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Abstract

The analysis of the thermodynamic conditions for brittle fracture is given for the two known models of an isolated defec
In the first model the stresses on the external surface of the solid remain the same as before and after formation of a
the second model the displacements on the external surface ofthe solid at a defect formation remain the same as in the s
without a defect. It is shown that the first model in the isothermal case of deformation leads to Griffith condition and the se
model leads to the other proposed energy condition of fracture which, unlike the Griffith condition, containsan increment of the
entropy component of the internal energy which is not zero in a general case.To cite this article: I.M. Dunaev, V.I. Dunaev,
C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Analyse des conditions thermodynamique pour la rupture fragile. On présente une analyse des conditions thermo
namiques pour la rupture fragile, dans le cadre des deux modèles du défaut isolé bien connus. Dans le premier m
maintient les mêmes contraintes à la surface extérieure du solide avant et après l’apparition du défaut. Dans le deux
dèle, ce sont les déplacements que l’on garde constants. Nous démontrons que le premier modèle conduit à la conditio
Griffith dans le cas d’une déformation isothermique, tandis que le deuxième modèle produit une condition bien différe
Selon cette condition, les variations de l’entropie ne sont plus nulles, contrairement à la condition de Griffith.Pour citer cet
article : I.M. Dunaev, V.I. Dunaev, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Griffith [1,2] was the first to approach the theory of brittle fracture from the point of view of energy cons
tions and he proposed an energy condition of brittle fracture

dUp − γp dΣ = dA (1)

Here,Up = U
(0)
p − U

(1)
p is the change of a potential energy caused by the defect formation;U

(0)
p andU

(1)
p are

potential energies of a solid without and with defect, respectively;γp is the energy necessary for the formati
of a unit area of defect surfaceΣ , which is equal to the specific surface energy;A is the change of the work o
external forces during a defect formation. It is well-known that condition (1) is inapplicable for strength asse
at compression. In particular, for problems of material fracture under uniaxial and biaxial tension/compre
a plate with a defect, the condition (1) leads to the temperature independent and identical in absolute valu
stresses, contradicting experimental data for practicallyall known materials. This short-coming was not elimina
using assumption [2,3] that defects are closing at compression, consequently the sliding friction appear
defect surface. However, to explain the compressive strength exceeding (in absolute value) the tensile strength
in the calculations using this assumption [2,3] the value of sliding friction coefficient on defect surface ha
accepted improbably large in comparison with experimentaldata. In numerous investigations [2,4,5] based on t
modynamics, a generalized energy approach to the fracture was proposed, and in particular condition (1) obtain
However, in these investigations the authors did not state explicitly the fundamental physical and mathemat
assumptions of their models of fracture leading to condition (1). In particular, they did not precise the physical h
potheses and mathematical substantiations in their models of fracture on which basis the increment of the
component of internal energy was assumed equal to zero.

In this Note the necessary energy conditions of fracture are formulated on the basis of thermodyna
thermoelastic deformation of solids (Section 2). Analyzing the conditions for the two known models of a sol
a defect (Section 3), it is shown that one of the models leads to a Griffith type energy condition of fracture,
unlike condition (1), contains an increment of an entropy component of the internal energy which is nonzero in th
general case. This condition allows the elimination of the above mentioned short-comings of the original
theory. Another model of a solid with a defect leads to a thermodynamically incomplete (increment of the e
component of the internal energy is zero) condition (1) and, therefore, to physically groundless and experimental
unsupported results.

2. Necessary energy conditions of fracture

Let us consider a linear thermoelastic solid where a defect (a crack) is forming and propagating. Then, w
introduce notations for values with indexes(0) and (1) for the solid without and with a defect respectively:u(0),
η(0), ε

(0)
ij , σ

(0)
ij , u

(0)
i , T (0), V0 is a volume,S0 is surface area,u(1), η(1), ε

(1)
ij , σ

(1)
ij , u

(1)
i , T (1), V1, S1 = S0 + Σ ,

whereΣ is the surface area of the defect. Here, indexes(0) and(1) are used for:u the specific internal energy,η the
specific entropy,εij the components of the strain tensor,σij the components of the stress tensor,ui the components
of the displacement vector,T the absolute temperature. For the thermoelastic solid we have [6]:

u = 1

2
σij εij + 3

2
α0K0Θ(T − T0) + 3α0K0T0Θ + cε(T − T0) (2)

η = 3α0K0Θ + cε ln
T

T0
≈ 3α0K0Θ + cε

T − T0

T0
, at

T − T0

T0
� 1 (3)

εij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
, σij = 2µεij + λΘδij − 3α0K0(T − T0)δij , i, j = 1,2,3 (4)
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wherexi are Cartesian coordinates of the solid points. In the expression (2) and beyond, the summatio
formed over repeating indicesi, j , Θ = εij δij is the first invariant of the strain tensor,δij is the Kronecker delta
α0 is the linear coefficient of thermal expansion,cε is the specific heat at constant strain,µ andλ are Lame’s
coefficients, 2µ = E/(1 + ν), λ = νE/[(1 + ν)(1 − 2ν)], 3K0 = E/(1 − 2ν), E is the Young’s modulus,ν is
the Poisson’s ratio. Using the integral form of the first and second laws of thermodynamics and the cons
mechanical energy theorem [3,6–8], let us write the energy conditions for formation and propagation of the d
(crack)

dK + dU − dU∗ = dA + dQ (5)

dS − dS∗ =
∫
V0

dQ(0)

T (0)
dV −

∫
V1

dQ(1)

T (1)
dV (6)

In expressions (5) and (6)

K = K(0) − K(1), U = U(0) − U(1), A = A(0) − A(1), Q = Q(0) − Q(1), S = S(0) − S(1) (7)

U(q) =
∫
Vq

u(q) dV, S(q) =
∫
Vq

η(q) dV , q = 0,1

are the respective changes of the kinetic energy, internal energy, work of the external forces, influx of h
entropy, caused by defect propagation during timet ,

U∗ =
∮
Σ

u∗ ds = γΣ, S∗ =
∫
Σ

η∗ ds (8)

are the internal energy of defect formation of a surfaceΣ and the entropy of defect formation, ds is an elemen
of surface area of defect,u∗ > 0 is a specific internal energy,γ is an average specificinternal energy,η∗ is the
specific entropy. The condition (5) is the thermodynamic requirement to define crackpropagation. The entrop
of defect formation (8) could be obtained from Eq. (6). To solve applied problems, the conditions (5) a
must be complemented by geometrical, physical and mathematical model of the defect, loading conditions an
also by the condition which determines the relative position of the defect and it trajectory. In static loadi
T (0) = T (1) = T0 = const, dK = 0, dQ = 0 from conditions (5) and (6) considering (8) we find:

dU − γ dΣ = dA (9)

dS − dS∗ = 0 (10)

With these conditions, unlike condition (1), the internal energy (2) includes the entropy component (3) andγ =
const has another, above mentioned,physical meaning. Further it will be shown with what additional assumption
the conditions (9) and (10) lead to the condition (1). In the case when the defect surface may be determine
one parametera (e.g. a half-length of a crack or large half-axis of an ellipse form defect in plain deformatio
us rewrite condition (9) as:

dW

da
ȧ = 0, W = U − γΣ − A (11)

If ȧ = 0 then there is no crack propagation. Thus the criteria of probable propagation of the crack is:

dW

da
= 0, ȧ � 0 (12)

but we do not know whether it will actually happen or not (so thatȧ = 0 cannot be excluded) [7].
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3. Energy condition for fracture using two models for an isolated defect

Let us consider in detail the energy condition (12) at plane stressed (strained) state for the two known
of an isolated defect. In model(A) the same stresses are prescribed onthe external surface of the solidS0 before
and after formation of the defect, and stresses on the surface of the defectΣ are equal to zero. External forc
in this model produce work on the external surfaceS0 on displacement, caused by the formation of the defec
model(B), on the external surface of the solidS0 before and after formation of the defect, displacements whic
correspond to the applied load are fixed, but before the defect was formed. Stresses are also zero on the
the defectΣ in model(B). The work of external forces on the external surface of the solidS0 during formation of
the defect is dA = 0 as displacements are fixed. The integrals of the internal energy (7) taking into considerati
(2)–(4) atT (0) = T (1) = T0 may be written

U = (
U(0)

p − U(1)
p

) + T0
(
S(0) − S(1)

)
= 1

2

(∫
V0

σ
(0)
ij ε

(0)
ij dV −

∫
V1

σ
(1)
ij ε

(1)
ij dV

)
+ α0T0k1

(∫
V0

ε
(0)
ij δij dV −

∫
V1

ε
(1)
ij δij dV

)
(13)

wherek1 = E/(1− ν) is for the plane stressed state,k1 = E/(1− 2ν) is for the plane deformation,i, j = 1,2. Let
us compute the increment of the total energyW (11). For model(A), using relations (13) and (4) atT = T0, Betti’s
reciprocal theorem [6], the expression for the work of external forces, and Airy stress functionF ,

σ
(0)
ij ε

(1)
ij = σ

(1)
ij ε

(0)
ij , A =

∮
S0

σ
(0)
ij

(
u

(0)
i − u

(1)
i

)
nj ds, σ

(q)

11 = ∂2F (q)

∂x2
2

, σ
(q)

22 = ∂2F (q)

∂x2
1

(14)

respectively, we obtain

W = 1

2

∫
V1

(
σ

(0)
ij + σ

(1)
ij

)(
ε
(0)
ij − ε

(1)
ij

)
dV + 1

2

∫
V

σ
(0)
ij ε

(0)
ij dV −

∮
S0

σ
(0)
ij

(
u

(0)
i − u

(1)
i

)
nj ds

+ α0T0χ

[∫
V0

(
∂2F (0)

∂x2
1

+ ∂2F (0)

∂x2
2

)
dV −

∫
V1

(
∂2F (1)

∂x2
1

+ ∂2F (1)

∂x2
2

)
dV

]
− γΣ (15)

HereV = V0 − V1, χ = 1 andχ = 1+ ν for the plane stressed state and theplane deformation, respectively,nj

are direction cosines of the external normaln to the solid boundary. Using [6] on the boundariesS0 andS0 + Σ

expressions

F
(q)
x1 (s) = ∂F (q)

∂x1
= −

s∫
0

σ
(q)
nx2(s)ds + Aq, F

(q)
x2 (s) = ∂F (q)

∂x2
=

s∫
0

σ
(q)
nx1(s)ds + Bq

σ
(q)
nx1 = σ

(q)
11 n1 + σ

(q)
12 n2, σ

(q)
nx2 = σ

(q)
12 n1 + σ

(q)
22 n2, q = 0,1 (16)

Green’s formula and equations of equilibrium

∂σ
(0)
ij

∂xi

= 0,
∂σ

(1)
ij

∂xi

= 0, i, j = 1,2 (17)

the expression (15), considering the formula (4), may be written

W = 1

2

∮
S0+Σ

(
σ

(0)
ij + σ

(1)
ij

)(
u

(0)
i − u

(1)
i

)
nj ds + 1

2

∮
Σ

σ
(0)
ij u

(0)
i nj ds −

∮
S0

σ
(0)
ij

(
u

(0)
i − u

(1)
i

)
nj ds
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+ α0T0χ

∮
S0

s∫
0

(
σ (1)

nx1
− σ (0)

nx1

)
ds dx1 +

s∫
0

(
σ (1)

nx2
− σ (0)

nx2

)
ds dx2

+
∮
Σ

( s∫
0

σ (1)
nx1

ds

)
dx1 +

( s∫
0

σ (1)
nx2

ds

)
dx2

}
− γΣ,

∮
Σ

Aq dx1 + Bq dx2 = 0 (18)

So, since far from the boundary conditions (16) ina solid with and without the defect in model(A) we have

σ (0)
nx1

= σ (1)
nx1

, σ (0)
nx2

= σ (1)
nx2

at (x1, x2) ∈ S0; σ (1)
nx1

= σ (1)
nx2

= 0 at(x1, x2) ∈ Σ (19)

then the last two integrals in the expression (18) are equal to zero. Therefore, the entropic component of th
energy (13) also is equal to zero. Then, on account ofthe condition (19) and the energy condition (12) we finally
obtain the increment of the total energyW (11) and Griffith criterion (1) in the form

W = 1

2

∮
Σ

σ
(0)
ij u

(1)
i nj ds − γΣ,

dW

da
= d

da

(
1

2

∮
Σ

σ
(0)
ij u

(1)
i nj ds − γΣ

)
= 0 (20)

Let us compute the increment of the total energy (11) for model(B), using the conditions on the boundaryS0 of a
solid with and without a defect and on the boundary of the defectΣ

u
(0)
i = u

(1)
i at (x1, x2) ∈ S0, σ (1)

nx1
= σ (1)

nx2
= 0 at(x1, x2) ∈ Σ (21)

In this case the work of external forces is equal to zero. Using the relations (13) and (14), Green’s form
Eqs. (17), (4) for expression (11) we obtain

W = U − γΣ = 1

2

∮
S0+Σ

(
σ

(0)
ij + σ

(1)
ij

)(
u

(0)
i − u

(1)
i

)
nj ds + 1

2

∮
Σ

σ
(0)
ij u

(0)
i nj ds

+ α0T0k1

[ ∮
S0+Σ

(
u

(0)
i − u

(1)
i

)
δij nj ds +

∮
Σ

u
(0)
i δij nj ds

]
− γΣ (22)

Then, on account of conditions (21) we reduce the expressions (22) and (12) to

dW

da
= d

da

(
1

2

∮
Σ

σ
(0)
ij u

(1)
i nj ds + α0T0k1

∮
Σ

u
(1)
i δij nj ds − γΣ

)
= 0 (23)

Therefore, the model of the defect(B) leads to condition (23) in which increment of the entropy component o
internal energy in a general case isnot zero. This is the main essential difference of the proposed condition
from the Griffith criterion (20).

4. Test problem

Let us consider the problem of the determination of critical stresses in a circular plate, radiusb with a round
shaped defect radiusa under a symmetrical loadP in the case of a plane deformation. The solution of the prob
of elasticity theory is:

u
(1)
1 = c1r + c2

r
, u

(1)
2 = 0, σ

(1)
12 = σ

(1)
rϑ = 0

σ
(1)
11 = σ (1)

r = E

1+ ν

(
c1

1− 2ν
− c2

r2

)
, σ

(1)
22 = σ

(1)
ϑ = E

1+ ν

(
c1

1− 2ν
+ c2

r2

)
(24)

u
(0)
1 = P(1− 2ν)r

1+ ν
, u

(0)
2 = 0, σ

(0)
11 = σ (0)

r = σ
(0)
ϑ = P, σ

(0)
12 = σ

(0)
rϑ = 0
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wherer, ϑ are the polar coordinates of the solid points,c1, c2 are the integration constants which we determ
from the boundary conditions in models(A) and (B). For model(A), using the boundary conditions atr = a,
σ

(1)
11 = 0, r = b, σ

(1)
11 = P and the solution (24), from condition (20) atn1 = 1, n2 = 0, Σ = 2πa, after integration

we obtain equal (in absolute value) critical stresses at tensionP+ and compressionP−

P± = ±
√

γE(1− a2/b2)

2a(1− ν2)

For model(B) using the boundary conditions atr = a, σ
(1)
11 = 0, atr = b, u

(1)
1 = u

(0)
1 , the solution (24) and th

condition (23) we obtain similarly

P± = −α0T0k1 ±
√

(α0T0k1)2 + γE

2a(1− ν2)

[
1+ a2

b2

1

(1− 2ν)

]2

(25)

The critical stresses (25) at tension and compression are different and obviously depend onT0 andα0. In [9], the
solution similar to (25) was obtained for a defect in the form of a crack. In [10], using condition (23), a
of fracture in the form of an ellipse in the space of principle stressesP1, P2 has been obtained with addition
limitations imposed upon the physical and mathematical models of the defect, conditions of isotropy and convex

P 2
1 + P 2

2 − 2ν∗P1P2 + 2α0T0k1(1− ν∗)(P1 + P2) = 32µ(1− ν∗)γ /
[
(æ+ 1)πa∗

]
(26)

wherea∗ is a half-length of a crack critical dimension,ν∗ ∈ (−1,1), æ= 3 − 4ν, æ= (3 − ν)/(1 + ν) for plain
deformation and plane stressed state, respectively.

5. Conclusion

The work proposes an energy condition (23) for the brittle fracture of solids on the basis of thermodynamics
a thermoelastic deformation, considering an increment of the entropy component of the internal energy.

References

[1] A.A. Griffith, The phenomena of rupture and flow in solids, Philos. T. Roy. Soc. A 221 (1921) 163–198.
[2] H. Liebovitz (Ed.), Fracture, an Advanced Treatise,vol. 2, Math. Fundamentals, Academic Press, NY and London, 1968.
[3] F.A. McClintok, J.B. Walsh, in: Int. Proc. of the 4th U.S. National Congress of Appl. Mechanics, 1962, pp. 1015–1031.
[4] G. Cherepanov (Ed.), Fracture, a Topical Encyclopedia of Current Knowledge, Krieger, Malabar, FL, USA, 1998.
[5] H.D. Bui, Mécanique de la Rupture Fragile, Masson, Paris, 1977.
[6] W.K. Nowacki, Thermoelasticity, Pergamon Press, Oxford, 1986.
[7] G.A. Maugin, The Thermomechanics of Plasticity and Fracture, Cambridge University Press, 1992.
[8] A.A. Il’yshin, Continuum Mechanics, Mosk. Gos. University, Moscow, 1990 (in Russian).
[9] I.M. Dunaev, V.I. Dunaev, On the energy condition for fracture of solids, J. Dokl. Phys. 45 (5) (2000) 213–215.

[10] I.M. Dunaev, V.I. Dunaev, in: ICF Int. Conf. Fracture at Multiple Dimensions, Moscow, 2003, p. 19.


