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Abstract

Mathematical and numerical modet$ solidification of binay and multicomponent dendritic alloys that can model the
dynamics of the mushy zone as well as the all liquid region are examined. The discussion is centered around models based on
finite element discretization of the governing equations that have been developed by the authors during the last fifteen years. The
capabilities of existing simulation codes to model the effects of convection and the resulting macrosegregation in castings, and
in particular, the development of ‘freclden vertically solidified dadritic monocrystals are disssed. The curré capallities
of the models as well as the areas in which more improvernseneeded are noted. Numerical examples are presented to
illustrate the different aspects of the simulationscite thisarticle: J.C. Heinrich, D.R. Poirier, C. R. Mecanique 332 (2004).
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Résumé

Modélisation de la convection au cours de la solidification directionnelleNous exposons des modéles mathématiques
et numériques de la solidification d’'alliages dendritiquesabes et multiconstituants, gpeuvent décrire la dynamique de
la zone pateuse ainsi que la région liquide. La discussion est centrée sur des modeéles développés par les auteurs du présent
article et basés sur la discrétisation en éléments finis des équations qui régissent les phénomeénes. Nous discutons la capacité
des programmes de simulation existants a modéliser les effets de la convection et de la macroségrégation qui en résulte dans les
piéces coulées, et plus particulierement larfation de « freckles » dans les monocrigtdendritiques solidifiés verticalement.
Nous faisons ressortir les limites actuelles des modéles ainsi que les domaines dans lesquels des améliorations sont nécessaires.
Des exemples numériques illustrent les différent aspects des simul®amsciter cet article: J.C. Heinrich, D.R. Poirier,
C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Macrosegregation in castings remains a serious problem that producers of ingots and castings must deal with
on a day-by-day basis. At the same time, an increasinmgber of technological apgttions require that critical
mechanical components operate at extreme conditiotsngberature and stress, underscoring the necessity and
importance of sound computational models of solidification that can guide the design of the processes, with the
aim of reducing scrap and the expense of evaluating full scale production runs in order to realize a method to
successfully make the ingots or castings.

Although castings are susceptible to many types of defects, macrosegregation can be the major factor that
limits the size of the cast-product. One of the most dramatic examples of macrosegregation defects is found in
the directional solidification of single-crystal superalloy turbine blades, where the level of rejection at the end of
the manufacturing process can reach around 40% [1,2¢ciémal solidification provides the means to control
the grain shape, producing columnar microstructures thighgrain boundaries aligned parallel to the longitudinal
direction of the casting. The process can be further improved by casting single crystals in which only one columnar
grain is allowed to grow, thus greatly improving the creegigence at elevated tempéures [3]. In this process
solidification is effected vertically under a stable temperature gradient established by extracting heat at the bottom
of the casting via a water-cooled ‘chill’ and by radiation to a cold zone.

Without proper control, macrosegregation defects can develop in directionally solidified castings; in particular,
vertically solidified monocrystals are susceptible to developing ‘freckles’. These are localized segregates in the
form of long narrow trails aligned parallel to the directidrgeoavity, enriched in the normally segregating elements,
depleted of the inversely segregating elements and with a width length of 1-2 mm.

Within the casting community there has been a large volume of research and modeling efforts over the past
forty years. This has led to numerical models of solidiima that can be categorizédtto three types according
to the length scales that they resolve. (i) Macroscale models can be utilized for simulations of full castings with
dimensions on the order of a meter. Typically they model the mold filling process and the heat transfer process,
but, so far, cannot include detailed models of the musinez Some codes are commercially available; a review
of these codes is found in [4]. For filling, the models ungieg the codes are based on the classical volume of
fluid (VOF) approach; more recent algorithms based oningplagrangian interfacesthnigues are discussed
in [5]. (ii) Mesoscale models are capable of modeling solidification domains of length scales on the order of 1-10
centimeters and treat the mushy zone as an anisotropic porous medium, using either mixture theory or volume
average formulations, and are the focus of this article. The main difficulty in applying these models at larger scales
is their current lack of efficiency; these issues will be discussed in a later section. (iii) Microscale models that
can follow the development of individual dendrites and, at this time, model length scales at the dendritic level
in domains up to several millimeters. These models have been applied to simulations of dendritic and cellular
solidification of pure substances in undercooled liquids [6-9], but less so for the binary alloys [10-12].

Early mesoscale models of dendritic solidification of gfldate back to the early 1960s, and their emphasis was
on solute redistribution and macrosegregation [13—27]. Thermosolutal convection in the liquid was not considered,
but it was recognized that the density of the interdendiijigid varies spatially and temporally within the mushy
zone, so buoyancy-driven convection of the interdendritic liquid was calculated. These analyses were sufficient
to describe macrosegregation when thermosolutaledtion in the all-liquid zone is not important and when the
geometry of the mushy zone is prescribed, but cannot capture the formation of freckles or channel segregates,
which involves partial remelting of the dendrites due to thermosolutal convection in the all-liquid zone and its
interaction with the mushy zone. Numerical models that include thermosolutal convection in the mushy zone and
the liquid appeared in the mid-1980s; these are usueafrred to as one-domain models or continuum models,
because the equations are developsidg mixture theory or volume axaging [28—31] that precludes the need
to model the interface between the all-liquid zone and the mushy zone. The latter is treated as a porous medium
with variable anisotropic permeability; the fluid flow problem becomes that of analyzing the motion of a layer of
fluid overlying a porous medium. It is governed by a single momentum equation that can be solved using finite
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differences, finite volumes or finitelements, in a single domain distized with a fixed computational mesh
[32—40]. Reviews are presented in [41-43]. In this article the mathematical model is presented and discussed in the
next section; the current capabilities and outstanding modeling issues are discussed in Section 3 in relation to the
convection-modeling in both the terrestrial and microgravity environments; in Section 4 some illustrative examples
are discussed.

2. Mathematical model of solidification

The continuum equations of continuity, momentum, conservation of energy and conservation of solute species
have been developed using the volume averaging technique of [29,30]. For this article, we invoke the following
assumptions:

(1) Flow of interdendritic liquid is laminar, incompressible and Newtonian;

(2) Two phases, liquid and solid, are considered; no pores form;

(3) The solid, once it forms, is stationary, and there is no solute-diffusion in the solid;

(4) The density of the solid may be different than the density of the liquid, but both are constant;

(5) Other properties of the liquid and solid, other than the specific heat capacity, are equal and constant in both
phases;

(6) The mushy zone behaves as a porous medium with a variable and anisotropic permeability.

Assumptions (4) and (5) are not necessary in this model, but they greatly simplify the presentation. Simulations
using variable properties were presented in [37].
The volumetric enthalpy;#, is expressed as

ph = pshs(1— @) + pehedp 1)

Here,h; andh, are the intensive enthalpieskd) in the solid and liquid, respectively; andp, are the densities
(kg/mq) of the solid and liquid; ane is the volume fraction of liquid. It is assumed that, within the mushy zone,
the enthalpies can be expressed as a linear function of temperature as

hs =cp, T

2
he=cp, T+ (cp, —cp,)TH + L 2)

whereL is the latent heat (kg) at the reference temperatufg, T is temperature (K), and,, andc,, are the
specific heat capacities/idy K) in the solid and liquid phases, respectively, which are assumed to be constants.
From Eg. (25b) in [29], the continuity equation becomes

)
V-ng:,Ba—(f Q)

where 8 = (ps — p¢)/pe is the contraction ratio (or solidification contraction) amds the superficial velocity
(m/s). The momentum equation is obtained from Eq. (43) in [29],
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wherev is the kinematic viscosity (RYs), p is pressure (PaK is the permeability tensor f andg is the
gravitational acceleration (r8?). Eq. (4) differs from the momentum equation obtained using mixture theory that
was used in [28] in the form of the viscous term and the explicit influence of the volume fraction of liguid,
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The Boussinesq approximation is used to account for buoyancy effects in the liquid; that is the gendite
buoyancy term is assumed to obey a linear relation of the form

N
p:pe[1+ﬂT(T—To)+Zﬂé(CZ—Cé)} ®)

j=0

In Eq. (5),Cg is the solute concentration in the liquid of alloy compongnw is the number of alloy components;

the subscript O denotes the referenamperature and concentration at whighis given, andgr and ﬂ(’: are,
respectively, the thermal and solutal coefficients of volumetric expansion.
In Eq. (4), the viscous term is known as the Brinkmamigand it allows us to have a continuous transition
from the liquid layer to the porous medium representing the mushy zone [44]. A second-order friction term [45],
or Forschheimer term, is omitted because in our experience, it does not appear to have any measurable effects in
the numerical calculations. In the work of some authors, e.qg., [36,46], the Forschheimer term has been retained.
The average density and the average total concerina of mass for each solute specig€’ are given,
respectively, by

p=ps(L—¢) + ped (6)
and

pC = p,Cl(1—¢) + piClo (7)

which is the form used by Flemings and Nereo [1(4j; is the solute concentration of elemehin the solid, for
the case of no diffusion in the solid these are given by

1
cl = ﬁ / k;CJ d (8)
y

wherek; is the partition coefficient of elemerjit
The equations of conservation of solute are obtained from Eq. (18) in [30] and are

apC/ ¢
= — C'I—
o1 ”[ﬁ ot

The energy equation is written in terms of temperature only and is derived from Eq. (10) in [30] and Egs. (1)
and (2) above; it takes the form
oT

_ )
pepg+ ps[(cpy — cp) (T —T) + L]a—‘iS + pecpu-VT =V -k VT (10)

+u-vc] —DVoqbVCé’} 9)

where the mixture heat capacipg ,, is

;O_szpSCpS(l—(b)-i-peCpK(ﬁ (11)

andx is the constant thermal conductivity (\w K) of the mixture.
To complete the model it is assumed that no undercooling takes place in the mushy zone and that the liquidus
temperature of the alloy is a function of its local composition, which we express in the form

T =F(C)) (12)

In the particular case of a binary alloy, it is assumed that the partition coeffigigata constant and the liquidus
line is straight. The liquidus temperature is then given by

T=mCy+ 1T, (13)
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Fig. 1. Phase diagram for Pb—Sn alloys.
Fig. 1. Diagramme d’'équilibre des phases pour le systéme Pb—Sn.

Fig. 1 shows the phase diagram for binary Pb—Sn alloys; clearly the liquidus line can be well approximated by a
straight line. The assumption of a constant partition coeffidigatnot as good due to the curvature of the solidus
line close to the pure Pb side; hoves, it is still accurate enough for sglons that are not very dilute.

The non-dimensionalization of the equations has beduiressed in several publications [33,47,48], and an
analysis of the parameter ranges for the case of directional solidification from a side wall was presented in [49].
Although the exact form of the equations used by different authors varies, they all follow the same basic premises
and assumptions so results are generally comparable. A difference is the choice of the pernkeabitty. (4)
that is discussed below.

3. Numerical modek of solidification

Egs. (3), (4), (9) and (10) (or their counterparts) have been discretized using finite differences [35], finite
elements [33,39,40], and finite volume methods [32,36—38,40]. All the models use a fixed computational grid
and determine the location of the mushy zone using the fraction of liquid as a dependent variable. The calculations
presented in this article have been done using a finite element algorithm based on a penalty function formulation to
impose the incompressibility constraint and a Petrov—Galerkin stabilization, using bilinear quadrilateral elements
in two dimensions and trilinear ‘bricks’ in three dimensions [50]. The details of the numerical models have been
given in [51-53] and will not be repeated here.

The most important deficiency of these models is their lack of efficiency. Except for the numerical
implementations in [34,35] that used an explicit fractional step method to solve the momentum equations, all
other models pursue implicit solutions of the momentum equation. This has severely limited the capability of
the methods to model realistic casting dimensions, becafufe high resolution required in the mushy zone to
capture the relevant instabilities. Simulations involving dimensions of several centimeters O(10 cm) are possible
in two dimensions, while in three dimensions the few published simulations are restricted to spatial dimensions on
the order of 0.5-3.0 cm [54-56].

The most CPU-intensive and memory demanding part of the calculations is the solution of the momentum
equation. It is well known that the fractional step method provides the most efficient way to solve the flow
problem; however, in [34,35], and other references by the same authors [57,58], relatively coarse meshes were
used in the discretization, and they have not reporpgdieations that require very large meshes. A more recent
implementation of the fractional step method has been reported in [59], where three-dimensional finite element
simulations utilizing meshes of thinear elements of up to up to 200 000 nodes are presented. The author, however,
encountered significant difficulties in the amaltion of the method, which are discussed in [59].
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Fig. 2. Permeability (a) perpendicular and (b) parallel to the tdarof solidification as a function of volume fraction of liquigl,and primary
dendrite arm spacing; .

Fig. 2. Variation de la perméabilité (a) perpendiculaire et (b) paradidéedirection de solidification en fonction de la fraction volumique du
liquide, ¢, et de I'espacement primaire entre dendritis,

A second source of difficulty in solidification simulations involving a mushy zone stems from the permeability
tensor. The permeability varies from zero in the all-solid region to infinity in the all-liquid layer, which poses
considerable numerical difficulty especially deep in the mushy zone. Also a problem has been a lack of knowledge
of the precise form of the permeability. Some authors have been satisfied with the use of an isotropic permeability
given by the Kozeny—Carman approximation [60]. But the Kozeny—Carman equation is valid for only about O to
50% solid; furthermore, the permeability is anisotropic and could be a source of discrepancies between numerical
simulations. In this work, the permeability used in the principal directions is given by

1.09 x 10-3¢33242, ¢ <0.65
5 P 6.7336 )
¢ 0.25
(—6.49 x 1072 +5.43 x 102[1—} )df, 0.75< ¢ < 1.0
3.75 x 104¢2d?, ¢ < 0.65
¢ 10.739
K, =1 205x 10_7[W] dz, 0.65< ¢ <0.75 (15)

0.074log(1 — ¢)~1 — 149+ 2(1— ¢) — 0.5(1 — $)?]d?, 0.75<¢ < 1.0

Eq. (15) gives the permeability @nin the direction parallel to dendrite growth, and Eq. (14) is for flow in
the transverse direction to dendrite growth; is the primary dendrite arm spacing (m). Wheén< 0.65, the
permeability above was obtained by means of a regression analysis of the available empirical data [61]. There are
no empirical data whea > 0.65; therefore, in this range the permeability was obtained numerically as explained
in [62—64]. A summary of the procedure used to merge the empirical and humerical data is given in [65].

The components of the paeability as a function ofp are shown in Fig. 2 for various values df. The
permeability in Fig. 2 exhibits a behavior betwee&®< ¢ < 0.75 that may be puzzling to the reader. Examination
of the empirical and numerical data shown in Fig. 6@2]and in Fig. 10 of [63] indiates that for values below
¢ = 0.65 the data show a very different trend than for those abow.75, requiring a different fit in each region.

In order to best represent the existing data a separate region was introduced be@been & 0.75 as given in
Egs. (14) and (15). Numerical simulations in [62—64fevearried out to obtain the permeability for fractions of
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liquid of up to 0.99, between 0.99 and 1.0 the formulas extrapolate the data and in some applications it would be
desirable to extend the data upgte= 0.999, especially when looking at the nucleation of channel sites at the top of
the mushy zone. Also more study is needed on the alaifitiie numerical methods to compute at very low values

of ¢, where the permeability becomes extremely small. If the dendritic growth is not aligned with the principal
axis, then the permeability has to be locally transformed. A strategy to compute the Darcy term has been given
in [66] for the two-dimensional case. Finally, an arsdyof the momentum equations that takes into account the
evolving nature of the heterogeneities in the permeabilitgusd in [67] that shows the influence of the geometry

of the dendritic structures on the éwation of the permeability components.

There remain two more aspects of the model that require special attention; these are the way in which remelting
is modeled and the solidification of the eutectic liquid. Remelting is an essential mechanism in the formation of
channels and ultimately of freckles, and occurs wheror > 0 at some location in the mushy zone, without
necessarily achievingg = 1. For remelting to take place either the temperature or the solute concentration in the
interdendritic liquid must increase at this location (when 1). Temperature is very unlikely to increase, due to the
fact that heat is being extracted and due to the low value of the Prandtl number in alloys that make heat diffusion
dominant over convection. On the other hand, mass diffusivities are relatively low, so when the concentration
increases by advection of solute-rich liquid to a site where a channel is nucleating, remelting occurs. This can be
seen by referring to Fig. 1. Within the mushy zone, the solutal concentration of the interdendritic liquid follows
the liquidus line. At some point if the solute concentration increases while keeping the temperature constant, then
the point(T, C¢) will move to the right of the liquidus line into the liquid region of the phase diagram, indicating
that remelting must take place. Some solidification models assume that solute diffuses infinitely fast in the solid;
in this case, when remelting occurs it can be assumed that the composition of the remelting solid is the current
solid composition and no special care needs to be taken. However, if it is assumed that there is no diffusion in
the solid, then the composition of the solid depends on the solidification history, which must be saved in order to
correctly account for microsegregation in the remeltintdsf83]. This results in a large demand on computer-
storage, because the sites of channels are not known agmibthis forces the modeler to develop strategies to
retain the solidification history at every computational node.

In the model under consideration the solidification process is driven by the solute concentration and the
temperature, which are tied up by Eq. (13) in the mushy zone. When the interdendritic liquid reaches the eutectic
temperature, however, it solidifies at constant terapge when no undercooling of the eutectic reaction is
assumed. This aspect of the models has been rarely discussed in the literature, and in some cases it has been
handled incorrectly. In formulations based on enthalpy, such as in [28,32,40], the formulation is still valid at
eutectic temperature; however, in models based on temperature the formulation must be modified when eutectic
temperature is reached. This makes enthalpy formulations more convenient; however, they still require an algebraic
transformations relating enthalpy to temperature. In models based on temperature the burden of dealing with
solidification at the eutectic temperature is transf@ to the numerical model. In [33,51], when a node reaches
eutectic temperature, solidification is forced to continue at a constant temperature. The energy equation is modified
by setting the time derivative to zero and used to calculate the volume fraction of liquid. The convective terms can
also be neglected, and Eq. (10) becomes

o _ 1 g
a ps[(cp.‘ - Cp[,)(TH —-T)+L]

Eq. (14) is solved at nodes whefe= Tg and Eq. (10) at all other nodes. This strategy has proven to be adequate
when solidification is effected under the influence of gravity, and solidification contraction is not impgrta®)(

Under microgravity, when convection is due solely to solidification contraction, the strategy does not model
the velocity field properly, because physically the etiteisotherm advances continuously through the domain

and does not stay at the eutectic temperature over a finite period of time at the nodes. This model of eutectic
solidification produces oscillations the induced velocity that can be madtean an order of magnitude greater

than the correct velocity. &ause these velocities are very small asganad with those induced by thermosolutal

kYT (16)
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convection, this is not a problem whesolidification takes place under terrestrial gravity conditions, but they

are unacceptable in microgravity. A method that alldhe eutectic isotherm to move continuously through the
elements has recently been developed and reported in i 3here it is also shown that when solidification
contraction is the only form of convection, inverse segregation at a cooled surface can be correctly modeled (see,
e.g., [16,68]), which other existingadels had not been able to accomplish.

4. Examples of applications

A two-dimensional calculation simulating the upward solidification of a Pb-23.4 wt% Sn alloy is now discussed.
The initial temperature gradient is 7700'#, and the bottom of the alloy is cooled at the rate of 0.05,k0 as

Table 1
Physical propertie for Pb—Sn alloys
Tableau 1
Propriétés physiques des alliages Pb—Sn
Average thermal diffusivity 1x10°° m?s-1
Latent heat of fusion 37.6 kJ kg
Average specific heat 0.176 kJkhk—1
Thermal expansion coefficient 16 x 104 K1
Solutal expansion coefficient 9ix 1073 (wtop)~1
Solutal diffusivity 30 x 1079 m?s~1
Kinematic viscosity 247x 1077 m?s-1
Equilibrium partition ratio 0.31
Average density 9250.0 kgn?
Melting temperature of lead 600.0 K
Eutetic temperature 456.0 K
Eutetic concentration 61.9 wt% Sn
Acceleration of gravity 9.8 me
Interdendritic arm spacing .85x 1074 m
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Fig. 3. Flow field at the bottom of the container irliddication of Pb-23.4 wt% Sn after 50 s of simulation.
Fig. 3. Champ des vitesses en bas du creust apres 50 secondesildéainde la solidification de I'alliage Pb-23,4 % en poids Sn.
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to produce an approximate solidification velocity of 6 fgmFor simplicity the physical properties in the solid and

in the liquid are assumed to be the same; these desllin Table 1. This case was chosen because it was deemed
unstable in [2]; it exhibits strong freckling and large variations in the convection patterns during the solidification.
The calculation was performed on a uniform mesh of 38 by 190 bilinear elements. Initially the bottom of the
container is at 545.5 K, slightly above the melting tempa®of the alloy, and the uniform vertical temperature
gradient is imposed everywhere else. No slip conditioesraposed along all surfaces in the all-liquid region; in

the mushy zone slip is allowed along the vertical surfaces. The latter are assumed to be adiabatic; on the top the
initial temperature gradient is maintained. Solidification is effected by lowering the temperature at the bottom at
the specified linear rate in time.

After 50 s, we can observe the first convection cells beginning to form at the bottom (Fig. 3), where it can also
be observed that the mushy zone has developed up to about 0.2 mm and the solidification front is still flat. The
convection is very weak at this point; the maximum magnitude of the velocitBis 80~ mm/s. This stage of
the process corresponds to what is usually called fingerestion; because it comprises many small cells confined
very close to the advancing solidification front, andregponds to the boundary-layaode of instality. At 100 s
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Fig. 4. Flow field and volume fractioof liquid in solidifying Pb-23.4  Fig. 5. Flow field and volume &ction of liquid in solidifying
wt% Sn after 100 s of simulation. Pb-23.4 wt% Sn after 200 s of simulation.
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simulation de 100 secondes de la solidification de I'alliage Pb-23,4 % erune simulation de 200 secondes de la solidification de I'alliage
poids Sn. Pb-23,4 % en poids Sn.
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Fig. 6. Flow field and volume &ction of liquid in solidifying
Pb-23.4 wt% Sn after 300 s of simulation.

Fig. 6. Champ des vitesses et fraction volumique du liquide aprés
une simulation de 300 secondes de la solidification de I'alliage
Pb-23,4 % en poids Sn.

Fig. 7. Flow field and volume &ction of liquid in solidifying
Pb-23.4 wt% Sn after 2000 s of simulation.

Fig. 7. Champ des vitesses et fraction volumique du liquide
aprés une simulation de 2000 secondes de la solidification de
I'alliage Pb-23,4 % en poids Sn.

the mode of convection is undergoing a transition towardat@ similar to what is referred to as the mushy-layer
mode of instability in [69], giving rise to a plume at the center of the container and two weaker plumes along the
side walls, as shown in Fig. 4. The large cells induced by the center plume reach to about 1.8 cm high, and the
maximum velocity reaches 2.1 mist The mushy zone has advanced to 0.8 mm from the bottom. Fig. 5 shows the
system after 200 s, the flow has completed its transition, a strong plume is observed close to the center, and the
appearance of “volcanoes” is evident at the top of the mushy zone. Convection still has not reached the top of the
overlying liquid and the system of organized cells observed previously in Fig. 4 has become unstable. At this point
the convection cells begin to meander, grow and weakahappear and disappear. This is the source of a great
deal of localized segregation as will be shown below. To illustrate this almost chaotic behavior compare Fig. 5 with
Fig. 6 at 300 s, where a very different convection pattern is observed. The maximum velocity at 200 s i54,9 mm
and at 300 s it is 1.4 myis.

Next, Fig. 7 shows the simulation at 2000 s; the mushy zone is now fully developed, and the bottom 1.25 mm
are fully solidified. The depth of the mushy zone is approximately 1.13 cm, which compares very well with the
value of 1.16 cm that can be estimated from the temjpee gradient and the phase diagram. The maximum
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Fig. 8. Solidifying Pb-23.4 wt% Sn after 2000 § imulation: (a) flow field and volume fréon of liquid; (b) flow field and total solute
concentration.

Fig. 8. Alliage Pb-23,4 % en poids Sn aprés 2000 secondes de simulatlarsdlidification : (a) champ des vitesses et fraction volumique du
liquide ; (b) champ des vitesses et concentration totale de soluté.

velocity at this point in time is 1.9 mys. The steps followed in Figs. 3—7 can be compared qualitatively with

the experimental results shown in Fig. 3 of [70]; while keeping in mind that the experiments were performed in
a solution of NHCI-H>0O in which the fraction of liquid remains high throughout the mushy zone, that lead to
very stable channels in the interior of the container. The last results shown in this calculation are at 3000 s of
solidification and are shown in Figs. 8(a) and 8(b). In Fig. 8(a) the mushy zone has advanced at a speed of about
6.3 pnys. The bottom 7.6 mm are fully solidified, and convection has weakened significantly due to the small
amount of liquid remaining; the maximum velocity is only 0.6 ffenThe final composition in the fully solidified

region can be observed in Fig. 8(b); channels are obvious next to the vertical sides of the domain. For systems
like this one, in which convection is strong and variable, long freckles do not develop in the interior due to the
continuous changes in the convection pattern in the ovegljguid; rather they tend to change direction with the
convection and disappear. However, the physical mechenésill act in a way that is consistent with the analysis

of [71], where it was assumed that fully developed channels have vertical sidewalls. Strong localized segregation
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Fig. 9. Comparison of calculated and experimentally measured average concentrations in a Pb-23.2 wt% Sn alloy solidified vertically.

Fig. 9. Comparaison des concentrations moyennes calculées ettemsxpérimentalement pour l'alliage Pb-23,4% en poids Sn solidifié
verticalement.

can be observed in the interior along with the frecklemglthe vertical surfaces. The segregation in the freckles
reaches 11.5 wt% Sn.

Validation of the two-dimensional results of simulations of solidification has been carried out by comparison
with experimental results in Pb—Sn alloys solidified directionally and reported in [2,40,58]; very good agreement
between experiments and simulations was found. In the case of vertical solidification a validation is presented in
[72], where the experimental conditions reported in [73fevesed. The experimental results were presented in
the form of average concentrations across horizontal sections of a cylindrical ingot. These results together with
those of a two-dimensional numerical simulation averaged every 3 and 5 mm in the vertical direction are shown
in Fig. 9 and also show very good agreement, even though the details of macrosegregation cannot be compared.
In [2], agreement between them was found on the basis of comparing whether freckles form in the experimental
ingots and simulations.

The effect of variable density is best shown assuming that solidification takes place in the absence of gravity.
A simulation using the same parameters as the one described above, except that the solid and liquid densities
differ and the gravitational acceleration is set to zero, is shown next. The densitips -2r8700 kgm? and
are p; = 8900 kg/m?; the container is 7 mm wide and 40 mm tall. Fig. 10 shows the results after 3000 s of
solidification. The flow is driven solely by solidification contraction; to maintain continuity, liquid is allowed to
enter the container at the top at a uniform vertical velocity. In Fig. 10 it can be observed that the mushy zone is at
approximately the same position as in the case of solidificati@er terrestrial gravity. Starting at the top, the flow
develops into a Poiseuille flow in the all-liquid region, and it suffers a transition shortly before reaching the top of
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Fig. 10. Ecoulement induit par la contraction en apesanteur et
fraction volumique du liquide apsé3000 secondes de solidification.
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Fig. 11. Solidified Ni-Al-Ta—Cr alloy on a smoothly
convergent container.

Fig. 11. Alliage Ni-Al-Ta—Cr solidifié dans un creu-
set a rétrécissement continu.

the mushy zone, where it turns into Darcy flow. The inflow at the top scales correctly with the volume contraction
given by [, B(d¢/d1) d$2. In this case the velocity of the liquid feeding the contraction flow.5-610~% mm/s.
As it penetrates the mushy zone, the liquid slows due to the decrease in liquid demand by the solidification volume.
At the interface with the all-solid region, the velocity of the liquid is related to the velocityr of the eutectic
isotherm byV; = —BVg; in this calculationV; = 1.45x 10~4 mmy/s. In [43] it was shown thalt; and the velocity
of the liquid entering the top of the domain are approximated to within 1% of the expected steady-state velocities
obtained from the temperature gradient and the cooling rate. In these simulations there is no evidence of segregation
of the alloy, except at the bottom of the container, where inverse segregation occurs [16]. The inverse segregation
is properly captured by the model and has been discussed in [43]. Calculations that show the liquid instabilities as
the gravitational acceleration is increased and issuaterkto the calculation of the pressure in the mushy zone
have been presented in [48,53].
Simulations of solidification of multicomponent allopsve been presented in [47,52,56,74—76]. In [47] and
[52] the ternary Ni-base alloy Ni-5.8 wt% Al-15.2 wt% Ta alloy was used to calculate in a 7 mm by 20 mm
rectangular domain. In this case, as Al is partitionedh® interdendritic liquid it s the effect of decreasing
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z

Fig. 12. Solidification of a three-dimensional Pb-10 wt% Sn alloy. Rield and volume fraction of liquid after 10 minutes of simulation.

Fig. 12. Solidification tridimensionnelle d’un alliage Pb-10 % en poid<C3ramp des vitesses et fractionwalique du liquide aprés 10 minutes
de simulation.

the density of the liquid-alloy, but Ta increases the density of the liquid alloy. Simulations showed strong but
very stable thermosolutal convection that led to well-defined freckles in the interior of the mushy zone as well
as at the vertical surfaces of the alloy. Simulationsf@uaternary alloy of Ni-6 wt% Al-6 wt% Ta-8 wt% Cr on
variable geometries showed that narrow sections are more prone to develop freckling. The segregation of aluminum
in one such calculation is shown in Fig. 11. The domain is 14 mm wide at the base, 20 mm tall and contracts
symmetrically to 7 mm wide at the top. The temperature gradient and cooling rate are H@0ENI—0.28 K/s,
respectively. Fig. 11 shows no evidence of freckling attibom of the container and strong channel segregation
at the top.

One of the most serious difficulties encountered ia fimulation of multicomponent alloys is the lack of
reliable thermophysical data, [77]. Finally, in Fig. 12, a siatidn of a three-dimensional solidification simulation
of a binary Pb-10 wt% Sn alloy is shown [55]. The container is a cylinder of diameter 10 mm and 20 mm tall, under
a thermal gradient of 1000 #n and a cooling rate of 0.167/s. The cross section in Fig. 11 shows two freckles
developing, one on the side wall and one in the interior, and plumes emanating from the channels. The results are
after 10 minutes of solidification; five freckles develojitwiour of them next to the vertical surface and an interior
one.
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5. Conclusions

Mathematical models of solidifitian of multicomponent dendritic alloys at the mesoscale level have been
discussed based on conservation equations that were derived using volume averaging and implemented with the
finite element method. The need for sound mathematical models of solidification has been explained, and the effects
of convection in the macrosegregation and the formation of freckles have been demonstrated for simulations in two
and three dimensions. The learned reader will notice that almost no mention has been made of the extensive work
in stability analysis and experiments related to this subject. This has been a conscious decision in an attempt to
keep the presentation clear and focused on the numerical modeling aspects of the problems. Significant progress
has been made in the subject area during the last twenty years; however, there still remain aspects that are in need
of further study. Some of the remaining problems that have been identified are: the lack of efficiency of the existing
numerical codes that prevent us from performing simulations in geometries with the dimensions of real castings;
the numerical difficulties introducday the low values of the permeabilitgdp in the mushy zone; and the lack of
thermophysical data for calculations in multicomponentyeldVork in the first two areas continues to be pursued
by the authors and colleagues, and the results will be reported in the future.
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