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Abstract

The antiplane motion of a transversely isotropic piezoelectric half-space is considered. An explicit asymptotic model is
derived for the far field of the surface wave. It involves, in particular, a 1D hyperbolic equation for surface shear deformation
propagating with the finite wave speed predicted for the first time by J.L. Bleustein and Yu.V. Gulyaev. Neumann and
Dirichlet problems are formulated to restore interior mechanical and electric fields. The derivation utilizes asymptotic arguments
combined with Lourier symbolic integration. Comparison with the exact solution is presented for surface impact ading.
citethisarticle: J. Kaplunov et al., C. R. Mecanique 332 (2004).
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Résumé

Un modéle explicite pour I'onde de Bleustein—-Gulyaev. Le mouvement antiplane d'un demi-espace piézoélectrique
transversalement isotrope est considéré. Un modéle asymptotique explicite est dérivé pour le champ lointain de I'onde de
surface. Ilimplique, en particulier, une équation hyperboliqudinesnsion un pour la déformation de la surface de cisaillement
se propageant avec vitesse d'onde finie predite pour la premiére fois par J.L. Bleustein et Yu.V. Gulyaev. Des problemes de
Neumann et de Dirichlet sont formulés pour reconstituer lesglsamécaniques et éleicfues intérieurs. La dérivation utilise
des arguments asymptotiques combinés avec l'intégration symbolique de Lourier. La comparaison avec la solution exacte est
présentée pour le chargement d'impact de surfdoer. citer cet article: J. Kaplunov et al., C. R. Mecanique 332 (2004).
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1. Introduction

Surface waves seem to be hidden in the general formulations of continuum mechanics. In particular, the speed
of the classical Rayleigh wave on an elastic half-plane is not a feature of the equations of motion in linear elasticity,
but can only be calculated from the related dispersion equation. The absence of explicit mathematical models (say,
in the form of approximate equations and boundary coond) oriented directly to surface waves complicates
dynamic analysis and also leadsctertain methodical difficulties in thexposition of the general theory.

There was an attempt to derive an aproximate ggonaor free harmonic Rayleigh waves [1]. A recent
asymptotic model for the Rayleigh wave has been proposed in the paper [2]. The considerations in [2] are based
on the so-called ‘Lourier symbolic method’ which treats a part of partial derivatives as integration parameters. In
the present context the symbolic technique refers écaymptotic nature of the problem underlying the far field
assumption.

In this Note we extend the methodology of [2] to the Bleustein—Gulyaev (B—G) surface wave [3,4], which is
characteristic of the antigne motion of a piezoelectric half-space. B hyperbolic equation is derived for the
surface shear deformation, propagating with finite speed, predicted in the above mentioned papers. In this case full
2D mechanical and electric fields can be defined from Neumann and Dirichlet boundary value problems specified
for a half-plane. It is essential that the latter do not allow the propagation of surface dicontinuities into the interior
domain. As an example, the B—G wave far field is evaluéded surface impact load witlhe Gaussian distribution
in space. Comparison with theact solution is presented.

2. Statement of the problem

Let us study the antiplane motion of a transversely isotropic (e.g., crystal@ass) piezoelectric half-space
with y > 0. Let z axis be oriented in the direction of sixfold axis for a crystal in cl@gsnm. The governing
equations can be written as (e.g., see [3])

p 9%u

Vau — ——
Ca4 Ot

=0, V2 =0 (1)
whereu denotes; displacement componens, is mass densityy2 = 92/9x2 + 92/9y? is the two-dimensional
Laplace operatoi44 = c44 + efs/ell is piezoelectrically stiffened elastic constani4 e1s, andey1 are elasic,
piezoelectric, and dielectric consts, respectively), and the functignis defined in terms of the electric potential
¢ asy = ¢ — (e15/€1)u.

Consider the boundary conditions corresponding to the sugfac® completely coated with an infinitesimally
thin perfectly conducting electrode which is grounded. They are

_ du L) e15
023 = C44— + e15— =—P, ¢p=—u+vy=0 2
ay ay €11

whereP = P(x, t) is impact mechainal load, andr,3 is the relevant component of the stress tensor.
For the sake of definiteness we focus on the B—G wave far-field (see Fig. 1). To this end we define the
characteristic lengtlh for the mechanical load. In particular, for the Gaussian distribution alongxis

PGt = () —m exp(—x—z)
S V2rL 212

where f (¢) is a prescribed function of large variability.



J. Kaplunov et al. / C. R. Mecanique 332 (2004) 487-492 489

wavefr{t K(x,t) wave-front
X
N/ Sl . /"

vy

Fig. 1. The Bleustein—@yaev wave far-field.
3. Asymptotic analysis

First, we introduce scaling (e.g., see [5])

X —ct y ct
= ) = ——. = — 3
5 eL ¢ eL ’ L 3
wherec is the B—G surface wave speed explicitly defined bekois,a small parameter which may be presented as
e=L/cT <1

whereT is typical time scale.
Egs. (1) in terms of variables (3) become

82 2
—”+(<1 pe )8&-4-28—353{— Zfia,z)u:o

9¢2 Caa Caa
22y (4)
T 82y =0

whereds = 9/9&, 9, = /9.
Next, we apply the Lourier symbolic method (e.g., see [6,7]) which deals with (4) as ODE’s with respect to
treating the operatoi, 9. as integration parameters. Then we have

2 2
u=exp| —i.[(1-25 )02+ 2625 000, — 22 020 \u e, «
p( \/< 44) aa o " Caa C)UED (5)

¥ =exp(—idg )W (8, 7)

whereU (&, 1), ¥ (&, T) are sought for functions, and the negatiwp@nent ensures the decay of propagating
surface disturbances agends to infinity.
Boundary conditions (2) in terms of scaled variables (3) can be rewritten-a®J

_ du n oy LP
CA4— €15—— = —¢&
443{ 158{
Ay =0

€11

Now we insert (5) into the latter and eliminate Ignoring terms @e2) we get

i(E“/l_Ij(a +e (p7_1> l&)—%&g)U:@LP (6)

Setting the leading order (l.0.) term to zero we immediately obtain the expression for the G-B wave speed (as
in [3])

Ca4
-

c=

1—k%) (7)
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wherek = ,/efs/(enEM) is piezoelectric coupling factor. This iteration step is similar to solving the relevant

dispersial equation.
With zero l.o. term, taking into account (7), we can rewrite (6) in a dimensionless form as

iCaak?(k™* —1)3;U = LP (8)
To within O(¢) terms in (5) we getd/d; = —ikzagU. Hence, the symbolic equation (8) may be transformed to
du
d¢
We can also show that in leading order
3% 19> 2

Caa(k™* — 1)d: 0. — = —LOZP (9)

- =" 59 10
ax2 22 L2 (10)
Finally, we return to original variables in (9), utilizing the symbolic relation (10). We obtain
82 3%y 2k*9%P _ 3
CX_ 2l X _= with x = -~ (11)

a2 ox2 T p ax2 9y 1,0

Thus, we derived a 1D hyperbolic equationd#sing explicitly surbice shear deformatignin the B—G wave far
field.
Now we discuss in brief a half-space contacting vacuum. In this case we should take into consideration

V2 =0 withy<O0
along with governing equations (1) aimdpose the following boundary conditions
o3=—P, ¢=¢, Dr=Dr ony=0 (12)

whered and D, are electric potential and norftr@omponent of electric displacemt in vacuum, respectively.
Proceeding in the same manner as before we get for the G—B wave speed (see [3])

c= \/%1 <1 — A1+ 611)2>
P

and then an approximate wave equation becomes

92,02  2k*(1+e1)?02P

a2 ox2 0 9x2
For both types of boundary conditions (2)da(12) on the surface, by neglectingsterms in (4) we obtain the
elliptic equation

4 2u  9%u . . .du
— + — =0, accompanied with the boundary conditign =x (13)
9x2  9y? 9y ly—o

By solving the Neumann problem (13) we can restore tpldtcement field for the interior half-space. It should
be emphasized that this elliptic problem does not alloveatsinuities to come through the interior which is in
complete agreementith the general idea of a surface wave.

At the next stage the electric field can be determined starting from classical boundary value problems. For
example, in the case of an electrode coated surface we should consider the Dirichlet problem for Laplace equation
in (1) with the boundary conditiony(= 0)

Y=—"2u
€11
where the surface displacementare assumed to be known from the solution of the Neumann problem (13).
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4, Example
As an example, consider the eft of the mechanical impact load

P(x.1) = 5(t)——— ex x (14)
= V2L P 2L2
For this, (11) takes the form

—_— — — L) expl —— |o(¢
a2 ¢ 8x2 p\/ZJTLS(x ) p( ZLZ) ®

which may be reduced to the homogeneous equation

P 9%
—= —c"—=%=0 15
012~ 9x2 (15)
with the initial conditions
dx(x,0) 2k* P x2
,00=0, = —L - 16
x(x,0) o mes(X ) ex 77 (16)
The classical D’Alembert’s solution for (15) (see [8], p. 776) yields
k4 x+ct , , 2
= — a‘ — L) ex do
pc/ 2 LD /r ( ) p( 2L2)
X—C
or
K4 (x — ct)? (x + c1)?
:m<(x—ct)exp<—T) —(X+C[) eXF(—T>> (17)

The sketch of this function is shown in Fig. 1.
For comparison, we also obtain the exact solution. By applying the Fourier—Laplace transform with the
parameterg, s, respectively, to the original equations (1) we get

82UFL 0
ayz (p + = ” 2>UFL
aZlI/FL B leFL

dy? =P

where the superscript ‘FL’ defines Fourier—Laplace transforms.
Next, we have

FL F(p,s) exp(— [ p2+ _Lszy> (18)
Ca4

Inserting (14), (18) into the transformed boundary conditions (2) leads to
exp(—L? 2/2)

C44\/_ 7/ %+ (p/Cas)s? —

The transformed surface shear deformation becomes

P exp(—L?p?/2)(p? — (p/Can)? + k2 py/p? — (p/Cag)?)
o2 (0 +cp)(w —cp)
wherew = —is.

F(p,s)=

(19)
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The contribution of the B—G wave field in (19) is represented by the sum of residues
F_ ii
pc/ 2w

corresponding to the poles= +cp.
By evaluating the inverse Fourier transform for (20) we arrive at the approximate solution (17).

12,2\ ,
X pexpl — 217 >(e|cpt_e—lcpt) (20)
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