Available online at www.sciencedirect.com

SCIENCE(&DIRECTﬁ

COMPTES RENDUS

" MECANIQUE

ELSEVIE C. R. Mecanique 332 (2004) 473-486

Microgravity and transfers/Process control

Thermocapillary convection in cylindrical liquid
bridges and annuli

Bok-Cheol Sint, Abdelfattah Zebils

@ Department of Mechanical Engineering, Hanyangiémsity, Ansan, Kyunggi-Do 425-791, South Korea
b Department of Mechanical and Aerospace EnginegriRutgers University, Piscataway, NJ 08855-8058, USA

Available online 9 April 2004

Abstract

Thermocapillary convection ifiquid bridges and openytindrical annuli is nvestigated in two- and three-dimensional
numerical studies. The nondeformable free surfaces are either flat or curved as determined by the fluidWohmdehe
Young—-Laplace equation. Dynamic free-surface deformations are discussed only in the axisymmetric models. Convection is
steady and axisymmetric at sufficiently low values of the Reynolds nuni@emvith either nondeformable or deformable
surfaces. For the parameter ranges considered, it is found that only steady convection is possibl®eatnasirictly
axisymmetric computations. Transition to oscillatory three-dimensional motions occResrageases beyond a critical value
dependent on the aspect ratio, the Prandtl nunftrerand V. Good agreement with available experiments is achieved in all
casesTo citethisarticle: B.-C. Sim, A. Zebib, C. R. Mecanique 332 (2004).
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Résumé

Convection thermocapillaire dans les ponts liquides en géométries cylindrique et annulaire. La convection thermo-
capillaire dans des ponts liquides et les dmes cylindriqgue annulaires ouverts est étédidans des configurations bi et
tri-dimensionnelles. En modeéle 3D, les surfaces libres indéformables sont soit planes, soit courbées, suivant I'effet du volume
de fluide,V et I'équation de Young-Laplace. Les déformations dynamiques de surface libre sont discutées pour le modeéle axi-
symeétrique. La convection est stationnaire et symétrique a de faibles valdreadec une surface déformable ou non. Pour la
gamme des parametres considérée, ledtedsun’ont pas révélé d'état oscillatoirgisymétrique dans Ipont liquide tant avec
des surfaces libres déformables ou indéfables. La transition akégime tridimensionnel ogkant se produit @ augmentant
Re au dela d’'une valeur critique élevée dépendante du rapport de forme, du nombre de Praatdile V. Un bon accord
avec les valeurs expérimentales disponibles est bien démontré dans chacun des caPaiudiés. cet article: B.-C. Sim,

A. Zebib, C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Thermocapillary convection is a surface tension flow driven by a temperature gradient along an interface. The
induced surface tension variations, and hence free surface shear stresses, generate fluid motion in the liquid pool.
It is well known that thermocapillary convection is steady and axisymmetric when the temperature difference
between two side walls of an open cylindrical cavity or two disks of a cylindrical liquid bridge is sufficiently
small. At moderate and large Prandtl numBey the axisymmetric flow undergoes transition to oscillatory time-
dependent, three-dimesial convection as the temperature difference increases beyond a criticalvalughis
transition is the main focus of the present review.

In order to obtain homogeneous solids from crysgabwth melt [1], the influence of buoyancy and
thermocapillary forces needs to be understood. On Ebadtin, forces cause convection in the melt. However, in a
microgravity environment (microgravity is about 1o in space experiments [2], whege is the normal Earth
gravity), thermocapillary fares dominate and can drive unsteady convection. Unsteady convection is responsible
for striations which are bands of different concentrationshe crystal. Therefore, understanding transition to
oscillatory flows is important to material processing in space.

The most popular methods for growing crystals are the Czochralski and floating zone [3] techniques. Ther-
mocapillary effects in these two techniques were summarized by Schwabe [1]. Here we consider thermocapillary
convection in a pair of relevant cylindrical geometries: a liquid bridge in a half-zone model of the float-zone crystal-
growth process as shown in Fig. 1(a), and an open cylindrical annulus heated from the outside wall as shown in
Fig. 1(b) constituting a model for the Czochralski crystal growth system. Thermocapillary convection with either
undeformable flat or curved surfaces is investigated by amad-three-dimensional nunieal simulations, and crit-
ical conditions for transition to oscillatory states are established. Dynamic free-surface deformations are discussed
only in the axisymmetric numerical simulations.

2. Thermocapillary convection in liquid bridges

Numerous experimental, theoretical, and direct numerical studies of surface tension driven flows are available.
Preisser, Schwabe and Scharmann [4] demonstrated experimentally the occurrence of oscillatory convection in a
liquid bridge withPr = 8.9. They observed waves travelling in the azimuthal direction and a unique wavenumber,
m, of about 2 regardless of aspect ratio. Velten, Schwabe and Scharmann [5] found that buoyant forces could
stabilize thermocapillary convection in a liquid bridge by comparing results heated from above with those from
below, and observed the effect of aspect ratio on the criResdnd frequency. Carotenuto et al. [6] reported on
standing waves witln = 1 in microgravity experiments. Secondargtabilities from pulsating to rotating waves
and tom = 2 fromm = 1 were experimentally reported by Monti, Savino and Lappa [7] and Muehlner et al. [8],
respectively. Transition to a chaotic thermocapillary flow was observed by Schwabe and Frank [9]. Schwabe and
Velten [10] reported restationarization above a critical Marangoni number in a long floating zone.

The influence of free surface shape as determined by the liquid volume was experimentally reported by Hu
et al. [11], Masud, Kamotani and Ostrach [12], Shevtsova, Mojahed and Legros [13] and Sumner et al. [14]. It is
evident from the experiments that two branches exist in a stability diagaafn{V). The critical wavenumber
could be switched from 1 to 2 by chamgithe surrounding conditions and thieslhloss from the liquid bridge [13].

Smith and Davis [15] discussed the instability mechanisms of flows in an infinite liquid layer by linear stability
theory. Linear instability of an infinite liquid bridge was investigated by Xu and Davis [16]. Kuhlmann and
Rath [17] considered linear instability of steady axisymmetric thermocapillary flow in a liquid bridge with an
aspect ratio of 1. They found that the most dangerous disturbance was either a pure hydrodynamic steady mode
or an oscillatory hydrothermal wave, dependingRyn Levenstam and Amberg [18] confirmed a first bifurcation
from a steady axisymmetric flow to a steady nonaxisymmetric 3D flow atHowVanschura et al. [19] further
investigated the primary instability of axisymmetric steady thermocapillary flow in a liquid bridge. They confirmed
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the earlier results of Neitzel et al. [20], and provided a stability diagraniPfog 4.8 with an aspect ratio of 1.
Recently, a linear stability diagram féir < 7 was reported in detail by Levenstam, Amberg and Winkler [21].
Both stability boundaries are roughly in good agreemene &fiiect of liquid volume on instability in a liquid
bridge was investigated by Chen and Hu [22]. However, their results of linear stability with a cylindrical surface
andPr = 1 were very different from those of other studies [19-21].

Tao, Sakidja and Kou [23] studied steady thermocapiltnvection in a liquid bridge with a nondeformable
curved surface by axisymmetric numerical slations. Experimental and numerical studies Bn= 30 and
74 oscillatory convection with a cylindrical surface were reported by Savino and Monti [24]. They observed
pulsating and rotating waves with a wavenumber of 1. Shevtsova and Legros [25] investigated oscillatory
convection in deformed liquid bridges wifr = 105 by axisymmetric numerical simulations. While oscillatory
buoyant-thermocapillary convection in the liquid bridge was reported with axisymmetric models, oscillatory
thermocapillary convection witRr = 105 was not found in the simulations [25]. The three-dimensional numerical
simulations by Leypoldt, Kulnhann and Rath [26] showed that standing waves evolved into travelling waves with
Pr =4 and 7. The influence of temperature-dependenbsisg was reported in a three-dimensional study by
Shevtsova, Melnikow and Legros [27].

Three-dimensional numericalnsulations with undeformable curved surfaces were first performed in a low
Pr liquid bridge by Lappa, Savino and dviti [28]. They studied the transitioto steady nonaxisymmetric state
with Pr = 0.01. Oscillatory thermocapillary convection at moderBtewas computed in an open cylinder and
a liquid bridge with nondeformable curved surfaces bsn Sind Zebib [29,30]. Theyh®wed that only steady
thermocapillary convection with either flat or curved surfamas possible in strictly axisymmetric computations,
while oscillatory convection was three-dimensional.

2.1. Mathematical and numerical models

The physical system considered is a cylindrical liquid bridge with either flat or curved surface as shown in
Fig. 1(a). The aspect ratid\r, is defined aR/H, whereR and H are respectively the radius and height of the
liquid bridge. The upper and lower disks have dimensionless temperdiuted and7, = 0, respectively. The
surface tension is assumed a linear function of temperature,

o=0,—y(T —T,) 1)

wherey = —90/9T, and subscript o represents a reference state.
Neglecting body forces, the nondimensional governing equations are as follows:

V.v=0 ()
z
1 /Thot Flat Surface | Free Surface
(v=1) '
H H
CurveE?/(S;;rface Curved T
Surface °
r(v>1)
N
R Tcold H
Adiabatic Wall [

(@) (b)

Fig. 1. Physical system: (a) a liquid bridge; (b) an open annulus.
Fig. 1. Systéme physique : (a) porguide ; (b) domaine annulaire ouvert.
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Re(% +V-(vv)) =—-VP+ V% (3)
Ma(% +V- (VT)> =V’T (4)

wherev is the nondimensional velocity vector, afdand T are the nondimensional pressure and temperaRee.
is the Reynolds numbePr is the Prandtl number, and « is the Marangoni number defined by

ATH v
v o
wherev, u, anda are kinematic viscosity, dynamic viscosity, and thermal diffusivity respectively. The length,
temperature, velocity, pressure, and time are normalized with respet tan7, 2%, Y5L, and A7,
respectivelyAT is the temperature difference between the upper and lower disks.
The velocities in the, z, andd directions of a cylindrical coordinate system atev, andw, respectively. The
boundary conditions at the upper and lower walls become

u=0 v=0, w=0  T=0 atz=0 (6)
u=0 v=0, w=0 T=1 atz=1 (7
2.1.1. Boundary conditions at the undeformable free surface

The nondimensionalized position of thedrsurface is described by a functier= g(z). Thermal, kinematic
and tangential stress balance boundary conditions at the interface are

1707 0T .

——|——-¢— ) =8BiT 8
N(ar & 8z> ®
u=gv )

dv  du ou v oT 9T

1-¢—+—)+2¢(———)=-N[g—+— 10
( & )(8r+8z)+ g(ar 81) <g or + 8z) (10)
ow w 1lou 0w 1lov —NoT

——t—— gl =)= 11
or 7 Trae g<8z+r89> - 90 (11)

whereN = (1+ g'®¥? andg’ = dg/dz. The Biot number in Eq. (8) is given b§i = hH/k whereh is a heat
transfer coefficient to the surroundings at the cold wall temperature;, enthe thermal conductivity of the liquid.
The derivation of the boundary conditions and interface equation can be found in [31].

The location of the interfacg,(z), is determined by the normal stress balance. The deviation of the free surface
shape from the static meniscus depends on the Capillary nu@bery AT /o,. WhenCa <« 1, dynamic surface
deformations can be neglected [32], and the normal stress balance equation simplifies to the Young-Laplace
equation. The interface and liquid volume equations in a state of rest are as follows:

1 1"
—CaAP = —(g— - E) (12)
N\N2 g
1 1
V= | e 9
0

whereAP = P — P, is the nondimensional pressure difference between the interface liquid and gas pressures,
and the liquid volume is normalized with respectt®?H . Eq. (12) has two boundary conditiong0) = Ar and
g(1) = Ar. The shape of the interface andP are fixed with a prescribed liquid volume.
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2.1.2. Boundary conditions at the deformaliiee surface in axisymmetric model

In reality, the free-surface profilg, is unknown and should be obtained as a solution to the coupled transport
equations along with surface force balances. The position of the free surface is described by afuagtior).
Thermal, kinematic and tangential and normatssrbalance boundary conditions at the interface are

%(%4%) _BiT (14)
uzz—‘j+g’v (15)

whereg’ = dg/dz.
The tangential stress balance equation (16) defireedriliing thermocapillary forces. The initial and boundary
conditions for Eq. (17) considered here are:

gt=0,z)=Ar
gt,z=0)=Ar (18)
gt,z=1)=Ar

The liquid volume must satisfy the mass conservation, and its total volume should be constant:
1
y—t / 2dz=1 (19)
= —F Z =
Az ¢
0

where the liquid volume is normalized with respectit@? H . Ca provides a measure of the surface deflection in
response to thermocapillary-induced stresse€al& 0 (large surface tension), the free surface is undeformable
and flat.

In order to numerically solve the problem with eithendeformable or deformable surfaces, the governing
equations are transformed from the physical domain into a rectangular computational domain. The transformed
equations and boundary conditions are solved by a fugteme method employing a SIMPLER algorithm. The
transformed equations and numerical aspects caminedfin [30] for undeformable surfaces and [33] for two-
dimensional deformable surfaces.

2.2. Axisymmetric thermocdiary convection with @her nondeformable or deformable interfaces

We have investigated thermocapillary convection ufRee= 5000 withPr=1, Ar=1, V=1, Bi=0 and
variousCa (< 0.1), and have found no oscillatory axisymmetriatsss in liquid bridges with either nondeformable
or deformable free surfaces. Assuming nondeformable flat interfacesRvita 1 and Ar = 1, the critical
Re for transition to oscillatory states is about 2500 fromekin theory [19] and three-dimensional numerical
simulations [30]. Sinc€ais in the range @LO~2)—0O(10~3) in most experiments [34], we conclude that dynamic
free-surface deformations do not induce transition tdllasory, axisymmetric convection. Thus only azimuthal
waves can generate oscillations in a liquid bridge vétther nondeformable or deformable free surfaces. In
addition, we have computed axisymmetric convection uRee- 1000 with undeformable flat surfaceRr(= 27,
Ar =0.714,Bi = 0), and no unsteady, oscillatory convection was found. The criReatas 210 with a flat surface
in three-dimensional numerical simulations. This is consistent with studies of convection in other cylindrical
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Fig. 2. Steady, axisymmetric free surface deformations Bith- 0, Ca= 0.05 and variousRe There are two peaks of the free surface at
low Re while three peaks developsRe> 2000.

Fig. 2. Déformation stationnairexaymeétrique de la surface libre poBi = 0, Ca= 0,05 et différentsRe Deux pics se développent sur la
surface libre pouRefaible, et trois pouRe> 2000.

geometries [29,35]. While oscillatp thermocapillary conveimn in a rectangular cavity can be investigated in
two-dimensional simulations [36], it cannot be lizaed in an open cylinder with a uniform heat flux [29] or

in a liquid bridge. Oscillatory buoyant-thermocapillary convection was reported in axisymmetric simulations by
Shevtsova and Legros [25], but no oscillations of purertteeapillary convection waeund in their axisymmetric
simulations.

Fig. 2 shows two-dimensional free surfaces with= 1, Ar = 1, Bi = 0, Ca= 0.05 and varioufke The free
surfaces are convex near the lower cold wallj ahange from concave to convex with increadtenear the hot
wall because of stronger returned-flow in the interior. At sufficiently Ravthe free surface is almost asymmetric
about its mid point. It has two peaks and is elevated near the cold stagnation point where surface pressure achieves
its maximum value. AReincreases at fixe@a, the free surface develops three peeks. The surface deformation is
0O(10~%), and its maximum value is.2 x 10~3 with Ca= 0.1.

Curvature of the free surface, sigh and magnitude,eieriined by both the surface pressure and normal
viscous stresses as shown in Eq. (17). The curvature of the free surface is always negative near the cold corner
where pressure is positive and large. Near the hot corner, the curvature changes from positive to negative with
increasingRe even though surface pressure is always negative there. Thus, the change of curvature near the
hot corner with increasin®eis induced by the normal viscous stressesR&t= 1, normal viscous stresses are
small, and the surface deformation shown in Fig. 2 correlates with surface pressure variation. With in€teasing
the influence of normal viscous stresses increases and together with the pressure they determine the shape of
the interface. Evidently, surface elgion near the hot corner at the larg&stis driven by the normal viscous
stresses.

Surface elevations and depsions increase with increasir@@p, while its shape is independent Gl at a
fixed Re Stream function minima, surface temperatures and velocities with vaiaad a fixedReare almost
independent o€a[33]. Thus dynamic free-surface deformations with< 0.1 do not influence the convectionin
the liquid bridge. More details on the axisymmetric results appear in [30,31,33].
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2.3. Three-dimensional thermocapifjeconvection with nondeformable surfaces

With Ar =0.714,Pr = 27, Re. for onset of oscillations wittv = 1.138 (convex), 1 (flat) and.®55 (concave)
are about 210, 210 and 220, respectively. Fig. 3 shows temperature fluctuations in thezseddi®3 and at the
free surface at these values¥f The temperature fluctuations with> 1 consist of a hot and a cold spot rotating
clockwise, i.e.;n = 1. This rotating pattern witln = 1 remains unchanged with increasiRg Two pairs of hot
and cold spots, i.e., a wavenumber of 2, are rotating clockwise Wvithl.

Fig. 4 shows the variation &®e. andm with V at variousBi. Heat loss from the free surface stabilizes the flow
as it tends to decrease the free surface temperature gradiefgaimtreases with increasirigj. With Bi=0, a
pair of wavenumbers are observed, and a transition from1 tom = 2 occurs aV of about 09. The wavenumber
can change witlBi. This change in wavenumber was reported in expents [13], where a wavenumber of 1 was
changed into 2 by altering the saumding conditions o& liquid bridge.

Heat loss to surroundings is through forced convection induced by the free surface flow. The vdiolegafses
in forced convection is in the range 2850 W/(m? K). With H = 1.4 mm in experiments [12Bi is in the range
0.32-32. In the three-dimensional numerical simulations with a flat surfacePand 7 of [26], Bi of 6.4 was
necessary to compare with the experimental results of [4]. Thu®icail (a much smaller bridge) is a reasonable
assumption to compare with the experimental results of [12]. In addition, our previous work [2,35,37] showed that
the inclusion of surface heat loss was necessary toeebitter agreement with experiments. When our numerical
results withBi = 1 are compared with those from normal gravity experiments [12], the wavenumber of 1 and the
rotating mode are in good agreement. With= 1, transition ton = 1 fromm = 2 occurs aBi = 0.5. Re. is about
400 andm = 1 with V =1 andBi = 0.5. With Bi > 0, two different branches can exist in the stability diagram
(Re.—V). The most stable range &f with Bi = 1 is near 094 which is not in good agreement with experimental
result [12],V = 0.87. However, in the experiments by Sumner et al. [14] at a hiBhgthe most stable range was
nearV = 0.95. Other experiments [13] showed that the range was very clogestd. Although the experiments

Pr=27, V=1.138, Re=230 V=1, Re=230 V=0.755, Re=250

(b) ()

Fig. 3. Snapshots of temperaufluctuations in the section & 0.53) and the free surface witsi =0, Ar = 0.714 and varioug’. One or two
pairs of hot and cold spots are observed.

Fig. 3. Fluctuations de température dans la sectiea 0,53) et a la surface libre po&i =0, Ar=0,714 et différentd/. Une ou deux paires
de points chaud et froid sont observées.
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Pr=27, Ar=0.714 —&—— Exp. Results (m=1)
— & — Num. Results (Bi=0)
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Fig. 4. Variations ofRe. andm with Bi where the experimental results are from [12]. Two different branches are observed in the stability
diagram withBi > 0.

Fig. 4. Variations deRe. et m avecBi, résultats expérimentaux d'apres la référerkd.[Deux branches sont observées sur le diagramme de
stabilité pourBi > 0.

were performed with small rods, the difference between numerical and experimental results may be due to gravity-
induced bridge deformation since the largest static Bond nunizk=(og H?/o) in the experiments [12] was 2.

3. Thermocapillary convection in an open cylindrical annulus

Schwabe et al. [38] studied experimentally thermocapillary flows Ritk= 17 in two types of shallow liquid
layers heated from the side: one is a rectangular configuration, the other an annular slot. In the annular slot heated
from the inner rod, they observed azimuthal wavetraiagelling on the free surface, and found that the number
of wavetrains increased &&a increased. Kamotani et aB9] investigated experimentally surface tension driven
convection with 2 cSt silicone oils induced by placing awgtfical heater at the center of annuli. Their experiments
included flat and curved surfaces, which were determinettiéyiquid volume. Three-diensional simulations of
thermocapillary convection in an opewlindrical annulus heated from theside wall were first reported by Sim
and Zebib [37]. Four kinds of isotherm patterns at the free surface were observed with incRasirgo- and
a three-lobed clockwise rotating pattern, and a two- and a three-lobed pulsating pattern. They found that heat loss
from the free surface provided a satisfactory explanation foMhag dependence on the container size at fixed
aspect ratio which was observed in the experiments [39].

3.1. Mathematical model

The physical system considered is that in the microgravity experiment MAGIA [2] and is shown in Fig. 1(b).
Itis a cylindrical annulus with inner and outer rad®i andRo, which is filled with an incompressibl®r = 6.84
Newtonian fluid to a height/ . The aspect ratidir, is defined agRo— Ri)/ H, and the values dAr considered are
1, 2.5, 3.33, and 8 (which correspond to different value&/ ofith Ri andRofixed atRi/Ro= 0.5). The vertical
inside and outside walls have cold and hot temperatdies,Tcolq and To = Thet, respectively. The bottom is an
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adiabatic solid wall. The horizontal free surface is assumed nondeformable and has convective heat loss to the
surroundings with the ambient temperat@g, (= Tcold)-

The nondimensional governing equations are Eqgs. (2)R@)Pr, Ma and scales for nomalization are the same
as those from the previous $en. The boundary conditions become

du oT Jw 10T oT

— 4+ — =0, =0, —+4+-—=0, —=-Bi7T, atz=1 20

0z ar v oz Tr o0 9z ¢ (20)
oT

u=0 v=0 w=0, 8—:0, atz=0 (21)
Z

u=0 v=0, w=0, T=0, atr=Ri/H (22)

u=0, v=0, w=0, T=1 atr=Ro/H (23)

3.2. Three-dimensional thermagillary convection with flat surfaces

Re. for onset of oscillations witlBi = 0, Pr = 6.84 andAr = 1, 2.5, 3.33 and 8 are about 740, 490, 490
and 560, respectively. ARRe, the flow is steady and the isotherms on the free surface are just circular lines, i.e.
axisymmetric. Fig. 5 shows instantaneous temperature distributions on the free surface withAarfgusr = 1,
five azimuthal waves are rotating clockwise in agreement with similar finding in the experiments [2], and the pattern
of five azimuthal waves remains unchanged with increaBiagrhe isotherms have the same shape when rotated
by 27 /5. Thus if one measures the temperature at a fixed point on the free surface, the frequency of the temperature
oscillations will be five times the isotherm rotation frequency. This is in agreement with the experimental results
for the annular gap by Kamotani et al. [39], but with two azimuthal rotating waves Avith 1).

While nine azimuthal waves near the criticagion appear on the free surface wih= 2.5, ten azimuthal
waves are observed Be= 800 [35]. This is in reasonable agreement with the results from the experiments [2],
where 11 azimuthal waves are observe®et 2.5Re.. With Ar = 3.33, the twelve azimuthal waves are rotating
clockwise near the critical region [35]. It is evident that the number of azimuthal rotating waves near the critical
region increases with increasidg.

Ar=1 Ar=2.5 Ar=8

(a) Re=800 (c) Re=625

Fig. 5. Surface temperature distribution wigh= 0 and: (a)Ar = 1 andRe= 800; (b)Ar = 2.5 andRe= 525; (c)Ar = 8 andRe= 625.
Fig. 5. Distribution de la température a la surface pBue 0 et : (a)Ar =1 etRe=800; (b)Ar = 2,5 etRe=525; (c)Ar = 8 etRe= 625.
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Ar=3.33 Ar=8

(a) Re=550 (b) Re=900 (c) Re=625

Fig. 6. Shadowgraphicnspshots (contours o72T) at the free surface witlBi = 0 and: (a)Ar = 3.33 andRe= 550; (b) Ar = 3.33 and
Re=900; and (c)Ar = 8 andRe= 625. (a) Shows azimuthal clockwise rotating waves, while (b) indicates azimuthal waves with a source and
sink near respectivel§ = 7= and 0. (c) Shows azimuthal standing waves with a source and sink near respectvélandsr.

Fig. 6. Contours du laplacien de températu?@T) a la surface libre pouBi =0 et : (a)Ar = 3,33 etRe=550; (b)Ar = 3,33 etRe=900;
et (c)Ar = 8 etRe= 625. (a) Ondes azimutales rotatives (sens des aiguilles damgre), (b) ondes azimutales rotatives avec source et puits
proches d® = r et 0 respectivement. (c) Ondes azimutales rotatives avec source et puits proéke$ désr respectivement.

Twenty azimuthal wavetrains witAr = 8 are found on the free surface, and the waves are pulsating [35]. The
inside wall looks like the source of the waves: the waves are generated at the inside cold wall and travel to the
outside hot wall. This is in good agreement with the hydrothermal waves in the infinite layer model [15] and
the rectangular cavity simulations [36]. We thus have travellingaves and pulsating-waves in cylindrical-
shallow liquid layers. AReincreases these waves propagate far from the inside wall. The critical wavelength
A =25 (Pr=6.84) from linear theory [15] implies a wave number of 20 at the inside wall, which is in good
agreement with our numerical result.

Fig. 6 shows shadowgraphic snapshots at the free surfacéwit3.33 and 8. Because the waves travel from
the inside to the outside wall and rotate azimuthally clockwise Rerwith Ar = 3.33, a supercritical spiral
structure appears on the free surface as shown in Fig. 6(a). At higher RAmtt8.33, the source and sink at
the free surface are observed néat = and 0, respectively. A pattern with travellimgwaves and source-sink
6-waves, which propagate from a source into opposite directions to a sink, is shown in Fig. 6(b). However, with
Ar = 8 slightly supercritical convection is in the form of travellingvaves and pulsating source-sigkwaves.
These kinds of spiral patterns are in agreement with experimental results [40].

In steady state, only single-roll flow structure in a meridional section is availableAwith1, 2.5, 3.33 and 8.
However, just above critical, twand three rolls are observed witlr = 3.33 and 8, respectively [35]. Three rolls
atAr = 8 is in perfect agreement with space experimehtT®e number of rolls inreases with increasiny. We
can expect the multi-roll structure to appear bey&w in the case of shallow liquid layers. The axisymmetric
results are very different from those of two-dimensioe&tangular cavities reported by Xu and Zebib [36], where
a critical Ar exists, the multi-structure appears at subcritRal and the flow can be stable with multi-structure
in restabilized region (highly supercritic®é. However, the structures of three-dimensional states in shallow
cylindrical and rectangular cavities have in commaoavelling multi-cells from thecold to hot corners with a
standing, pulsating pattern in the third direction.

Fig. 7 shows the effect di on Re. and the critical dimensional-period,. The numerical results witBi = 0
are in good qualitative but not in good quantitativeesment with the experiments [2]. The valuehofs 25 to
250 W/(m? K) for gases in forced convection. Because of evagimmathe value will be increased substantially. It
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Fig. 7.Re. and . corresponding to varioudr at variousBi cooling the free surface. Heat loss from the free surface stabilizes the flow, and
Re. increases with increasingi at fixedAr. 7. decreases witir (Bi) at fixedBi (Ar). Note that the curves here are for constaso thatBi
decreases along these curves with increaging

Fig. 7.Re. et z. pour différentsAr et Bi de refroidissement a la surface libre. Les pertestdgeur a la surface libre stabilisent I'écoulement
et Re. croit avecBi pour Ar fixé. t. décroit avedir(Bi) a Bi fixé. Les courbes sont tracées &onstant eBi décroit le long de ces courbes
lorsqueAr croit.

can be seen that heat loss from the free surface stabilizes the floRgaimdreases with increasirigj. t. decreases
with increasingBi. It is observed that better comparison with experiments is achieved at the larger valies of

In the experiments [2], it is argued that the free surface is effectively heated by the surroundings. Numerical
results [35] with heating from surroundings approach the experimental results [2] with incr&asiriy good
agreement obtained Bi = 0.5.

3.3. Dynamic axisymmetric free-surface deformations

The physical system is an open cylindrical annulus with inner and outer Rigii0.1RoandRo, heated from
the inside wall. The deformable free surface is obtained as a solution of the coupled transport equations, assuming
pinned contact points. The mathematical and numerical models can be found in [41].

Thermocapillary convection up ®e= 5000 withPr = 30, Ar =1, Bi = 0 andCa< 0.1 was computed and no
axisymmetric oscillatory states widither nondeformable or deformable surfaces were found. In three-dimensional
numerical simulations witRr = 30, Ar =1, Bi = 0 andCa = 0 (nondeformable flat surface), the critical Reynolds
was about 2200 [37]. Thus dynamic free-surface defonatdo not induce transition to unsteady, oscillatory
axisymmetric convection, and only azimuthal waves can generate oscillations in this model. Thus we may conclude
that time-dependent, lardg& thermocapillary convection with the wavenumber of O does not occur in cylindrical
geometries neakr = 1 [29,33,35].

Fig. 8 shows free surfaces witha= 0.05 and varioud®Re The surface is convex near the cold wall where
surface pressure has a maximum positive value at the stagnation point, and concave near the hot wall. Two peaks
appear at the free surface at sufficiently I&eand its curvature is determined by surface pressure [41R&s
increases, the effect of normal viscous stresses increddgional ripples occur at the free surface which can be
convex close to the hot corner. Surface etmres and depressions decrease with increaRiedue to this change
in topology, volume conservation and curvature.
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Fig. 8. Free surface deformations with= 1, Bi=0, Ca= 0.05 and variousRe Two free surface peaks increase to four with increailrg

Fig. 8. Déformation de la surface libre polir= 1, Bi=0, Ca= 0,05 et différent)ke On observe le passage de deux pics de surface a quatre
lorsqu’on accroiRe

The shape of the surface, number of ripplasd reflection point do not change witta at a fixedRe while
the magnitudes of depressions and elevations increase with incre@aingurface deformation is @Q0~%).
Its maximum value is 2 x 10~3, about 0.12% of the cylinder height, witRe= 1 and Ca = 0.1. Stream
function minima, and surface temperature and velocity distributions are indepen@afldfus, dynamic surface
deformations withCa < 0.1 have little effect on the convection. This result is consistent with that from liquid
bridges [33].

4. Conclusion

Thermocapillary convection in liquid bridges and opeflirdrical annuli is investigated in two- and three-
dimensional numerical studies. Convection isagly and axisymmetric at sufficiently low values R& with
either nondeformable or deformable surfaces. For theupeter ranges considered, it is found that dynamic
free-surface deformations do not indutransitions to oscillatory convection in axisymmetric models and only
steady convection is possible at aRe in strictly axisymmetric computations with either nondeformable or
deformable surfaces. Transition to oscillatory three-dimensional motions occResrareases beyond a critical
value dependent on the aspect ratio, the Prandtl number and the fluid volume.
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