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Abstract

Thermocapillary convection inliquid bridges and open cylindrical annuli is investigated in two- and three-dimension
numerical studies. The nondeformable free surfaces are either flat or curved as determined by the fluid volume,V , and the
Young–Laplace equation. Dynamic free-surface deformations are discussed only in the axisymmetric models. Conv
steady and axisymmetric at sufficiently low values of the Reynolds number,Re, with either nondeformable or deformab
surfaces. For the parameter ranges considered, it is found that only steady convection is possible at anyRe in strictly
axisymmetric computations. Transition to oscillatory three-dimensional motions occurs asReincreases beyond a critical valu
dependent on the aspect ratio, the Prandtl number,Pr, andV . Good agreement with available experiments is achieved i
cases.To cite this article: B.-C. Sim, A. Zebib, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Convection thermocapillaire dans les ponts liquides en géométries cylindrique et annulaire. La convection thermo
capillaire dans des ponts liquides et les domaines cylindriques annulaires ouverts est étudiée dans des configurations bi
tri-dimensionnelles. En modèle 3D, les surfaces libres indéformables sont soit planes, soit courbées, suivant l’effet d
de fluide,V et l’équation de Young–Laplace. Les déformations dynamiques de surface libre sont discutées pour le mo
symétrique. La convection est stationnaire et symétrique à de faibles valeurs deReavec une surface déformable ou non. Pou
gamme des paramètres considérée, les résultats n’ont pas révélé d’état oscillatoire axisymétrique dans lepont liquide tant avec
des surfaces libres déformables ou indéformables. La transition au régime tridimensionnel oscillant se produit en augmentan
Re, au delà d’une valeur critique élevée dépendante du rapport de forme, du nombre de Prandtl,Pr et deV . Un bon accord
avec les valeurs expérimentales disponibles est bien démontré dans chacun des cas étudiés.Pour citer cet article : B.-C. Sim,
A. Zebib, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Thermocapillary convection is a surface tension flow driven by a temperature gradient along an interfa
induced surface tension variations, and hence free surface shear stresses, generate fluid motion in the li
It is well known that thermocapillary convection is steady and axisymmetric when the temperature diff
between two side walls of an open cylindrical cavity or two disks of a cylindrical liquid bridge is suffici
small. At moderate and large Prandtl numberPr, the axisymmetric flow undergoes transition to oscillatory tim
dependent, three-dimensional convection as the temperature difference increases beyond a critical value,�Tc. This
transition is the main focus of the present review.

In order to obtain homogeneous solids from crystalgrowth melt [1], the influence of buoyancy an
thermocapillary forces needs to be understood. On Earth,both forces cause convection in the melt. However,
microgravity environment (microgravity is about 10−5g0 in space experiments [2], whereg0 is the normal Earth
gravity), thermocapillary forces dominate and can drive unsteady convection. Unsteady convection is resp
for striations which are bands of different concentrationsin the crystal. Therefore, understanding transition
oscillatory flows is important to material processing in space.

The most popular methods for growing crystals are the Czochralski and floating zone [3] techniques
mocapillary effects in these two techniques were summarized by Schwabe [1]. Here we consider thermo
convection in a pair of relevant cylindrical geometries: a liquid bridge in a half-zone model of the float-zone c
growth process as shown in Fig. 1(a), and an open cylindrical annulus heated from the outside wall as s
Fig. 1(b) constituting a model for the Czochralski crystal growth system. Thermocapillary convection with
undeformable flat or curved surfaces is investigated by two-and three-dimensional numerical simulations, and crit
ical conditions for transition to oscillatory states are established. Dynamic free-surface deformations are d
only in the axisymmetric numerical simulations.

2. Thermocapillary convection in liquid bridges

Numerous experimental, theoretical, and direct numerical studies of surface tension driven flows are a
Preisser, Schwabe and Scharmann [4] demonstrated experimentally the occurrence of oscillatory conve
liquid bridge withPr = 8.9. They observed waves travelling in the azimuthal direction and a unique wavenu
m, of about 2 regardless of aspect ratio. Velten, Schwabe and Scharmann [5] found that buoyant forc
stabilize thermocapillary convection in a liquid bridge by comparing results heated from above with thos
below, and observed the effect of aspect ratio on the criticalReand frequency. Carotenuto et al. [6] reported
standing waves withm = 1 in microgravity experiments. Secondary instabilities from pulsating to rotating wave
and tom = 2 from m = 1 were experimentally reported by Monti, Savino and Lappa [7] and Muehlner et a
respectively. Transition to a chaotic thermocapillary flow was observed by Schwabe and Frank [9]. Schw
Velten [10] reported restationarization above a critical Marangoni number in a long floating zone.

The influence of free surface shape as determined by the liquid volume was experimentally reported
et al. [11], Masud, Kamotani and Ostrach [12], Shevtsova, Mojahed and Legros [13] and Sumner et al. [1
evident from the experiments that two branches exist in a stability diagram (�Tc−V ). The critical wavenumbe
could be switched from 1 to 2 by changing the surrounding conditions and thus heat loss from the liquid bridge [13

Smith and Davis [15] discussed the instability mechanisms of flows in an infinite liquid layer by linear st
theory. Linear instability of an infinite liquid bridge was investigated by Xu and Davis [16]. Kuhlmann
Rath [17] considered linear instability of steady axisymmetric thermocapillary flow in a liquid bridge wi
aspect ratio of 1. They found that the most dangerous disturbance was either a pure hydrodynamic stea
or an oscillatory hydrothermal wave, depending onPr. Levenstam and Amberg [18] confirmed a first bifurcat
from a steady axisymmetric flow to a steady nonaxisymmetric 3D flow at lowPr. Wanschura et al. [19] furthe
investigated the primary instability of axisymmetric steady thermocapillary flow in a liquid bridge. They confi
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the earlier results of Neitzel et al. [20], and provided a stability diagram forPr � 4.8 with an aspect ratio of 1
Recently, a linear stability diagram forPr � 7 was reported in detail by Levenstam, Amberg and Winkler [2
Both stability boundaries are roughly in good agreement. The effect of liquid volume on instability in a liquid
bridge was investigated by Chen and Hu [22]. However, their results of linear stability with a cylindrical s
andPr = 1 were very different from those of other studies [19–21].

Tao, Sakidja and Kou [23] studied steady thermocapillary convection in a liquid bridge with a nondeformab
curved surface by axisymmetric numerical simulations. Experimental and numerical studies onPr = 30 and
74 oscillatory convection with a cylindrical surface were reported by Savino and Monti [24]. They obs
pulsating and rotating waves with a wavenumber of 1. Shevtsova and Legros [25] investigated osc
convection in deformed liquid bridges withPr = 105 by axisymmetric numerical simulations. While oscillato
buoyant-thermocapillary convection in the liquid bridge was reported with axisymmetric models, osci
thermocapillary convection withPr = 105 was not found in the simulations [25]. The three-dimensional nume
simulations by Leypoldt, Kuhlmann and Rath [26] showed that standing waves evolved into travelling waves
Pr = 4 and 7. The influence of temperature-dependent viscosity was reported in a three-dimensional study
Shevtsova, Melnikow and Legros [27].

Three-dimensional numerical simulations with undeformable curved surfaces were first performed in a
Pr liquid bridge by Lappa, Savino and Monti [28]. They studied the transition to steady nonaxisymmetric sta
with Pr = 0.01. Oscillatory thermocapillary convection at moderatePr was computed in an open cylinder a
a liquid bridge with nondeformable curved surfaces by Sim and Zebib [29,30]. They showed that only stead
thermocapillary convection with either flat or curved surfaceswas possible in strictly axisymmetric computatio
while oscillatory convection was three-dimensional.

2.1. Mathematical and numerical models

The physical system considered is a cylindrical liquid bridge with either flat or curved surface as sh
Fig. 1(a). The aspect ratio,Ar, is defined asR/H , whereR andH are respectively the radius and height of
liquid bridge. The upper and lower disks have dimensionless temperaturesTh = 1 andTc = 0, respectively. The
surface tension is assumed a linear function of temperature,

σ = σo − γ (T − To) (1)

whereγ = −∂σ/∂T , and subscript o represents a reference state.
Neglecting body forces, the nondimensional governing equations are as follows:

∇ · v = 0 (2)

(a) (b)

Fig. 1. Physical system: (a) a liquid bridge; (b) an open annulus.

Fig. 1. Système physique : (a) pont liquide ; (b) domaine annulaire ouvert.
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+ ∇ · (vv) = −∇P + ∇2v (3)

Ma

(
∂T

∂t
+ ∇ · (vT )

)
= ∇2T (4)

wherev is the nondimensional velocity vector, andP andT are the nondimensional pressure and temperatureRe
is the Reynolds number,Pr is the Prandtl number, andMa is the Marangoni number defined by

Re= γ
�T H

νµ
, Pr = ν

α
, Ma = Pr · Re (5)

whereν, µ, andα are kinematic viscosity, dynamic viscosity, and thermal diffusivity respectively. The le
temperature, velocity, pressure, and time are normalized with respect toH, �T,

γ�T
µ

,
γ�T
H

, and µH
γ�T

,
respectively.�T is the temperature difference between the upper and lower disks.

The velocities in ther, z, andθ directions of a cylindrical coordinate system areu, v, andw, respectively. The
boundary conditions at the upper and lower walls become

u = 0, v = 0, w = 0, T = 0, at z = 0 (6)

u = 0, v = 0, w = 0, T = 1, at z = 1 (7)

2.1.1. Boundary conditions at the undeformable free surface
The nondimensionalized position of the free surface is described by a functionr = g(z). Thermal, kinematic

and tangential stress balance boundary conditions at the interface are

− 1

N

(
∂T

∂r
− g′ ∂T

∂z

)
= BiT (8)

u = g′v (9)
(
1− g′2)(∂v

∂r
+ ∂u

∂z

)
+ 2g′

(
∂u

∂r
− ∂v

∂z

)
= −N

(
g′ ∂T

∂r
+ ∂T

∂z

)
(10)

∂w

∂r
− w

r
+ 1

r

∂u

∂θ
− g′

(
∂w

∂z
+ 1

r

∂v

∂θ

)
= −N

r

∂T

∂θ
(11)

whereN = (1 + g′2)1/2 andg′ = dg/dz. The Biot number in Eq. (8) is given byBi = hH/k whereh is a heat
transfer coefficient to the surroundings at the cold wall temperature, andk is the thermal conductivity of the liquid
The derivation of the boundary conditions and interface equation can be found in [31].

The location of the interface,g(z), is determined by the normal stress balance. The deviation of the free s
shape from the static meniscus depends on the Capillary number,Ca= γ�T/σo. WhenCa� 1, dynamic surface
deformations can be neglected [32], and the normal stress balance equation simplifies to the Young–
equation. The interface and liquid volume equations in a state of rest are as follows:

−Ca�P = 1

N

(
g′′

N2 − 1

g

)
(12)

V = 1

Ar2

1∫
0

g2 dz (13)

where�P = P − Po is the nondimensional pressure difference between the interface liquid and gas pre
and the liquid volume is normalized with respect toπR2H . Eq. (12) has two boundary conditions,g(0) = Ar and
g(1) = Ar. The shape of the interface and�P are fixed with a prescribed liquid volume.
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2.1.2. Boundary conditions at the deformable free surface in axisymmetric model
In reality, the free-surface profile,g, is unknown and should be obtained as a solution to the coupled tran

equations along with surface force balances. The position of the free surface is described by a functionr = g(t, z).
Thermal, kinematic and tangential and normal stress balance boundary conditions at the interface are

− 1

N

(
∂T

∂r
− g′ ∂T

∂z

)
= BiT (14)

u = ∂g

∂t
+ g′v (15)

(
1− g′2)(∂v

∂r
+ ∂u

∂z

)
+ 2g′

(
∂u

∂r
− ∂v

∂z

)
= −N

(
g′ ∂T

∂r
+ ∂T

∂z

)
(16)

−P + 2

N2

[
∂u

∂r
+ g′2∂v

∂z
− g′

(
∂v

∂r
+ ∂u

∂z

)]
= 1− CaT

CaN

(
g′′

N2 − 1

g

)
(17)

whereg′ = ∂g/∂z.
The tangential stress balance equation (16) defines the driving thermocapillary forces. The initial and bounda

conditions for Eq. (17) considered here are:

g(t = 0, z) = Ar

g(t, z = 0) = Ar (18)

g(t, z = 1) = Ar

The liquid volume must satisfy the mass conservation, and its total volume should be constant:

V = 1

Ar2

1∫
0

g2 dz = 1 (19)

where the liquid volume is normalized with respect toπR2H . Ca provides a measure of the surface deflection
response to thermocapillary-induced stresses. IfCa= 0 (large surface tension), the free surface is undeform
and flat.

In order to numerically solve the problem with eitherundeformable or deformable surfaces, the govern
equations are transformed from the physical domain into a rectangular computational domain. The tran
equations and boundary conditions are solved by a finitevolume method employing a SIMPLER algorithm. T
transformed equations and numerical aspects can be found in [30] for undeformable surfaces and [33] for tw
dimensional deformable surfaces.

2.2. Axisymmetric thermocapillary convection with either nondeformable or deformable interfaces

We have investigated thermocapillary convection up toRe= 5000 withPr = 1, Ar = 1, V = 1, Bi = 0 and
variousCa (� 0.1), and have found no oscillatory axisymmetric states in liquid bridges with either nondeformab
or deformable free surfaces. Assuming nondeformable flat interfaces withPr = 1 and Ar = 1, the critical
Re for transition to oscillatory states is about 2500 from linear theory [19] and three-dimensional numeri
simulations [30]. SinceCa is in the range O(10−2)−O(10−3) in most experiments [34], we conclude that dynam
free-surface deformations do not induce transition to oscillatory, axisymmetric convection. Thus only azimuth
waves can generate oscillations in a liquid bridge witheither nondeformable or deformable free surfaces
addition, we have computed axisymmetric convection up toRe= 1000 with undeformable flat surfaces (Pr = 27,
Ar = 0.714,Bi = 0), and no unsteady, oscillatory convection was found. The criticalRewas 210 with a flat surfac
in three-dimensional numerical simulations. This is consistent with studies of convection in other cyli
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Fig. 2. Steady, axisymmetric free surface deformations withBi = 0, Ca = 0.05 and variousRe. There are two peaks of the free surface
low Re, while three peaks develops atRe> 2000.

Fig. 2. Déformation stationnaire axisymétrique de la surface libre pourBi = 0, Ca = 0,05 et différentsRe. Deux pics se développent sur
surface libre pourRefaible, et trois pourRe> 2000.

geometries [29,35]. While oscillatory thermocapillary convection in a rectangular cavity can be investigated
two-dimensional simulations [36], it cannot be realized in an open cylinder with a uniform heat flux [29]
in a liquid bridge. Oscillatory buoyant-thermocapillary convection was reported in axisymmetric simulatio
Shevtsova and Legros [25], but no oscillations of pure thermocapillary convection wasfound in their axisymmetric
simulations.

Fig. 2 shows two-dimensional free surfaces withPr = 1, Ar = 1, Bi = 0, Ca= 0.05 and variousRe. The free
surfaces are convex near the lower cold wall, and change from concave to convex with increasingRenear the hot
wall because of stronger returned-flow in the interior. At sufficiently lowRe, the free surface is almost asymmet
about its mid point. It has two peaks and is elevated near the cold stagnation point where surface pressure
its maximum value. AsReincreases at fixedCa, the free surface develops three peeks. The surface deforma
O(10−4), and its maximum value is 1.2× 10−3 with Ca= 0.1.

Curvature of the free surface, sign and magnitude, is determined by both the surface pressure and nor
viscous stresses as shown in Eq. (17). The curvature of the free surface is always negative near the co
where pressure is positive and large. Near the hot corner, the curvature changes from positive to nega
increasingRe even though surface pressure is always negative there. Thus, the change of curvature
hot corner with increasingRe is induced by the normal viscous stresses. AtRe= 1, normal viscous stresses a
small, and the surface deformation shown in Fig. 2 correlates with surface pressure variation. With increaRe,
the influence of normal viscous stresses increases and together with the pressure they determine the
the interface. Evidently, surface elevation near the hot corner at the largestRe is driven by the normal viscou
stresses.

Surface elevations and depressions increase with increasingCa, while its shape is independent ofCa at a
fixed Re. Stream function minima, surface temperatures and velocities with variousCa at a fixedReare almost
independent ofCa [33]. Thus dynamic free-surface deformations withCa� 0.1 do not influence the convection
the liquid bridge. More details on the axisymmetric results appear in [30,31,33].
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2.3. Three-dimensional thermocapillary convection with nondeformable surfaces

With Ar = 0.714,Pr = 27, Rec for onset of oscillations withV = 1.138 (convex), 1 (flat) and 0.755 (concave)
are about 210, 210 and 220, respectively. Fig. 3 shows temperature fluctuations in the sectionz = 0.53 and at the
free surface at these values ofV . The temperature fluctuations withV � 1 consist of a hot and a cold spot rotati
clockwise, i.e.,m = 1. This rotating pattern withm = 1 remains unchanged with increasingRe. Two pairs of hot
and cold spots, i.e., a wavenumber of 2, are rotating clockwise withV < 1.

Fig. 4 shows the variation ofRec andm with V at variousBi. Heat loss from the free surface stabilizes the fl
as it tends to decrease the free surface temperature gradient, andRec increases with increasingBi. With Bi = 0, a
pair of wavenumbers are observed, and a transition fromm = 1 tom = 2 occurs atV of about 0.9. The wavenumbe
can change withBi. This change in wavenumber was reported in experiments [13], where a wavenumber of 1 w
changed into 2 by altering the surrounding conditions ofa liquid bridge.

Heat loss to surroundings is through forced convection induced by the free surface flow. The value ofh for gases
in forced convection is in the range 25−250 W/(m2 K). With H = 1.4 mm in experiments [12],Bi is in the range
0.32–3.2. In the three-dimensional numerical simulations with a flat surface andPr = 7 of [26], Bi of 6.4 was
necessary to compare with the experimental results of [4]. Thus, ourBi = 1 (a much smaller bridge) is a reasona
assumption to compare with the experimental results of [12]. In addition, our previous work [2,35,37] show
the inclusion of surface heat loss was necessary to achieve better agreement with experiments. When our nume
results withBi = 1 are compared with those from normal gravity experiments [12], the wavenumber of 1 a
rotating mode are in good agreement. WithV = 1, transition tom = 1 fromm = 2 occurs atBi = 0.5. Rec is about
400 andm = 1 with V = 1 andBi = 0.5. With Bi > 0, two different branches can exist in the stability diagr
(Rec−V ). The most stable range ofV with Bi = 1 is near 0.94 which is not in good agreement with experimen
result [12],V = 0.87. However, in the experiments by Sumner et al. [14] at a higherPr, the most stable range wa
nearV = 0.95. Other experiments [13] showed that the range was very close toV = 1. Although the experiment

Fig. 3. Snapshots of temperature fluctuations in the section (z = 0.53) and the free surface withBi = 0, Ar = 0.714 and variousV . One or two
pairs of hot and cold spots are observed.

Fig. 3. Fluctuations de température dans la section (z = 0,53) et à la surface libre pourBi = 0, Ar = 0,714 et différentsV . Une ou deux paires
de points chaud et froid sont observées.
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Fig. 4. Variations ofRec andm with Bi where the experimental results are from [12]. Two different branches are observed in the s
diagram withBi > 0.

Fig. 4. Variations deRec et m avecBi, résultats expérimentaux d’après la référence [12]. Deux branches sont observées sur le diagramm
stabilité pourBi > 0.

were performed with small rods, the difference between numerical and experimental results may be due to
induced bridge deformation since the largest static Bond number (Bd= ρgH 2/σ ) in the experiments [12] was 2.

3. Thermocapillary convection in an open cylindrical annulus

Schwabe et al. [38] studied experimentally thermocapillary flows withPr = 17 in two types of shallow liquid
layers heated from the side: one is a rectangular configuration, the other an annular slot. In the annular sl
from the inner rod, they observed azimuthal wavetrainstravelling on the free surface, and found that the num
of wavetrains increased asMa increased. Kamotani et al. [39] investigated experimentally surface tension driv
convection with 2 cSt silicone oils induced by placing a cylindrical heater at the center of annuli. Their experime
included flat and curved surfaces, which were determined bythe liquid volume. Three-dimensional simulations o
thermocapillary convection in an open cylindrical annulus heated from the inside wall were first reported by Sim
and Zebib [37]. Four kinds of isotherm patterns at the free surface were observed with increasingRe: a two- and
a three-lobed clockwise rotating pattern, and a two- and a three-lobed pulsating pattern. They found that
from the free surface provided a satisfactory explanation for theMac dependence on the container size at fix
aspect ratio which was observed in the experiments [39].

3.1. Mathematical model

The physical system considered is that in the microgravity experiment MAGIA [2] and is shown in Fig
It is a cylindrical annulus with inner and outer radii,Ri andRo, which is filled with an incompressible,Pr = 6.84
Newtonian fluid to a heightH . The aspect ratio,Ar, is defined as(Ro− Ri)/H , and the values ofAr considered are
1, 2.5, 3.33, and 8 (which correspond to different values ofH with Ri andRofixed atRi/Ro= 0.5). The vertical
inside and outside walls have cold and hot temperatures,Ti = Tcold andTo= Thot, respectively. The bottom is a
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adiabatic solid wall. The horizontal free surface is assumed nondeformable and has convective heat lo
surroundings with the ambient temperature,T∞ (= Tcold).

The nondimensional governing equations are Eqs. (2)–(4).Re, Pr, Ma and scales for nomalization are the sa
as those from the previous section. The boundary conditions become

∂u

∂z
+ ∂T

∂r
= 0, v = 0,

∂w

∂z
+ 1

r

∂T

∂θ
= 0,

∂T

∂z
= −BiT , at z = 1 (20)

u = 0, v = 0, w = 0,
∂T

∂z
= 0, atz = 0 (21)

u = 0, v = 0, w = 0, T = 0, at r = Ri/H (22)

u = 0, v = 0, w = 0, T = 1, at r = Ro/H (23)

3.2. Three-dimensional thermocapillary convection with flat surfaces

Rec for onset of oscillations withBi = 0, Pr = 6.84 andAr = 1, 2.5, 3.33 and 8 are about 740, 490, 4
and 560, respectively. AtRec , the flow is steady and the isotherms on the free surface are just circular line
axisymmetric. Fig. 5 shows instantaneous temperature distributions on the free surface with variousAr. At Ar = 1,
five azimuthal waves are rotating clockwise in agreement with similar finding in the experiments [2], and the
of five azimuthal waves remains unchanged with increasingRe. The isotherms have the same shape when rot
by 2π/5. Thus if one measures the temperature at a fixed point on the free surface, the frequency of the tem
oscillations will be five times the isotherm rotation frequency. This is in agreement with the experimental
for the annular gap by Kamotani et al. [39], but with two azimuthal rotating waves (withAr < 1).

While nine azimuthal waves near the criticalregion appear on the free surface withAr = 2.5, ten azimutha
waves are observed atRe= 800 [35]. This is in reasonable agreement with the results from the experimen
where 11 azimuthal waves are observed atRe= 2.5Rec. With Ar = 3.33, the twelve azimuthal waves are rotati
clockwise near the critical region [35]. It is evident that the number of azimuthal rotating waves near the
region increases with increasingAr.

Fig. 5. Surface temperature distribution withBi = 0 and: (a)Ar = 1 andRe= 800; (b)Ar = 2.5 andRe= 525; (c)Ar = 8 andRe= 625.

Fig. 5. Distribution de la température à la surface pourBi = 0 et : (a)Ar = 1 etRe= 800 ; (b)Ar = 2,5 etRe= 525 ; (c)Ar = 8 etRe= 625.
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Fig. 6. Shadowgraphic snapshots (contours of∇2T ) at the free surface withBi = 0 and: (a)Ar = 3.33 andRe= 550; (b) Ar = 3.33 and
Re= 900; and (c)Ar = 8 andRe= 625. (a) Shows azimuthal clockwise rotating waves, while (b) indicates azimuthal waves with a sou
sink near respectivelyθ = π and 0. (c) Shows azimuthal standing waves with a source and sink near respectivelyθ = 0 andπ .

Fig. 6. Contours du laplacien de température (∇2T ) à la surface libre pourBi = 0 et : (a)Ar = 3,33 etRe= 550 ; (b)Ar = 3,33 etRe= 900 ;
et (c)Ar = 8 etRe= 625. (a) Ondes azimutales rotatives (sens des aiguilles d’unemontre), (b) ondes azimutales rotatives avec source et
proches deθ = π et 0 respectivement. (c) Ondes azimutales rotatives avec source et puits proches deθ = 0 etπ respectivement.

Twenty azimuthal wavetrains withAr = 8 are found on the free surface, and the waves are pulsating [35]
inside wall looks like the source of the waves: the waves are generated at the inside cold wall and trav
outside hot wall. This is in good agreement with the hydrothermal waves in the infinite layer model [1
the rectangular cavity simulations [36]. We thus have travellingr-waves and pulsatingθ -waves in cylindrical-
shallow liquid layers. AsRe increases these waves propagate far from the inside wall. The critical wave
λ = 2.5 (Pr = 6.84) from linear theory [15] implies a wave number of 20 at the inside wall, which is in g
agreement with our numerical result.

Fig. 6 shows shadowgraphic snapshots at the free surface withAr = 3.33 and 8. Because the waves travel fr
the inside to the outside wall and rotate azimuthally clockwise nearRec with Ar = 3.33, a supercritical spira
structure appears on the free surface as shown in Fig. 6(a). At higher Re withAr = 3.33, the source and sink a
the free surface are observed nearθ = π and 0, respectively. A pattern with travellingr-waves and source-sin
θ -waves, which propagate from a source into opposite directions to a sink, is shown in Fig. 6(b). Howev
Ar = 8 slightly supercritical convection is in the form of travellingr-waves and pulsating source-sinkθ -waves.
These kinds of spiral patterns are in agreement with experimental results [40].

In steady state, only single-roll flow structure in a meridional section is available withAr = 1, 2.5, 3.33 and 8
However, just above critical, twoand three rolls are observed withAr = 3.33 and 8, respectively [35]. Three rol
at Ar = 8 is in perfect agreement with space experiment [2]. The number of rolls increases with increasingAr. We
can expect the multi-roll structure to appear beyondRec in the case of shallow liquid layers. The axisymme
results are very different from those of two-dimensional rectangular cavities reported by Xu and Zebib [36], wh
a critical Ar exists, the multi-structure appears at subcriticalRe, and the flow can be stable with multi-structu
in restabilized region (highly supercriticalRe). However, the structures of three-dimensional states in sha
cylindrical and rectangular cavities have in common travelling multi-cells from thecold to hot corners with a
standing, pulsating pattern in the third direction.

Fig. 7 shows the effect ofBi on Rec and the critical dimensional-period,τc . The numerical results withBi = 0
are in good qualitative but not in good quantitative agreement with the experiments [2]. The value ofh is 25 to
250 W/(m2 K) for gases in forced convection. Because of evaporation, the value will be increased substantially
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Fig. 7. Rec andτc corresponding to variousAr at variousBi cooling the free surface. Heat loss from the free surface stabilizes the flow
Rec increases with increasingBi at fixedAr. τc decreases withAr (Bi) at fixedBi (Ar). Note that the curves here are for constanth so thatBi
decreases along these curves with increasingAr.

Fig. 7.Rec et τc pour différentsAr et Bi de refroidissement à la surface libre. Les pertes dechaleur à la surface libre stabilisent l’écouleme
et Rec croît avecBi pour Ar fixé. τc décroît avecAr(Bi) à Bi fixé. Les courbes sont tracées àh constant etBi décroît le long de ces courbe
lorsqueAr croît.

can be seen that heat loss from the free surface stabilizes the flow, andRec increases with increasingBi. τc decreases
with increasingBi. It is observed that better comparison with experiments is achieved at the larger values oBi.

In the experiments [2], it is argued that the free surface is effectively heated by the surroundings. Nu
results [35] with heating from surroundings approach the experimental results [2] with increasingBi with good
agreement obtained atBi = 0.5.

3.3. Dynamic axisymmetric free-surface deformations

The physical system is an open cylindrical annulus with inner and outer radii,Ri = 0.1RoandRo, heated from
the inside wall. The deformable free surface is obtained as a solution of the coupled transport equations, a
pinned contact points. The mathematical and numerical models can be found in [41].

Thermocapillary convection up toRe= 5000 withPr = 30, Ar = 1, Bi = 0 andCa� 0.1 was computed and n
axisymmetric oscillatory states witheither nondeformable or deformable surfaces were found. In three-dimen
numerical simulations withPr = 30, Ar = 1, Bi = 0 andCa= 0 (nondeformableflat surface), the critical Reyno
was about 2200 [37]. Thus dynamic free-surface deformations do not induce transition to unsteady, oscillat
axisymmetric convection, and only azimuthal waves can generate oscillations in this model. Thus we may c
that time-dependent, largePr thermocapillary convection with the wavenumber of 0 does not occur in cylind
geometries nearAr = 1 [29,33,35].

Fig. 8 shows free surfaces withCa = 0.05 and variousRe. The surface is convex near the cold wall wh
surface pressure has a maximum positive value at the stagnation point, and concave near the hot wall. T
appear at the free surface at sufficiently lowReand its curvature is determined by surface pressure [41]. ARe
increases, the effect of normal viscous stresses increases. Additional ripples occur at the free surface which can
convex close to the hot corner. Surface elevations and depressions decrease with increasingRedue to this change
in topology, volume conservation and curvature.
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Fig. 8. Free surface deformations withV = 1, Bi = 0, Ca= 0.05 and variousRe. Two free surface peaks increase to four with increasingRe.

Fig. 8. Déformation de la surface libre pourV = 1, Bi = 0, Ca= 0,05 et différentsRe. On observe le passage de deux pics de surface à q
lorsqu’on accroîtRe.

The shape of the surface, number of ripples, and reflection point do not change withCa at a fixedRe, while
the magnitudes of depressions and elevations increase with increasingCa. Surface deformation is O(10−4).
Its maximum value is 1.2 × 10−3, about 0.12% of the cylinder height, withRe= 1 and Ca = 0.1. Stream
function minima, and surface temperature and velocity distributions are independent ofCa. Thus, dynamic surfac
deformations withCa � 0.1 have little effect on the convection. This result is consistent with that from li
bridges [33].

4. Conclusion

Thermocapillary convection in liquid bridges and open cylindrical annuli is investigated in two- and thre
dimensional numerical studies. Convection is steady and axisymmetric at sufficiently low values ofRe, with
either nondeformable or deformable surfaces. For the parameter ranges considered, it is found that dyna
free-surface deformations do not induce transitions to oscillatory convection in axisymmetric models and
steady convection is possible at anyRe in strictly axisymmetric computations with either nondeformable
deformable surfaces. Transition to oscillatory three-dimensional motions occurs asRe increases beyond a critic
value dependent on the aspect ratio, the Prandtl number and the fluid volume.
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