is subjected to temperature loadingT1 = 1100 K andT2 = T0 = 300 K. The mechanical characteristi
of both phases are taken from [10] and [6]. There are three laminates of each phase(M = 3). The total thickness o
the plate isH = 0.84428 mm. The plate is taken inOx direction long enough, so that the edge effect is negligi
The laminates are distributed exponentially, according to Eqs. (1). We consider the casesdc

1 � dc
2 � dc

3 and
dm

1 � dm
2 � dm

3 , for which δm(c) � 0 and which are of practical interest. This leads to the intervalsωm(c) ∈ (0,1].
At fixed metal alloy concentrationkm = 0.5528 the values ofωc andωm are varied.

The FEM is applied for solving the coupled thermo-mechanical problem. The finite element package M
used. 4-node quadrilateral isoparametric finite elements are applied.

The distribution of the normal stressσx through the plate thickness was investigated for the different t
of boundary conditions mentioned above. At the contact surface between two layers, discontinuity of the s
distribution takes place due to the change of material properties. Calculations showed that in the case o
supported plate deformations due to temperature and stress jumps are higher than in the rest cases. Therefor
are dealing later only with this kind of boundary conditions. Applying the optimization criteria mentioned above
we try to reduce the stress jumps.

The modifications of the functionG for different failure criteria were studied. Computations indicated tha
all types of boundary conditions theDeformation criterion is too restrictive and leads to failure of ceramics
the prevailing part of the cross section. In contrary, theBalandin (Tsai-Wu) criterion is too weak and does no
show failure anywhere. That is why we consider further theMohr criterion (6) which leads to results close to th
results obtained by theMaximal stress criterion; additionally, it takes into account the difference between ten
and compressive strength, a property important for ceramic materials.

The safe zone (a) and unsafe zones (b) and (c) at fixed concentrationkm = 0.5528 are seen in Fig. 2. In zone (
the limit stress for Ti6Al 4V is reached. In zone (c) the limit stress of ZrO2 according toMohr criterion (6) is also
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Fig. 2. (a) Safe zone; (b) zone in whichσlim of Ti6Al4V is reached; (c) zone in whichσlim of both phases is reached; 1 – neutral curve.

Fig. 2. (a) Zone de sécurité ; (b) zone dans laquelleσlim de Ti6Al4V est atteint ; (c) zone dans laquelleσlim des deux phases est atteint ; 1
courbe neutre.

Fig. 3. Layers distribution at: (a) maxΨ1; (b) maxΨ2; (c) minΨ1; (d) minΨ2.

Fig. 3. La distribution des couches correspondant à : (a) maxΨ1 ; (b) maxΨ2 ; (c) minΨ1 ; (d) minΨ2.

reached. Taking into account thatdc
1 > dc

2 > dc
3 and relation (1) note that the thickness of the first ceramics l

dc
1 ∼ (0.6–0.7) kcH

M
is of particular importance for preventing titanium failure (thermal coating). Atωc > (0.6–0.7)

no distribution of the titanium layers can ensure safety. The minimum value ofΨ1 is reached atωm = 0.0476 and
ωc = 0.6150, while the minimum value ofΨ2 is atωm = 1 andωc = 0.667 along the neutral curve 1.

The through-thickness layers distribution is seen in Fig. 3 for extremum values of the cost functionsΨ1 andΨ2.

4. Conclusions

Using the FEM, the influence of several failure criteria, boundary conditions, layers distribution on therm
mechanical stress behaviour is provided. The optimal design of material composition for a two-phase exponenti
graded plate is analysed. It is shown that the chosen cost function is effective to reduce the jumps in therm
through-thickness distribution. The numerical results show that the thickness of the outer ceramic laye
most important for preventing titanium failure. This fact leads to the existance of a minimum necessary c
volume concentration for given plate thickness. The investigation provided can help in designing optima
distribution. This has an application in technologies of thermal barrier coatings.
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