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Abstract

The antiplane motion of a transversely isotropic piezoelectric half-space is considered. An explicit asymptotic m
derived for the far field of the surface wave. It involves, in particular, a 1D hyperbolic equation for surface shear defo
propagating with the finite wave speed predicted for the first time by J.L. Bleustein and Yu.V. Gulyaev. Neuma
Dirichlet problems are formulated to restore interior mechanical and electric fields. The derivation utilizes asymptotic ar
combined with Lourier symbolic integration. Comparison with the exact solution is presented for surface impact loadTo
cite this article: J. Kaplunov et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un modèle explicite pour l’onde de Bleustein–Gulyaev. Le mouvement antiplane d’un demi-espace piézoélectr
transversalement isotrope est considéré. Un modèle asymptotique explicite est dérivé pour le champ lointain de
surface. Il implique, en particulier, une équation hyperbolique dedimension un pour la déformation de la surface de cisaillem
se propageant avec vitesse d’onde finie predite pour la première fois par J.L. Bleustein et Yu.V. Gulyaev. Des prob
Neumann et de Dirichlet sont formulés pour reconstituer les champs mécaniques et électriques intérieurs. La dérivation utilis
des arguments asymptotiques combinés avec l’intégration symbolique de Lourier. La comparaison avec la solution
présentée pour le chargement d’impact de surface.Pour citer cet article : J. Kaplunov et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Surface waves seem to be hidden in the general formulations of continuum mechanics. In particular, th
of the classical Rayleigh wave on an elastic half-plane is not a feature of the equations of motion in linear e
but can only be calculated from the related dispersion equation. The absence of explicit mathematical mod
in the form of approximate equations and boundary conditions) oriented directly to surface waves complica
dynamic analysis and also leads tocertain methodical difficulties in theexposition of the general theory.

There was an attempt to derive an aproximate equation for free harmonic Rayleigh waves [1]. A rece
asymptotic model for the Rayleigh wave has been proposed in the paper [2]. The considerations in [2] a
on the so-called ‘Lourier symbolic method’ which treats a part of partial derivatives as integration parame
the present context the symbolic technique refers to the asymptotic nature of the problem underlying the far fi
assumption.

In this Note we extend the methodology of [2] to the Bleustein–Gulyaev (B–G) surface wave [3,4], wh
characteristic of the antiplane motion of a piezoelectric half-space. A 1D hyperbolic equation is derived for th
surface shear deformation, propagating with finite speed, predicted in the above mentioned papers. In this
2D mechanical and electric fields can be defined from Neumann and Dirichlet boundary value problems s
for a half-plane. It is essential that the latter do not allow the propagation of surface dicontinuities into the
domain. As an example, the B–G wave far field is evaluatedfor a surface impact load withthe Gaussian distributio
in space. Comparison with the exact solution is presented.

2. Statement of the problem

Let us study the antiplane motion of a transversely isotropic (e.g., crystal classC6 mm) piezoelectric half-spac
with y � 0. Let z axis be oriented in the direction of sixfold axis for a crystal in classC6 mm. The governing
equations can be written as (e.g., see [3])

∇2u − ρ

c44

∂2u

∂t2 = 0, ∇2ψ = 0 (1)

whereu denotesz displacement component,ρ is mass density,∇2 = ∂2/∂x2 + ∂2/∂y2 is the two-dimensiona
Laplace operator,c44 = c44 + e2

15/ε11 is piezoelectrically stiffened elastic constant (c44, e15, andε11 are elasic,
piezoelectric, and dielectric constants, respectively), and the functionψ is defined in terms of the electric potent
φ asψ = φ − (e15/ε11)u.

Consider the boundary conditions corresponding to the surfacey = 0 completely coated with an infinitesimal
thin perfectly conducting electrode which is grounded. They are

σ23 = c44
∂u

∂y
+ e15

∂ψ

∂y
= −P, φ = e15

ε11
u + ψ = 0 (2)

whereP = P(x, t) is impact mechanical load, andσ23 is the relevant component of the stress tensor.
For the sake of definiteness we focus on the B–G wave far-field (see Fig. 1). To this end we de

characteristic lengthL for the mechanical loadP . In particular, for the Gaussian distribution alongx-axis

P(x, t) = f (t)
1√
2πL

exp

(
− x2

2L2

)
wheref (t) is a prescribed function of large variability.
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Fig. 1. The Bleustein–Gulyaev wave far-field.

3. Asymptotic analysis

First, we introduce scaling (e.g., see [5])

ξ = x − ct

εL
, ζ = y

εL
, τ = ct

L
(3)

wherec is the B–G surface wave speed explicitly defined below,ε is a small parameter which may be presente

ε = L/cT � 1

whereT is typical time scale.
Eqs. (1) in terms of variables (3) become

∂2u

∂ζ 2
+

((
1− ρc2

c44

)
∂2
ξ + 2ε

ρc2

c44
∂ξ ∂τ − ε2ρc2

c44
∂2
τ

)
u = 0

∂2ψ

∂ζ 2
+ ∂2

ξ ψ = 0

(4)

where∂ξ = ∂/∂ξ , ∂τ = ∂/∂τ .
Next, we apply the Lourier symbolic method (e.g., see [6,7]) which deals with (4) as ODE’s with respecζ ,

treating the operators∂ξ , ∂τ as integration parameters. Then we have

u = exp

(
−i

√(
1− ρc2

c44

)
∂2
ξ + 2ε

ρc2

c44
∂ξ ∂τ − ε2ρc2

c44
∂2
τ ζ

)
U(ξ, τ )

ψ = exp(−i∂ξζ )Ψ (ξ, τ )

(5)

whereU(ξ, τ ), Ψ (ξ, τ ) are sought for functions, and the negative exponent ensures the decay of propagat
surface disturbances asζ tends to infinity.

Boundary conditions (2) in terms of scaled variables (3) can be rewritten as (ζ = 0)

c̄44
∂u

∂ζ
+ e15

∂ψ

∂ζ
= −εLP

e15

ε11
u + ψ = 0

Now we insert (5) into the latter and eliminateΨ . Ignoring terms O(ε2) we get

i

(
c44

√
1− ρc2

c44

(
∂ξ + ε

(
c44

ρc2 − 1

)−1

∂τ

)
− e2

15

ε11
∂ξ

)
U = εLP (6)

Setting the leading order (l.o.) term to zero we immediately obtain the expression for the G–B wave sp
in [3])

c =
√

c44

ρ

(
1− k4

)
(7)
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wherek = e2
15/(ε11c44) is piezoelectric coupling factor. This iteration step is similar to solving the rele

dispersial equation.
With zero l.o. term, taking into account (7), we can rewrite (6) in a dimensionless form as

ic44k
2(k−4 − 1

)
∂τU = LP (8)

To within O(ε) terms in (5) we get du/dζ = −ik2∂ξU . Hence, the symbolic equation (8) may be transformed

c44
(
k−4 − 1

)
∂ξ ∂τ

du

dζ
= −L∂2

ξ P (9)

We can also show that in leading order

∂2

∂x2
− 1

c2

∂2

∂t2
= 2

εL2
∂ξ ∂τ (10)

Finally, we return to original variables in (9), utilizing the symbolic relation (10). We obtain

∂2χ

∂t2
− c2∂2χ

∂x2
= 2k4

ρ

∂2P

∂x2
, with χ = ∂u

∂y

∣∣∣∣
y=0

(11)

Thus, we derived a 1D hyperbolic equation describing explicitly surface shear deformationχ in the B–G wave far
field.

Now we discuss in brief a half-space contacting vacuum. In this case we should take into consideration

∇2φ̂ = 0 with y � 0

along with governing equations (1) andimpose the following boundary conditions

σ23 = −P, φ = φ̂, D2 = D̂2 ony = 0 (12)

whereφ̂ andD̂2 are electric potential and normal component of electric displacement in vacuum, respectively.
Proceeding in the same manner as before we get for the G–B wave speed (see [3])

c =
√

c44

ρ

(
1− k4(1+ ε11)2

)
and then an approximate wave equation becomes

∂2χ

∂t2
− c2∂2χ

∂x2
= 2k4(1+ ε11)

2

ρ

∂2P

∂x2

For both types of boundary conditions (2) and (12) on the surface, by neglecting O(ε) terms in (4) we obtain the
elliptic equation

k4∂2u

∂x2
+ ∂2u

∂y2
= 0, accompanied with the boundary condition

∂u

∂y

∣∣∣∣
y=0

= χ (13)

By solving the Neumann problem (13) we can restore the displacement field for the interior half-space. It sho
be emphasized that this elliptic problem does not allow discontinuities to come through the interior which is
complete agreement with the general idea of a surface wave.

At the next stage the electric field can be determined starting from classical boundary value proble
example, in the case of an electrode coated surface we should consider the Dirichlet problem for Laplace
in (1) with the boundary condition (y = 0)

ψ = −e15

ε11
u

where the surface displacementsu are assumed to be known from the solution of the Neumann problem (13)
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4. Example

As an example, consider the effect of the mechanical impact load

P(x, t) = δ(t)
1√
2πL

exp

(
− x2

2L2

)
(14)

For this, (11) takes the form

∂2χ

∂t2
− c2∂2χ

∂x2
= 2k4

ρ
√

2πL5

(
x2 − L2)exp

(
− x2

2L2

)
δ(t)

which may be reduced to the homogeneous equation

∂2χ

∂t2 − c2∂2χ

∂x2 = 0 (15)

with the initial conditions

χ(x,0) = 0,
∂χ(x,0)

∂t
= 2k4

ρ
√

2πL5

(
x2 − L2)exp

(
− x2

2L2

)
(16)

The classical D’Alembert’s solution for (15) (see [8], p. 776) yields

χ = k4

ρc
√

2πL5

x+ct∫
x−ct

(
α2 − L2)exp

(
− α2

2L2

)
dα

or

χ = k4

ρc
√

2πL3

(
(x − ct)exp

(
− (x − ct)2

2L2

)
− (x + ct)exp

(
− (x + ct)2

2L2

))
(17)

The sketch of this function is shown in Fig. 1.
For comparison, we also obtain the exact solution. By applying the Fourier–Laplace transform w

parametersp, s, respectively, to the original equations (1) we get

∂2UFL

∂y2
=

(
p2 + ρ

c44
s2

)
UFL

∂2Ψ FL

∂y2 = p2Ψ FL

where the superscript ‘FL’ defines Fourier–Laplace transforms.
Next, we have

UFL = F(p, s)exp

(
−

√
p2 + ρ

c44
s2 y

)
(18)

Inserting (14), (18) into the transformed boundary conditions (2) leads to

F(p, s) = 1

c44
√

2π

exp(−L2p2/2)√
p2 + (ρ/c44)s2 − k2p

The transformed surface shear deformation becomes

χFL = 1

ρ
√

2π

exp(−L2p2/2)(p2 − (ρ/c44)ω
2 + k2p

√
p2 − (ρ/c44)ω2 )

(ω + cp)(ω − cp)
(19)

whereω = −is.
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The contribution of the B–G wave field in (19) is represented by the sum of residues

χF = i
k4

ρc
√

2π
p exp

(
−L2p2

2

)(
eicpt − e−icpt

)
(20)

corresponding to the polesω = ±cp.
By evaluating the inverse Fourier transform for (20) we arrive at the approximate solution (17).
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