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Abstract

Mathematical and numerical modelsof solidification of binary and multicomponent dendritic alloys that can model
dynamics of the mushy zone as well as the all liquid region are examined. The discussion is centered around models
finite element discretization of the governing equations that have been developed by the authors during the last fifteen
capabilities of existing simulation codes to model the effects of convection and the resulting macrosegregation in cas
in particular, the development of ‘freckles’ in vertically solidified dendritic monocrystals are discussed. The current capabilities
of the models as well as the areas in which more improvementis needed are noted. Numerical examples are present
illustrate the different aspects of the simulations.To cite this article: J.C. Heinrich, D.R. Poirier, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modélisation de la convection au cours de la solidification directionnelle.Nous exposons des modèles mathématiq
et numériques de la solidification d’alliages dendritiques, binaires et multiconstituants, quipeuvent décrire la dynamique d
la zone pâteuse ainsi que la région liquide. La discussion est centrée sur des modèles développés par les auteurs
article et basés sur la discrétisation en éléments finis des équations qui régissent les phénomènes. Nous discutons
des programmes de simulation existants à modéliser les effets de la convection et de la macroségrégation qui en résu
pièces coulées, et plus particulièrement la formation de « freckles » dans les monocristaux dendritiques solidifiés verticalemen
Nous faisons ressortir les limites actuelles des modèles ainsi que les domaines dans lesquels des améliorations sont
Des exemples numériques illustrent les différent aspects des simulations.Pour citer cet article : J.C. Heinrich, D.R. Poirier,
C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Macrosegregation in castings remains a serious problem that producers of ingots and castings must
on a day-by-day basis. At the same time, an increasingnumber of technological applications require that critica
mechanical components operate at extreme conditions oftemperature and stress, underscoring the necessity
importance of sound computational models of solidification that can guide the design of the processes,
aim of reducing scrap and the expense of evaluating full scale production runs in order to realize a me
successfully make the ingots or castings.

Although castings are susceptible to many types of defects, macrosegregation can be the major fa
limits the size of the cast-product. One of the most dramatic examples of macrosegregation defects is
the directional solidification of single-crystal superalloy turbine blades, where the level of rejection at the
the manufacturing process can reach around 40% [1,2]. Directional solidification provides the means to cont
the grain shape, producing columnar microstructures withthe grain boundaries aligned parallel to the longitud
direction of the casting. The process can be further improved by casting single crystals in which only one c
grain is allowed to grow, thus greatly improving the creep resistance at elevated temperatures [3]. In this proces
solidification is effected vertically under a stable temperature gradient established by extracting heat at th
of the casting via a water-cooled ‘chill’ and by radiation to a cold zone.

Without proper control, macrosegregation defects can develop in directionally solidified castings; in pa
vertically solidified monocrystals are susceptible to developing ‘freckles’. These are localized segregate
form of long narrow trails aligned parallel to the direction of gravity, enriched in the normally segregating eleme
depleted of the inversely segregating elements and with a width length of 1–2 mm.

Within the casting community there has been a large volume of research and modeling efforts over
forty years. This has led to numerical models of solidification that can be categorizedinto three types accordin
to the length scales that they resolve. (i) Macroscale models can be utilized for simulations of full castin
dimensions on the order of a meter. Typically they model the mold filling process and the heat transfer p
but, so far, cannot include detailed models of the mushy zone. Some codes are commercially available; a rev
of these codes is found in [4]. For filling, the models underlying the codes are based on the classical volum
fluid (VOF) approach; more recent algorithms based on moving Lagrangian interface techniques are discusse
in [5]. (ii) Mesoscale models are capable of modeling solidification domains of length scales on the order
centimeters and treat the mushy zone as an anisotropic porous medium, using either mixture theory o
average formulations, and are the focus of this article. The main difficulty in applying these models at large
is their current lack of efficiency; these issues will be discussed in a later section. (iii) Microscale mode
can follow the development of individual dendrites and, at this time, model length scales at the dendrit
in domains up to several millimeters. These models have been applied to simulations of dendritic and
solidification of pure substances in undercooled liquids [6–9], but less so for the binary alloys [10–12].

Early mesoscale models of dendritic solidification of alloys date back to the early 1960s, and their emphasis
on solute redistribution and macrosegregation [13–27]. Thermosolutal convection in the liquid was not con
but it was recognized that the density of the interdendriticliquid varies spatially and temporally within the mus
zone, so buoyancy-driven convection of the interdendritic liquid was calculated. These analyses were s
to describe macrosegregation when thermosolutal convection in the all-liquid zone is not important and when
geometry of the mushy zone is prescribed, but cannot capture the formation of freckles or channel se
which involves partial remelting of the dendrites due to thermosolutal convection in the all-liquid zone a
interaction with the mushy zone. Numerical models that include thermosolutal convection in the mushy z
the liquid appeared in the mid-1980s; these are usuallyreferred to as one-domain models or continuum mod
because the equations are developed using mixture theory or volume averaging [28–31] that precludes the ne
to model the interface between the all-liquid zone and the mushy zone. The latter is treated as a porous
with variable anisotropic permeability; the fluid flow problem becomes that of analyzing the motion of a la
fluid overlying a porous medium. It is governed by a single momentum equation that can be solved usin
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differences, finite volumes or finiteelements, in a single domain discretized with a fixed computational mes
[32–40]. Reviews are presented in [41–43]. In this article the mathematical model is presented and discuss
next section; the current capabilities and outstanding modeling issues are discussed in Section 3 in relat
convection-modeling in both the terrestrial and microgravity environments; in Section 4 some illustrative ex
are discussed.

2. Mathematical model of solidification

The continuum equations of continuity, momentum, conservation of energy and conservation of solute
have been developed using the volume averaging technique of [29,30]. For this article, we invoke the fo
assumptions:

(1) Flow of interdendritic liquid is laminar, incompressible and Newtonian;
(2) Two phases, liquid and solid, are considered; no pores form;
(3) The solid, once it forms, is stationary, and there is no solute-diffusion in the solid;
(4) The density of the solid may be different than the density of the liquid, but both are constant;
(5) Other properties of the liquid and solid, other than the specific heat capacity, are equal and constan

phases;
(6) The mushy zone behaves as a porous medium with a variable and anisotropic permeability.

Assumptions (4) and (5) are not necessary in this model, but they greatly simplify the presentation. Sim
using variable properties were presented in [37].

The volumetric enthalpy,̄ρh̄, is expressed as

ρ̄h̄ = ρshs(1− φ) + ρ�h�φ (1)

Here,hs andh� are the intensive enthalpies (J/kg) in the solid and liquid, respectively;ρs andρ� are the densitie
(kg/m3) of the solid and liquid; andφ is the volume fraction of liquid. It is assumed that, within the mushy zo
the enthalpies can be expressed as a linear function of temperature as

hs = cpsT

h� = cp�T + (cps − cp�)TH + L
(2)

whereL is the latent heat (J/kg) at the reference temperatureTH , T is temperature (K), andcps andcp� are the
specific heat capacities (J/kg K) in the solid and liquid phases, respectively, which are assumed to be consta

From Eq. (25b) in [29], the continuity equation becomes

∇ · ρ�u = β
∂φ

∂t
(3)

whereβ = (ρs − ρ�)/ρ� is the contraction ratio (or solidification contraction) andu is the superficial velocity
(m/s). The momentum equation is obtained from Eq. (43) in [29],

∂u
∂t

+ u
φ

· ∇u − β

φ

∂φ

∂t
u = − φ

ρ�

∇p + ν

[
∇2u + β

3
∇ ∂φ

∂t

]
− νφK−1u + ρφ

ρ�

g (4)

whereν is the kinematic viscosity (m2/s), p is pressure (Pa),K is the permeability tensor (m2), andg is the
gravitational acceleration (m/s2). Eq. (4) differs from the momentum equation obtained using mixture theory
was used in [28] in the form of the viscous term and the explicit influence of the volume fraction of liquφ.
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The Boussinesq approximation is used to account for buoyancy effects in the liquid; that is the densityρ in the
buoyancy term is assumed to obey a linear relation of the form

ρ = ρ�

[
1+ βT (T − T0) +

N∑
j=0

β
j

C

(
C

j

� − C
j

0

)]
(5)

In Eq. (5),Cj

� is the solute concentration in the liquid of alloy componentj ; N is the number of alloy component

the subscript 0 denotes the reference temperature and concentration at whichρ� is given, andβT andβ
j
C are,

respectively, the thermal and solutal coefficients of volumetric expansion.
In Eq. (4), the viscous term is known as the Brinkman term, and it allows us to have a continuous transit

from the liquid layer to the porous medium representing the mushy zone [44]. A second-order friction ter
or Forschheimer term, is omitted because in our experience, it does not appear to have any measurable
the numerical calculations. In the work of some authors, e.g., [36,46], the Forschheimer term has been re

The average densitȳρ and the average total concentration of mass for each solute speciesρ̄�Cj are given,
respectively, by

ρ̄ = ρs(1− φ) + ρ�φ (6)

and

ρ̄�C = ρsC
j
s (1− φ) + ρ�C

j
� φ (7)

which is the form used by Flemings and Nereo [14];C
j
s is the solute concentration of elementj in the solid, for

the case of no diffusion in the solid these are given by

C
j
s = 1

1− φ

1∫
φ

kjC
j
� dφ (8)

wherekj is the partition coefficient of elementj .
The equations of conservation of solute are obtained from Eq. (18) in [30] and are

∂ρ̄�Cj

∂t
= −ρ�

[
βC

j
�

∂φ

∂t
+ u · ∇C

j
� − D∇ · φ∇C

j
�

]
(9)

The energy equation is written in terms of temperature only and is derived from Eq. (10) in [30] and E
and (2) above; it takes the form

ρ̄c̄p
∂T

∂t
+ ρs

[
(cps − cp�)(TH − T ) + L

]∂φ

∂t
+ ρ�cp�u · ∇T = ∇ · κ∇T (10)

where the mixture heat capacity,ρcp, is

ρcp = ρscps (1− φ) + ρ�cp�φ (11)

andκ is the constant thermal conductivity (W/m K) of the mixture.
To complete the model it is assumed that no undercooling takes place in the mushy zone and that the

temperature of the alloy is a function of its local composition, which we express in the form

T = F
(
C

j
�

)
(12)

In the particular case of a binary alloy, it is assumed that the partition coefficient,k, is a constant and the liquidu
line is straight. The liquidus temperature is then given by

T = mC� + Tm (13)
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Fig. 1. Phase diagram for Pb–Sn alloys.

Fig. 1. Diagramme d’équilibre des phases pour le système Pb–Sn.

Fig. 1 shows the phase diagram for binary Pb–Sn alloys; clearly the liquidus line can be well approximat
straight line. The assumption of a constant partition coefficientk is not as good due to the curvature of the solid
line close to the pure Pb side; however, it is still accurate enough for solutions that are not very dilute.

The non-dimensionalization of the equations has beenaddressed in several publications [33,47,48], and
analysis of the parameter ranges for the case of directional solidification from a side wall was presented
Although the exact form of the equations used by different authors varies, they all follow the same basic p
and assumptions so results are generally comparable. A difference is the choice of the permeabilityK in Eq. (4)
that is discussed below.

3. Numerical models of solidification

Eqs. (3), (4), (9) and (10) (or their counterparts) have been discretized using finite differences [35
elements [33,39,40], and finite volume methods [32,36–38,40]. All the models use a fixed computation
and determine the location of the mushy zone using the fraction of liquid as a dependent variable. The calc
presented in this article have been done using a finite element algorithm based on a penalty function formu
impose the incompressibility constraint and a Petrov–Galerkin stabilization, using bilinear quadrilateral e
in two dimensions and trilinear ‘bricks’ in three dimensions [50]. The details of the numerical models hav
given in [51–53] and will not be repeated here.

The most important deficiency of these models is their lack of efficiency. Except for the num
implementations in [34,35] that used an explicit fractional step method to solve the momentum equati
other models pursue implicit solutions of the momentum equation. This has severely limited the capab
the methods to model realistic casting dimensions, becauseof the high resolution required in the mushy zone
capture the relevant instabilities. Simulations involving dimensions of several centimeters O(10 cm) are
in two dimensions, while in three dimensions the few published simulations are restricted to spatial dimen
the order of 0.5–3.0 cm [54–56].

The most CPU-intensive and memory demanding part of the calculations is the solution of the mom
equation. It is well known that the fractional step method provides the most efficient way to solve th
problem; however, in [34,35], and other references by the same authors [57,58], relatively coarse mesh
used in the discretization, and they have not reported applications that require very large meshes. A more re
implementation of the fractional step method has been reported in [59], where three-dimensional finite
simulations utilizing meshes of tri-linear elements of up to up to 200 000 nodes are presented. The author, ho
encountered significant difficulties in the application of the method, which are discussed in [59].
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Fig. 2. Permeability (a) perpendicular and (b) parallel to the direction of solidification as a function of volume fraction of liquid,φ and primary
dendrite arm spacing,d1.

Fig. 2. Variation de la perméabilité (a) perpendiculaire et (b) parallèleà la direction de solidification en fonction de la fraction volumique
liquide, φ, et de l’espacement primaire entre dendrites,d1.

A second source of difficulty in solidification simulations involving a mushy zone stems from the perme
tensor. The permeability varies from zero in the all-solid region to infinity in the all-liquid layer, which p
considerable numerical difficulty especially deep in the mushy zone. Also a problem has been a lack of kn
of the precise form of the permeability. Some authors have been satisfied with the use of an isotropic perm
given by the Kozeny–Carman approximation [60]. But the Kozeny–Carman equation is valid for only abo
50% solid; furthermore, the permeability is anisotropic and could be a source of discrepancies between n
simulations. In this work, the permeability used in the principal directions is given by

Kx = Ky =




1.09× 10−3φ3.32d2
1, φ � 0.65

4.04× 10−6
[

φ

1− φ

]6.7336

d2
1, 0.65< φ � 0.75

(
−6.49× 10−2 + 5.43× 10−2

[
φ

1− φ

]0.25)
d2

1, 0.75< φ � 1.0

(14)

Kz =




3.75× 10−4φ2d2
1, φ � 0.65

2.05× 10−7
[

φ

1− φ

]10.739

d2
1, 0.65< φ � 0.75

0.074
[
log(1− φ)−1 − 1.49+ 2(1− φ) − 0.5(1− φ)2

]
d2

1, 0.75< φ � 1.0

(15)

Eq. (15) gives the permeability (m2) in the direction parallel to dendrite growth, and Eq. (14) is for flow
the transverse direction to dendrite growth;d1 is the primary dendrite arm spacing (m). Whenφ � 0.65, the
permeability above was obtained by means of a regression analysis of the available empirical data [61]. T
no empirical data whenφ > 0.65; therefore, in this range the permeability was obtained numerically as exp
in [62–64]. A summary of the procedure used to merge the empirical and numerical data is given in [65].

The components of the permeability as a function ofφ are shown in Fig. 2 for various values ofd1. The
permeability in Fig. 2 exhibits a behavior between 0.65� φ � 0.75 that may be puzzling to the reader. Examinat
of the empirical and numerical data shown in Fig. 6 of [62] and in Fig. 10 of [63] indicates that for values belo
φ = 0.65 the data show a very different trend than for those aboveφ = 0.75, requiring a different fit in each regio
In order to best represent the existing data a separate region was introduced between 0.65� φ � 0.75 as given in
Eqs. (14) and (15). Numerical simulations in [62–64] were carried out to obtain the permeability for fractions
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liquid of up to 0.99, between 0.99 and 1.0 the formulas extrapolate the data and in some applications it w
desirable to extend the data up toφ = 0.999, especially when looking at the nucleation of channel sites at the t
the mushy zone. Also more study is needed on the abilityof the numerical methods to compute at very low val
of φ, where the permeability becomes extremely small. If the dendritic growth is not aligned with the pri
axis, then the permeability has to be locally transformed. A strategy to compute the Darcy term has bee
in [66] for the two-dimensional case. Finally, an analysis of the momentum equations that takes into accoun
evolving nature of the heterogeneities in the permeability isfound in [67] that shows the influence of the geome
of the dendritic structures on the evaluation of the permeability components.

There remain two more aspects of the model that require special attention; these are the way in which r
is modeled and the solidification of the eutectic liquid. Remelting is an essential mechanism in the form
channels and ultimately of freckles, and occurs when∂φ/∂t > 0 at some location in the mushy zone, witho
necessarily achievingφ = 1. For remelting to take place either the temperature or the solute concentration
interdendritic liquid must increase at this location (whenk < 1). Temperature is very unlikely to increase, due to
fact that heat is being extracted and due to the low value of the Prandtl number in alloys that make heat d
dominant over convection. On the other hand, mass diffusivities are relatively low, so when the conce
increases by advection of solute-rich liquid to a site where a channel is nucleating, remelting occurs. Thi
seen by referring to Fig. 1. Within the mushy zone, the solutal concentration of the interdendritic liquid f
the liquidus line. At some point if the solute concentration increases while keeping the temperature const
the point(T ,C�) will move to the right of the liquidus line into the liquid region of the phase diagram, indica
that remelting must take place. Some solidification models assume that solute diffuses infinitely fast in th
in this case, when remelting occurs it can be assumed that the composition of the remelting solid is the
solid composition and no special care needs to be taken. However, if it is assumed that there is no diff
the solid, then the composition of the solid depends on the solidification history, which must be saved in
correctly account for microsegregation in the remelting solid [33]. This results in a large demand on comput
storage, because the sites of channels are not known a priori and this forces the modeler to develop strategie
retain the solidification history at every computational node.

In the model under consideration the solidification process is driven by the solute concentration a
temperature, which are tied up by Eq. (13) in the mushy zone. When the interdendritic liquid reaches the
temperature, however, it solidifies at constant temperature when no undercooling of the eutectic reaction
assumed. This aspect of the models has been rarely discussed in the literature, and in some cases i
handled incorrectly. In formulations based on enthalpy, such as in [28,32,40], the formulation is still v
eutectic temperature; however, in models based on temperature the formulation must be modified when
temperature is reached. This makes enthalpy formulations more convenient; however, they still require an a
transformations relating enthalpy to temperature. In models based on temperature the burden of dea
solidification at the eutectic temperature is transferred to the numerical model. In [33,51], when a node reac
eutectic temperature, solidification is forced to continue at a constant temperature. The energy equation is
by setting the time derivative to zero and used to calculate the volume fraction of liquid. The convective ter
also be neglected, and Eq. (10) becomes

∂φ

∂t
= 1

ρs[(cps − cp�)(TH − T ) + L]∇ · κ∇T (16)

Eq. (14) is solved at nodes whereT = TE and Eq. (10) at all other nodes. This strategy has proven to be ade
when solidification is effected under the influence of gravity, and solidification contraction is not important (β = 0).
Under microgravity, when convection is due solely to solidification contraction, the strategy does not
the velocity field properly, because physically the eutectic isotherm advances continuously through the dom
and does not stay at the eutectic temperature over a finite period of time at the nodes. This model of
solidification produces oscillations inthe induced velocity that can be morethan an order of magnitude great
than the correct velocity. Because these velocities are very small as compared with those induced by thermosolu
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convection, this is not a problem whensolidification takes place under terrestrial gravity conditions, but
are unacceptable in microgravity. A method that allowsthe eutectic isotherm to move continuously through
elements has recently been developed and reported in [43]; in there it is also shown that when solidificatio
contraction is the only form of convection, inverse segregation at a cooled surface can be correctly mode
e.g., [16,68]), which other existing models had not been able to accomplish.

4. Examples of applications

A two-dimensional calculation simulating the upward solidification of a Pb-23.4 wt% Sn alloy is now disc
The initial temperature gradient is 7700 K/m, and the bottom of the alloy is cooled at the rate of 0.05 K/s, so as

Table 1
Physical properties for Pb–Sn alloys

Tableau 1
Propriétés physiques des alliages Pb–Sn

Average thermal diffusivity 1.1× 10−5 m2 s−1

Latent heat of fusion 37.6 kJ kg−1

Average specific heat 0.176 kJ kg−1 K−1

Thermal expansion coefficient 1.16× 10−4 K−1

Solutal expansion coefficient 4.9× 10−3 (wt%)−1

Solutal diffusivity 3.0× 10−9 m2 s−1

Kinematic viscosity 2.47× 10−7 m2 s−1

Equilibrium partition ratio 0.31
Average density 9250.0 kg m−3

Melting temperature of lead 600.0 K
Eutetic temperature 456.0 K
Eutetic concentration 61.9 wt% Sn
Acceleration of gravity 9.8 m s−2

Interdendritic arm spacing 1.85× 10−4 m

Fig. 3. Flow field at the bottom of the container in solidification of Pb-23.4 wt% Sn after 50 s of simulation.
Fig. 3. Champ des vitesses en bas du creust après 50 secondes de simulation de la solidification de l’alliage Pb-23,4 % en poids Sn.
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to produce an approximate solidification velocity of 6 µm/s. For simplicity the physical properties in the solid a
in the liquid are assumed to be the same; these are listed in Table 1. This case was chosen because it was de
unstable in [2]; it exhibits strong freckling and large variations in the convection patterns during the solidifi
The calculation was performed on a uniform mesh of 38 by 190 bilinear elements. Initially the bottom
container is at 545.5 K, slightly above the melting temperature of the alloy, and the uniform vertical temperatu
gradient is imposed everywhere else. No slip conditions are imposed along all surfaces in the all-liquid region;
the mushy zone slip is allowed along the vertical surfaces. The latter are assumed to be adiabatic; on th
initial temperature gradient is maintained. Solidification is effected by lowering the temperature at the bo
the specified linear rate in time.

After 50 s, we can observe the first convection cells beginning to form at the bottom (Fig. 3), where it c
be observed that the mushy zone has developed up to about 0.2 mm and the solidification front is still fl
convection is very weak at this point; the maximum magnitude of the velocity is 6.3× 10−3 mm/s. This stage o
the process corresponds to what is usually called finger convection; because it comprises many small cells confi
very close to the advancing solidification front, and corresponds to the boundary-layermode of instability. At 100 s

Fig. 4. Flow field and volume fraction of liquid in solidifying Pb-23.4
wt% Sn after 100 s of simulation.

Fig. 4. Champ des vitesses et fraction volumique du liquide après une
simulation de 100 secondes de la solidification de l’alliage Pb-23,4 % en
poids Sn.

Fig. 5. Flow field and volume fraction of liquid in solidifying
Pb-23.4 wt% Sn after 200 s of simulation.

Fig. 5. Champ des vitesses et fraction volumique du liquide a
une simulation de 200 secondes de la solidification de l’alli
Pb-23,4 % en poids Sn.
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Fig. 6. Flow field and volume fraction of liquid in solidifying
Pb-23.4 wt% Sn after 300 s of simulation.

Fig. 6. Champ des vitesses et fraction volumique du liquide après
une simulation de 300 secondes de la solidification de l’alliage
Pb-23,4 % en poids Sn.

Fig. 7. Flow field and volume fraction of liquid in solidifying
Pb-23.4 wt% Sn after 2000 s of simulation.

Fig. 7. Champ des vitesses et fraction volumique du liqu
après une simulation de 2000 secondes de la solidificatio
l’alliage Pb-23,4 % en poids Sn.

the mode of convection is undergoing a transition towards a state similar to what is referred to as the mushy-la
mode of instability in [69], giving rise to a plume at the center of the container and two weaker plumes alo
side walls, as shown in Fig. 4. The large cells induced by the center plume reach to about 1.8 cm high,
maximum velocity reaches 2.1 mm/s. The mushy zone has advanced to 0.8 mm from the bottom. Fig. 5 show
system after 200 s, the flow has completed its transition, a strong plume is observed close to the center
appearance of “volcanoes” is evident at the top of the mushy zone. Convection still has not reached the t
overlying liquid and the system of organized cells observed previously in Fig. 4 has become unstable. At th
the convection cells begin to meander, grow and weakenand appear and disappear. This is the source of a g
deal of localized segregation as will be shown below. To illustrate this almost chaotic behavior compare Fig
Fig. 6 at 300 s, where a very different convection pattern is observed. The maximum velocity at 200 s is 1.9/s,
and at 300 s it is 1.4 mm/s.

Next, Fig. 7 shows the simulation at 2000 s; the mushy zone is now fully developed, and the bottom 1
are fully solidified. The depth of the mushy zone is approximately 1.13 cm, which compares very well w
value of 1.16 cm that can be estimated from the temperature gradient and the phase diagram. The maxim
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Fig. 8. Solidifying Pb-23.4 wt% Sn after 2000 s of simulation: (a) flow field and volume fraction of liquid; (b) flow field and total solute
concentration.

Fig. 8. Alliage Pb-23,4 % en poids Sn après 2000 secondes de simulation de la solidification : (a) champ des vitesses et fraction volumique
liquide ; (b) champ des vitesses et concentration totale de soluté.

velocity at this point in time is 1.9 mm/s. The steps followed in Figs. 3–7 can be compared qualitatively
the experimental results shown in Fig. 3 of [70]; while keeping in mind that the experiments were perfor
a solution of NH4Cl–H2O in which the fraction of liquid remains high throughout the mushy zone, that le
very stable channels in the interior of the container. The last results shown in this calculation are at 30
solidification and are shown in Figs. 8(a) and 8(b). In Fig. 8(a) the mushy zone has advanced at a speed
6.3 µm/s. The bottom 7.6 mm are fully solidified, and convection has weakened significantly due to the
amount of liquid remaining; the maximum velocity is only 0.6 mm/s. The final composition in the fully solidifie
region can be observed in Fig. 8(b); channels are obvious next to the vertical sides of the domain. For
like this one, in which convection is strong and variable, long freckles do not develop in the interior due
continuous changes in the convection pattern in the overlying liquid; rather they tend to change direction with t
convection and disappear. However, the physical mechanisms still act in a way that is consistent with the analy
of [71], where it was assumed that fully developed channels have vertical sidewalls. Strong localized seg
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Fig. 9. Comparison of calculated and experimentally measured average concentrations in a Pb-23.2 wt% Sn alloy solidified vert

Fig. 9. Comparaison des concentrations moyennes calculées et mesurées expérimentalement pour l’alliage Pb-23,4 % en poids Sn sol
verticalement.

can be observed in the interior along with the freckles along the vertical surfaces. The segregation in the frec
reaches 11.5 wt% Sn.

Validation of the two-dimensional results of simulations of solidification has been carried out by comp
with experimental results in Pb–Sn alloys solidified directionally and reported in [2,40,58]; very good agre
between experiments and simulations was found. In the case of vertical solidification a validation is pres
[72], where the experimental conditions reported in [73] were used. The experimental results were presente
the form of average concentrations across horizontal sections of a cylindrical ingot. These results toget
those of a two-dimensional numerical simulation averaged every 3 and 5 mm in the vertical direction are
in Fig. 9 and also show very good agreement, even though the details of macrosegregation cannot be c
In [2], agreement between them was found on the basis of comparing whether freckles form in the expe
ingots and simulations.

The effect of variable density is best shown assuming that solidification takes place in the absence of
A simulation using the same parameters as the one described above, except that the solid and liquid
differ and the gravitational acceleration is set to zero, is shown next. The densities areρs = 9700 kg/m3 and
are ρl = 8900 kg/m3; the container is 7 mm wide and 40 mm tall. Fig. 10 shows the results after 3000
solidification. The flow is driven solely by solidification contraction; to maintain continuity, liquid is allowe
enter the container at the top at a uniform vertical velocity. In Fig. 10 it can be observed that the mushy zo
approximately the same position as in the case of solidification under terrestrial gravity. Starting at the top, the fl
develops into a Poiseuille flow in the all-liquid region, and it suffers a transition shortly before reaching the
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Fig. 10. Contraction induced flow under zero gravity, and volume
fraction of liquid after 3000 s of solidification.

Fig. 10. Ecoulement induit par la contraction en apesanteur et
fraction volumique du liquide après 3000 secondes de solidification.

Fig. 11. Solidified Ni–Al–Ta–Cr alloy on a smoothl
convergent container.

Fig. 11. Alliage Ni–Al–Ta–Cr solidifié dans un creu
set à rétrécissement continu.

the mushy zone, where it turns into Darcy flow. The inflow at the top scales correctly with the volume cont
given by

∫
Ω

β(∂φ/∂t)dΩ . In this case the velocity of the liquid feeding the contraction flow is 6.5× 10−4 mm/s.
As it penetrates the mushy zone, the liquid slows due to the decrease in liquid demand by the solidification
At the interface with the all-solid region, the velocityVI of the liquid is related to the velocityVE of the eutectic
isotherm byVI = −βVE; in this calculationVI = 1.45×10−4 mm/s. In [43] it was shown thatVI and the velocity
of the liquid entering the top of the domain are approximated to within 1% of the expected steady-state ve
obtained from the temperature gradient and the cooling rate. In these simulations there is no evidence of se
of the alloy, except at the bottom of the container, where inverse segregation occurs [16]. The inverse seg
is properly captured by the model and has been discussed in [43]. Calculations that show the liquid instab
the gravitational acceleration is increased and issues related to the calculation of the pressure in the mushy z
have been presented in [48,53].

Simulations of solidification of multicomponent alloyshave been presented in [47,52,56,74–76]. In [47]
[52] the ternary Ni-base alloy Ni-5.8 wt% Al-15.2 wt% Ta alloy was used to calculate in a 7 mm by 20
rectangular domain. In this case, as Al is partitioned to the interdendritic liquid it has the effect of decreasin
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Fig. 12. Solidification of a three-dimensional Pb-10 wt% Sn alloy. Flowfield and volume fraction of liquid after 10 minutes of simulation

Fig. 12. Solidification tridimensionnelle d’un alliage Pb-10 % en poids Sn. Champ des vitesses et fraction volumique du liquide après 10 minute
de simulation.

the density of the liquid-alloy, but Ta increases the density of the liquid alloy. Simulations showed stro
very stable thermosolutal convection that led to well-defined freckles in the interior of the mushy zone
as at the vertical surfaces of the alloy. Simulations for a quaternary alloy of Ni-6 wt% Al-6 wt% Ta-8 wt% Cr o
variable geometries showed that narrow sections are more prone to develop freckling. The segregation of a
in one such calculation is shown in Fig. 11. The domain is 14 mm wide at the base, 20 mm tall and co
symmetrically to 7 mm wide at the top. The temperature gradient and cooling rate are 5000 K/m and−0.28 K/s,
respectively. Fig. 11 shows no evidence of freckling at thebottom of the container and strong channel segrega
at the top.

One of the most serious difficulties encountered in the simulation of multicomponent alloys is the lack
reliable thermophysical data, [77]. Finally, in Fig. 12, a simulation of a three-dimensional solidification simulati
of a binary Pb-10 wt% Sn alloy is shown [55]. The container is a cylinder of diameter 10 mm and 20 mm tall
a thermal gradient of 1000 K/m and a cooling rate of 0.167 K/s. The cross section in Fig. 11 shows two freck
developing, one on the side wall and one in the interior, and plumes emanating from the channels. The re
after 10 minutes of solidification; five freckles develop with four of them next to the vertical surface and an inter
one.
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5. Conclusions

Mathematical models of solidification of multicomponent dendritic alloys at the mesoscale level have
discussed based on conservation equations that were derived using volume averaging and implemente
finite element method. The need for sound mathematical models of solidification has been explained, and th
of convection in the macrosegregation and the formation of freckles have been demonstrated for simulatio
and three dimensions. The learned reader will notice that almost no mention has been made of the exten
in stability analysis and experiments related to this subject. This has been a conscious decision in an a
keep the presentation clear and focused on the numerical modeling aspects of the problems. Significant
has been made in the subject area during the last twenty years; however, there still remain aspects that a
of further study. Some of the remaining problems that have been identified are: the lack of efficiency of the
numerical codes that prevent us from performing simulations in geometries with the dimensions of real c
the numerical difficulties introducedby the low values of the permeability deep in the mushy zone; and the lack
thermophysical data for calculations in multicomponent alloys. Work in the first two areas continues to be purs
by the authors and colleagues, and the results will be reported in the future.
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