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Abstract

The analysis of the thermodynamic conaiits for brittle fracture is given for the twknown models of an isolated defect.
In the first model the stresses on the external surface of the solid remain the same as before and after formation of a defect. In
the second model the displacements on the external surfebe gblid at a defect formation remain the same as in the solid
without a defect. It is shown that the firsoael in the isothermal case of deformation leads to Griffith condition and the second
model leads to the other proposed energydition of fracture which, unlike the Gfith condition, containsn increment of the
entropy component of the internal energy which is not zero in a general Trasite this article: 1.M. Dunaev, V.I. Dunaey,
C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Analyse des conditions thermodynamique pour la rupture fragile. On présente une analyse des conditions thermody-
namiques pour la rupture fragile, dans le cadre des deux modeéles du défaut isolé bien connus. Dans le premier modéle, on
maintient les mémes contraintes a la surface extérieure du solide avant et aprés I'apparition du défaut. Dans le deuxieme mo-
dele, ce sont les déplacements que I'on garde constantss Bémontrons que le premier modele conduit a la condition de
Griffith dans le cas d'une déformation isothermique, targlie le deuxiéme modeéle produit une condition bien différente.
Selon cette condition, les variations de I'entropie ne sont plus nulles, contrairement a la condition de Buoiffittiter cet
article: [.M. Dunaev, V.I. Dunaev, C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Griffith [1,2] was the first to approach the theory of brittle fracture from the point of view of energy considera-

tions and he proposed an energy condition of brittle fracture
du, —y,dX =dA (1)

Here,U, = U,(,O) - U,(,l) is the change of a potential energy caused by the defect formatﬁ)nand U,(,l) are
potential energies of a solid without and with defect, respectivglyis the energy necessary for the formation
of a unit area of defect surfacg, which is equal to the specific surface energyis the change of the work of
external forces during a defect formation. It is well-known that condition (1) is inapplicable for strength assessment
at compression. In particular, for problems of material fracture under uniaxial and biaxial tension/compression of
a plate with a defect, the condition (1) leads to the temperature independent and identical in absolute value critical
stresses, contradicting experimental data for practiedilknown materials. This short-coming was not eliminated
using assumption [2,3] that defects are closing at compression, consequently the sliding friction appears on the
defect surface. However, to explain the compressivengtreexceeding (in absolute lue) the tensile strength,
in the calculations using this assumption [2,3] the value of sliding friction coefficient on defect surface has to be
accepted improbably large in comparison with experimedd#d. In numerous investigations [2,4,5] based on ther-
modynamics, a generalized energy approach to the fraetas proposed, and in particular condition (1) obtained.
However, in these investigations the authors did natesexplicitly the fundamental physical and mathematical
assumptions of their models of fracture leading to condifl. In particular, they did not precise the physical hy-
potheses and mathematical substantiations in their models of fracture on which basis the increment of the entropy
component of internal energy was assumed equal to zero.

In this Note the necessary energy conditions of fracture are formulated on the basis of thermodynamics for
thermoelastic deformation of solids (Section 2). Analyzing the conditions for the two known models of a solid with
a defect (Section 3), it is shown that one of the models leads to a Griffith type energy condition of fracture, which,
unlike condition (1), contains an incremt of an entropy component of theénhal energy which is nonzero in the
general case. This condition allows the elimination of the above mentioned short-comings of the original Griffith
theory. Another model of a solid with a defect leads to a thermodynamically incomplete (increment of the entropy
component of the internal energy is zero) condition fig,aherefore, to physically gundless and experimentally
unsupported results.

2. Necessary energy conditionsof fracture

Let us consider a linear thermodiassolid where a defect (a crack) is foing and propagating. Then, we
introduce notations for values with index@s and @ for the solid without and with a defect respectively?,

7@, 9 5O O 70 yiis avolume,S; is surface areay®, 1@, e oD 4D TD vy 5 =55+ 3,

ij iy o i ij ' vij i
whereX is the surface area of the defect. Here, indé®eand® are used foru the specific internal energy,the
specific entropys;; the components of the strain tensgr, the components of the stress tensgrthe components

of the displacement vectdr, the absolute temperature. For the thermoelastic solid we have [6]:

1 3
u= Eci'jgij + E(ono@(T — To) + 3agKoTp® + c. (T — Tp) (2)
T T —-To T —To
n = 3agKo® + c; I — ~ 30gKo® + ¢, , at <1 3)
To To 0
1 814,- 8Mj ..
&= o, o) oij = 2ueij +r08;; — 3aoKo(T — To)dij, i,j=1,2,3 4)
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wherex; are Cartesian coordinates of the solid points. In the expression (2) and beyond, the summation is per-
formed over repeating indicés j, ©® = ¢;;6;; is the first invariant of the strain tensdy; is the Kronecker delta,

ag is the linear coefficient of thermal expansian,is the specific heat at constant strginand A are Lame’s
coefficients, 2 = E/(1+ v), A =vE/[(1 4+ v)(1 — 2v)], 3Ko = E/(1 — 2v), E is the Young's modulusy is

the Poisson’s ratio. Using the integral form of the first and second laws of thermodynamics and the conservation
mechanical energy theorem [3,6—& Us write the energy conditions for formation and propagation of the defect
(crack)

dK +dU — dU* =dA +dQ (5)
. do© do®
ds —ds =/ =) dv-/ D dv (6)
Vo \Z

In expressions (5) and (6)

K=K9_k® py=u©®_y®, A=40_AD, 0= Q(O) _ Q(l), §=50 _¢@ (7)
U@ =/u(f’>dv, @ :/n(‘”dv, 7=0.1
Va Va

are the respective changes of the kinetic energy, internal energy, work of the external forces, influx of heat and
entropy, caused by defect propagation during time

U*:%u*ds:yff, S*:/r)*ds (8)
> z

are the internal energy of defect formation of a surfatand the entropy of defect formations & an element

of surface area of defeat,” > 0 is a specific internal energy, is an average specifiaternal energyp™* is the
specific entropy. The condition (5) is the thermodynaneiguirement to define cragkropagation. The entropy

of defect formation (8) could be obtained from Eq. (6). To solve applied problems, the conditions (5) and (6)
must be complemented by geometrjgahysical and mathematical model diet defect, loading conditions and

also by the condition which determines the relative position of the defect and it trajectory. In static loading and
7O =7® = 75 = const, & =0, dQ = 0 from conditions (5) and (6) considering (8) we find:

dU — yd¥ =dA (9)
ds —ds* =0 (10)

With these conditions, unlike conditiq1), the internal energy (2) includes the entropy component (3yaad
const has another, above mentiongaysical meaning. Further it will be stvn with what additional assumptions
the conditions (9) and (10) lead to the condition (1). In the case when the defect surface may be determined by only
one parameter (e.g. a half-length of a crack or large half-axis of an ellipse form defect in plain deformation) let
us rewrite condition (9) as:

dw
—a=0, W=U—-yXY—-A (11)
da

If @ =0 then there is no crack propagation. Thus the criteria of probable propagation of the crack is:
daw
— =0, a=0 (12)
da

but we do not know whether it will actually happen or not (so that 0 cannot be excluded) [7].
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3. Energy condition for fractureusing two modelsfor an isolated defect

Let us consider in detail the energy condition (12) at plane stressed (strained) state for the two known models
of an isolated defect. In modéh) the same stresses are prescribethanexternal surface of the solig before
and after formation of the defect, and stresses on the surface of the defaet equal to zero. External forces
in this model produce work on the external surfégeon displacement, caused by the formation of the defect. In
model(B), on the external surface of the solfg before and after formation ohé defect, displacements which
correspond to the applied load are fixed, but before the defect was formed. Stresses are also zero on the surface of
the defectX in model(B). The work of external forces on the external surface of the siliduring formation of
the defect is d = 0 as displacements are fixed. The integrals of tihernal energy (7) taking into consideration
(2)—(4) atT© = 7D = Ty may be written

U=UP-UP)+To(s? - 5D)

1 0) (0 1A 0 1
= 5(/01'(1)8;,')(1‘/—/cri(j)efj)dv + aoTok1 /8§j)8ij dV—/efj)S,»j dv (13)

Vo Vi Vo Vi
wherek; = E /(1 —v) is for the plane stressed state,— E /(1 — 2v) is for the plane deformation, j = 1, 2. Let

us compute the increment of the total enefgy(11). For modelA), using relations (13) and (4) &= Ty, Betti's
reciprocal theorem [6], the expression for the work of external forces, and Airy stress fuRgtion

2p(q) 92F @)
O O _ 1 (O _ (OFS(©) Dy, . (q) _ 9°F (q9) _
Oij &ij =0ij &> A—f“ij ;" —u;”)n;ds, o] = 922 0oy = > (14)
x5 oxy
So

respectively, we obtain

1 © , .0 @ 11 0.0 ©/.©0 @
WZE/(UU +0;; )(sij — & )dV+§/aij g; dV —doy; (u;” —u;”)n; ds
\41 14 So

92FO  52p ) 92FD  52p®)
8Xl axz v 8Xl 8X2
\%

0 1

HereV = Vp — V1, x =1 andyx = 1+ v for the plane stressed state and plene deformation, respectively;
are direction cosines of the external normab the solid boundary. Using [6] on the boundarfigsand Sp + ¥
expressions

N s

dF@ 9F@
F)E;‘L])(S) = 3—x1 = —/cr,izg(s) ds +Aq, F;Z)(S) = a—xz :/O’,EZi(S) ds + Bq
0
o) =oni+ oz o =0 n+oin g=01 (16)

Green'’s formula and equations of equilibrium

aa'(.O) 80'(.1)
Y —-0, —L =0, i,j=12 (17)
0x; 0x;

the expression (15), considering the formula (4), may be written
1 1
(V] My, (0 D (O] ©0) ¢, (0) (D)
W:E 7{ (crl.j +0;; )(ul —u, )njds+§7§a,.j u; njds—%aij (ui —u; )njds
So+> b So
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et | [t -oya e [ [is-apa] o

So -0 0
N S
+%</ oy ds> dyg + (/ ase) ds) dxz} —yZ, qu dx1 + B, dr2 =0 (18)
») 0 0 X
So, since far from the boundary conditions (16xisolid with and without the defect in moded) we have
00 =0D Q=00 atxr,x)eS; oL =01=0 atxr,x)ex (19)

then the last two integrals in the expression (18) are equal to zero. Therefore, the entropic component of the internal
energy (13) also is equal to zero. Then, on accouthefcondition (19) and the ergr condition (12) we finally
obtain the increment of the total energy (11) and Griffith criterion (1) in the form

1 dw  d /1
W= Efai(,p)uﬁl)"j -y =g ( f"(f)“(b"z ds — VE) =0 (20)
P

Let us compute the increment of the total energy (11) for moBgl using the conditions on the boundatiyof a
solid with and without a defect and on the boundary of the defect

w9 =u® atrxeSo, =0 =0 at(xi,x)ex (21)

nxiy nxz
In this case the work of external forces is equal to zero. Using the relations (13) and (14), Green’s formula and
Egs. (17), (4) for expression (11) we obtain

1 1
W=U-yX=g f (o (0)+6(1))( (0)—ufl))njds+E%a.@)u@njds

2 i ij i
So+X x
+ot0T0k1|: f (ufo) — ufl))é,'.,'n.,' ds + f ulgo)é,’jn.j dsi| —yx (22)
So+% )
Then, on account of conditions (21) we reduce the expressions (22) and (12) to
aw d/1 0) (1 1
o 5( fal(] ) l( )nj ds + aoToklfuf )(Si./n.,' ds—yX)=0 (23)
P P

Therefore, the model of the defeg@) leads to condition (23) in which increment of the entropy component of the
internal energy in a general casenist zero. This is the main essential difference of the proposed condition (23)
from the Griffith criterion (20).

4. Test problem
Let us consider the problem of the determinatidreritical stresses in a circular plate, radikisvith a round

shaped defect radiusunder a symmetrical loa#t in the case of a plane deformation. The solution of the problem
of elasticity theory is:

e+ 2w =0 o =o¥ =0
E c c E c c
@ _ (1 _ 1 2 @ _ (l) 1 2
Oy =0, = —— ——= ), o055 = — 24
n=or 1+v(1—2v rZ) 22 =% 1+v<1—2v+r2> (24)

0 ©

PQA-2v)r
o _ P( -

011 =09
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wherer, ¢ are the polar coordinates of the solid points, c2 are the integration constants which we determine
from the boundary conditions in modeld) and (B). For model(A), using the boundary conditions at= a,
crﬁ) =0,r=b, crﬁ) = P and the solution (24), from condition (20)at = 1, n2 = 0, X = 2 a, after integration
we obtain equal (in absolute value) critical stresses at ter’sfoand compressioR ~

pt_ |y E(1—a?/b?)
2a(1— v?2)

For model(B) using the boundary conditionsat=a, aﬁ) =0, atr =b, u(ll) = u(lo), the solution (24) and the
condition (23) we obtain similarly

vE a2 1 2
PE = —agToky + Tok)2 4+ ———— |14+ 5 ——— 25
aoToky \/(01001)—1-20(1_1)2)[ +b2(1—2v)j| (25)
The critical stresses (25) at tension and compression are different and obviously de@rehdiag. In [9], the
solution similar to (25) was obtained for a defect in the form of a crack. In [10], using condition (23), a curve
of fracture in the form of an ellipse in the space of principle streggesP, has been obtained with additional
limitations imposed upon the physical and mathematical risazfehe defect, conditions of isotropy and convexity

P{ + P§ — 2u,P1 Py + 2a0Tok1(1 — v, (P1 + P2) = 32u(1— vy /[ (84 Da.] (26)

wherea, is a half-length of a ack critical dimensiony, € (—1, 1), &= 3 — 4v, &= (3 —v)/(1 + v) for plain
deformation and plane stressed state, respectively.

5. Conclusion

The work proposes an energy conditi@®3) for the brittle fracture of sol&lon the basis of thermodynamics of
a thermoelastic deformation, considering an inoeat of the entropy component of the internal energy.
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