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Abstract

The aim of this Note is to quantify the change of characteristics of the media of an Excavated Damaged Zone (EDZ) affected
by several fractures. For this, we consider Darcy flow through matrix blocks and fractures with permeability af6fder
and 1 respectively is the size of a typical porous block,representing the relative size of the fracture érid a parameter
characterising the permeability ratio. We derive the global behavior from the limiteasd § tend to zero. The resulting
homogenized equation is of dual-porosity typedacs 2, but it is a simple-porosity model with effective coefficientsdor 2,
and there is no flow at the macroscopic level whea @ < 2. To cite thisarticle: B. Amaziane et al., C. R. Mecanique 332
(2004).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Caractérisation de I'écoulement d’un fluide monophasique en zone endommagée but de cette Note est de quantifier
les changements dans les parameétres de I'écoulement au sein d’un milieu poreux lorsque celui-ci est endommageé par I'apparition
de fissures en grand nombre. Pour cela, on considere I'écoulement d’'un fluide régi par la loi de Darcy avec une perméabilité
de I'ordre des2s? dans les matrices et d’ordre un dans le réseau de fissures. Pour décrire les diverses situations nous avons
caractérisé respectivement paré et la taille des blocs, I'épaisseur relative des fractures et le rapport des perméabilités.
On étudie alors le comportement asymptotique de ce probléme logseutendent vers zéro. On montre que le probleme
homogénéisé est un modeéle a double porosité posr2, un modéle a simple porosité avec des coefficients effectifs
lorsqued > 2 mais qu'il 'y a pas d'écoulement pour le modéle globalement équivalent aveé & 2. Pour citer cet
article: B. Amaziane et al., C. R. Mecanique 332 (2004).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

We assume a geological situation where originally the host rock was a low permeability porous rock, and under
tectonic stresses, these rocks became fissured. The resulting porous system is then made of two regions having
very different properties (see, e.g., [1,2]). The region constituted by the fissure set represents a small part of the
total volume, but it is highly permeable, whereas, on the contrary, the porous block has a very high storage fluid
capacity with a low permeability. Therefore, the large-scale description will have to incorporate the two different
flow mechanisms. For some permeability ratios and some fissure width, the large-scale description is achieved
by introducing the so-called double porosity model. It was introduced first for describing the global behavior
of fractured porous media by Barenblatt et al. [1] and it is since used in a wide range of engineering specialities
related to geohydrology, petroleum reservoir engineering, civil engineering or soil science. More recently, fractured
rock domains corresponding to the so-called Excavation Damaged Zone (EDZ) received an increasing attention in
connection with the behavior of geological isolation of radioactive waste after the drilling of the wells or shafts.

The usual double porosity model assumes that the width of the fractures containing highly permeable porous
media is of the same order as the block size. The related homogenization problem was studied in [3], and was
then revisited in the mathematical literature by many other authors (see, e.g., [4-8], and [9]). The main goal of this
Note is to describe all the different situations, according to the different type and size of fissuring in the EDZ, by
means of two parameters, the relative size of the fissdregid the permeability ratio. An example is given at the
end. In order to have explicit formulae and a better understanding of the physics, we will assume the fissure set to
be described by a thin, periodic network of intersecting plane fractures. The periodicity assumption was used in
order to get more ‘tractable’ physical models, but the situation where the fractures are randomly spaced will lead
qualitatively to similar results, as soon as the associated random field is ergodic and stationary. We assume that the
domains2 is made of a set of porous blocks callé-® with permeability of ordee2s?, wheree is the normalized
microscopic length scale of a typical porous block{@ « 1), § is the relative fracture width an@l > 0 is a
parameter characterizing the permeability ratio; these porous blocks are surrounded by a system of connected and
thin fissuresFé% with permeability of order 1. The fissure thickness is much smaller than the size of the blocks
and, therefore, the measure of the B&® = 2 \ M¢% tends to zero as — 0 ands — 0. This model is described
by the following linear parabolic equation:

D50 () du™ — div(a®’ () Vu'?®) = £ (x) (1)

wherea®? is the permeability of the mediun®®-? is the porosity of the medium, antf-? is the source density.

In this Note, in order to describe the various situations occurring in the EDZ, we study the homogenization
problem for (1) where and$ tend to zero. In the case= 2, the macroscopic model is nonlocal in time, which
corresponds to a memory phenomenon. In contrast with the usual double porosity model we obtain, as in [10],
an additional linear source term. F&r> 2, the macroscopic behavior is given back by a single-porosity model.
When 0< 6 < 2, the solution of (1) converges in a suitable topology to zero, which means that in this case there
is no flow at the macroscopic level; the flow is trapped. Similar questions, with different parameters and different
scope, were considered in [5,7] and [10]. In [10], this type of microstructure, but with a fixed relative fissure size
§ =%/? o > 0, was modeled with only one parametein [7] the simpler casé = 0 was considered.

2. Problem statement and the main result

We consider the following initial boundary value problem for the functiof: 27 — R:
D0 (x)9ut® — div(a®® (x)Vut?) = f&9(x) in 2r

ut%(,x)=0 on(0,T) x 382 (2)
ut%0,x)=0 in
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wheres2 is a bounded domain i3 with a smooth boundar§s2, T > 0 is given, and2; denotes the cylinder
27 =(0,T) x 2. LetY = (0, 1)3 be a periodic cell. We assume tH&’ is an open cube centered at the point
(3.3, 3) with length equal to - § and we reproduca(® by periodicity, obtaining a periodic open e’ in R3.

We denote by the periodic seF® = R3\ M3, which is obtained from the s&¢ =Y \ M?.
The functions:®? : R® — R and®*? :R® — R are defined by

a*d(x) = ae?s’ - 1%(?) +1. 1%(?), D0 (x) = Dy - 1‘,1,(3) +dp - 12(3) 3)

with0 < a, 8, Py, Pr < +00, wherel? 7 (%) and1? % (3) denote the characteristic periodic functions of the #6ts
andM? defined in the following wayl‘S (3) isthe penodlc function of periogy which takes the value 1 in the set
M?#3  union of the sets obtained frosV(® by translations of vectors) ¢_; kié;, wherek; € Z ande;, 1<i <3,
is the canonical basis @2, and which takes the value 0 in the g&t®, complementary iiR3 of this union. In
other words 13, (2) is the characteristic function of the stft, while 13.(£) is the characteristic function @
The functiona®® therefore takes the value 1 on the 8&t° which is of asymtotically small measure (of ord@r
while it takes small valuess2s? on the set\®-% (wheree ands take small values, as we will assume below).
Notice that the measure 6P, is calculated as follows:

|F|=1-1-6°=35-35%+83~35 4

ass — 0. Then the measure of the et is such that ling_glim._.o|F&%| =0
We make the following assumption on the source tgiifi : 2 — R:

(H1) f&% e L2(£2) such thatf&?(x) = 0 forx € M&9;
(H2) f&% Ls-converges to a functiofi € L2($2), according to Definition 2.1, below.

It is already known (see, e.g., [11]) that for anys > O there exists a unique solutiaif-® of problem (2)
belonging toC ([0, T1; H1(£2)) and that thes and$ limits are commuting [6]. We then choose to study the
asymptotic behavior of the solution$? first ase — 0 and then a8 — 0.

Due to the vanishing measure of the fissure, we should define the convergence of sequences according to the
singularity of the fissure measure. For this, inspired by [12,6,13] and [14] we define:

Definition 2.1. A sequencév®?} ¢ L?(F#9) is said toLs-converge to a function € L2(£2) if

=0

. . 2
LY L BT

Models corresponding to the various situations are given by the following convergence results:

Theorem 2.2.Let6 = 2 in (3), then for any € 10, T'[, under assumption&l1), (H2), u*® solution of (2) Ls-con-
verges ta:* solution of a global model with an additional linear source term and the fracture porosity as effective
porosity.

2 2/ady [ uf(x, t) .
Pru; — —Au* = f(x) — / dr in Q27
3 NI
(5)
u*(t,x)=0 on(0,T) x 082

u*(0,x)=0 in 2
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Theorem 2.3.1f # > 2in (3), then for anyr € 10, T'[, under assumption@1), (H2), u*® solution of (2) Ls-con-
verges ta:* solution of a simple porosity model with effective constant porosity and permeability

2 .
Pru; — éAu* = f(x) in&r

u*(t,x) =0 on(0,T) x 382 (6)
u*(0,x)=0 in 2

Theorem 2.4.1f & < 2in (3), then for anyr € 10, T'[, under assumption@1), (H2), u*® solution of (2) Ls-con-
verges td). Thus, there is no flow through the effective porous medium at the global scale.

3. Sketch of the proof of Theorem 2.2

Knowing from [6] that the limit age, §) — O does not depend on the order, Theorem 2.2 will be proved in
two main steps. On the first step fixidgve pass to the limit as — 0; we obtain then a boundary value problem
considered in the whole domaia but with coefficients depending on the paramétedn the second step we pass
to the limit ass§ — 0 and obtain, finally, the macroscopic model (5).

Stepl. Let us first fixs.

In the following, for £2¢ any subdomain of the domaif2, we will say that the the sequen¢e’} c L2(£29)
converges in the spadeé?(£29) to a functionv € L2(£2) if lim ..o |[v® — vl 2y = 0 (see, e.g., [15], p. 14, or [4],

p. 1247).

The convergence of the homogenization process of problem (2) for fixe@ whene — 0 will be given by

Theorem 3.1 (see, e.g., [4]), and for this, we consiqésr: 2 — the Laplace transform of*-? solution of Eq. (2)

and study then the corresponding initial boundary value problem:
o (0)ul® —div(a®? () Vui®) =10 (x) in 2 -
ut?(x)=0 onas

A > 0. Itis known that, for any > 0, there exists a unique solutia@"s € Hol(Q) of problem (7). The asymptotic
behavior of the functiontsi"3 ase — 0 is given by the following theorem.

Theorem 3.1.Let the conditions of Theore&2 be fulfilled. Theruj{"s solution of (7), converges in the space
L?(F&?%) to u = ul (x) solution of

MF|Dpud —divy (A°Voud) + b3ul =271 F| f(x) inL2

ui(x) =0 onos2
. (8)
Aoy U —as?AUP =0 in M
Ud(y)=1 onaM?
whereA?® = {afj} is the homogenized permeability tensor defined by
a?j = /(2,’ + Vyw;) - (2.,' + Vyw;)dy 9)

3:5
w; being the unique solution i} (F%) \ R of
—Aw; =0 in 375
(€ +Vyw;)-v=0 onaM?® (10)
y— w;i(x,y) Y-periodic
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and whereb! is a positive constant given by

bi:mM/Uf(y)dy (11)
M

Remark 1. Theorem 3.1 can be reformulated as follows. EQ{S be an extension Ozfi"S from the setF®? to

£2 which exists (see [16]). Then we have that under conditions of Theorem 2.2 the se@lfgﬁceonverges in
L?(£2) tou? solution of (8).

Step2. Now we pass to the limit astends to 0. First we study the asymptotic behaviolvioih (11) ass — 0.
Applying the ideas of [10] one can show that
b} =68y/ardy - (1+0(1), ass—0 (12)

Following now the arguments of [15] and using (4) one easily shows that the sec{uéhcenverges inL2(£2)
to a functionu3, the solution of

APpuf — SAuf +2/ar®yul =271 f(x) in Q2 (13)
ui(x)=0 onas2
Let us show now thaxf\"s, solution of (7),Ls-converge ta:}, solution of (13). In fact, we have
1 ,8 2 ~e,8 52 ) 2
|Fed| ul® =, HLZ(FM) <C([las” —ug a2 T o5, — u; HLZ(_Q)) (14)

whereﬁf\"s is the extension mﬁi"S from the setF® to 2 defined in Remark 1 and is a constant independent

of ¢, 8. Now the Ls-convergence o&f\"s to u} easy follows from Remark 1 and the strong convergendéii2)
of the sequencgd} to u?.
Therefore, the following result is proved.

Theorem 3.2.Let § = 2. Then under assumptiorgsll), (H2) and (3), ui"s solution of (7) Ls-converges ta:}
solution of (13).

Now we are in position to complete the proof of Theorem 2.2. Using the arguments similar to ones from [17],
we prove that the inverse Laplace transformudf denoted:*, is solution of (5) and we are in position to deduce
the statement of Theorem 2.2 from Theorem 3.2 . This completes the proof of Theorem 2.2.

4. Sketch of the proofs of Theorems 2.3 and 2.4

The proofs of Theorems 2.2 and 2.3 are exactly the same, excepﬁy]ﬁattends to 0 whel > 2 ands — O.
The idea of the proof of Theorem 2.4 is the following. The teri®s tends to+oo whené < 2 ands — 0.

Since the energy of the system is fin'mé’,‘3 solution of (7) should.s-converge to 0. Then the proof of Theorem 2.4
may be completed in a similar way as the proof of Theorem 2.2.
5. Conclusion

A typical example of the situation described by the above theory is the following. We start with an initially non-
damaged porous media, with no source or sink inside the considered zone, with effective permeabilitysdf order
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i.e., permeability and porosity of ordef = ¢12 and¢™ = ¢8, respectively. Assume, the damaging of this zone
corresponds to a net of 10 connected fissures per square metet/(0) each of which has thickness of order
1/100= £2, with effective permeability of ordeets ¢ = ¢) and with a source term of flow inside the fissure net

of ordere. The above theorems applied to this situation give three different behaviors, according to the order of
the fissure net porosity’. If the fissure porosity is of order® (6 = 2.5), then, according to Theorem 2.3, there

will be some flow through the damaged zone, which then behaves effectively like a porous media with effective
permeability of order @L), exactly= (2/3)/¢ ¢, and with source flow of density. On the other hand, if the fissure
porosity is of order® (9 = 1.5), then, according to Theorem 2.4, there will be no flow through the damaged zone,
which then behaves effectively like the non-damaged porous media. In betvee?)(according to Theorem 2.2,

the damaged zone will then behave effectively according to a simplified ‘double porosity’ model as in (5).
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