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Abstract

The flow of a micropolar fluid through a wavy constricted channel which depends on a small parareetas considered.
The asymptotic solution is built and justified thanks to a study of the boundary layers terms. The Stokes and Navier—Stokes
problems set in a tube structure were previously considered. The method of partial asymptotic decomposition of domain
(MAPPD) is also applied and justified for the micropolar flow problem. This method reduces the initial problem to the problem
set in the boundary layers domaira cite thisarticle: D. Dupuy et al., C. R. Mecanique 332 (2004).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Analyse asymptotique des fluides micropolairesCet article porte sur I'étude de I'écoulement d'un fluide micropolaire a
l'intérieur d'un tube, périodiqguement ondulé, de périedde largeur d’ordre et de longueur d'ordre 1. En utilisant une étude
similaire a celle effectuée pour des écoulements de Stokes et de Navier—Stokes dans une structure tubulaire, on considére une
analyse asymptotique de ce probleme. Une solution asymptotique est construite et les termes de couche limite qui apparaissent
au voisinage des extrémités sont étudiés. Apres justification de cette approche, la méthode de décomposition asymptotique
partielle du domaine est mise en place pour ce probl&me. citer cet article: D. Dupuy et al., C. R. Mecanique 332 (2004).
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0. Introduction

The classical Navier—Stokes theory is not too appropriate for the description of a class of fluids which exhibit
certain microscopic effects arising from the local structure and micro-motions of the fluid elements. A new theory
was introduced by Eringen in [1]. A subclass of these fluids is the micropolar fluids. Animal blood, liquid crystals
and certain polymeric fluids are a few examples of fluids which may be represented by the mathematical model of
micropolar fluids, introduced by Eringen in [2]. From the physical point of view, micropolar fluids are characterized
by the following property: fluid points contained in a small volume element, in addition to the usual rigid motion,
can rotate about the centroid of the volume element in an average sense, the rotation being described by a skew-
symmetric gyration tensod.

Due to their importance in industrial and engineering applications, micropolar fluids were studied in several
papers such as: [3-8].

This paper deals with the study of steady incompressible flow of a micropolar fluid (animal blood) through a
periodically constricted tube with a period and a thickness of osrd¥¥e consider an asymptotic expansion of
the solution and we prove its convergence. Then the method of partial asymptotic decomposition of domain (see
[9-11]) is applied for the considered problem. This method was previously used for Stokes and Navier—Stokes
flows in several papers such as: [12-15].

In Section 1, we describe the physical problem, we prove the existence and the uniqueness of the solution and
we obtaina priori estimates.

In Section 2, we introduce an asymptotic expansion of the solution. We study the macroscopic problem for the
first approximatiortv®, »°, p1). Then, in Section 3, we introduce the boundary layers and in Section 4 we estimate
the error between the microscopic solution and the macroscopic one. Some details concerning the approximations
of higher order are given in Section 5.

The last section deals with the partial asymptotic decomposition of domain applied to our problem. By
introducing several functions, we define an asymptotic solution and we establish some estimates. Then, by writing
the initial variational problem on a more regular space, we obtain the solution of the partially decomposed problem
and we prove that it represents a good approximation for the solution of the considered problem.

1. The physical problem: existence and uniqueness results

We consider a steady-periodic incompressible, two-dimensional flow of a micropolar fluid in a periodically
constricted tub&*, with e = 2 (with n € N*) given by

G® = {(x1, x2) eR% 0<x;<land— h; (x1) <x2 < hf(x1)}

with hsi:R — (0, ¢/2) two e-periodic functions of clas€2(R) and such that there exists > O: for all 7 € R,
hE(t) > em. For the boundaries, we introduce the notatidi§ = {(x1, £h¥(x1)) € R% 0 < x1 < 1} and
Xe(i)=G N{xyr=i} (fori =0, 1).
We introduce a new macroscopic variabjes= 7, we defineh® (y1) = %h;t(syl) and we denote by ={y €
RZ: 0< y; <land—h~(y1) < y2 < ht(y1)} the cellular domain.
The steady, incompressibleperiodic inx1, 2-D flow of a micropolar fluid with non homogeneous Dirichlet
boundary conditions for the velocity, is described by the following coupled system:
(V& - VIV — (u+ x)AVE + Vp? — xcurl 0 =f  in G*
JVE-Vof —yAo® 4+ 2xw® — xcurlve =g in G°
divv* =0 inG* 1)
ve=0 onl* vi=¢29, onX®() fori=0,1
o®*=0 onaG*
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with u, x, y, j positive given constant$, g andg, given functions and?®, «°, p* the unknowns: the velocity,
the microrotation (which is a scalar function in the 2-D case) and the pressure of the fluid, respectively.

Let Hdliv(Gs) be the space of divergence free vector valued functions fishiG¢)2 equal zero on the
boundariesl"si and V (G?%) the subspace OH(}N(GS) of functions vanishing on the whole boundary. We denote
by W(Y) the subspace of functions if1(G¢?)? with vanishing divergence, equal zero on the boundaries
I't ={(y1, £h*(y1)) e R%; 0 < y1 < 1} and 1-periodic iry;.

Proposition 1.1. For & > 0 sufficiently small, forff € H=%(G*)?, ¢ € H(G®) such that||f]| ;-1.5)2 and
gl z-1(G+) are bounded by a constant which does not depend,and ¢, (x) = @(3) with ¢ € W(Y), prob-

lem(1) admits a unique solutiov®, p¢, w®) in Hg, (G®) x L%(G®)/R x H}(G®).

2. Asymptotic expansion

In the sequel, we suppose that (f1(x1), 0)' (where f1 belongs toL2(0, 1)) andg is a constant. We seek the
formal asymptotic expansion for the solution of problem (1) in the form:

+00 +00 +00
V) =62y Vi), pfa =) éply) and of(x) =) co'(x1,y)
=0 =0 =0

with v/, ! andp! 1-periodic functions iry;.
Introducing these expansions in (1), we obtath= p®(x1) and for the first approximatiofv®, p°, p1, »9), the
following problems:

—(+ XAV 4 Vy pt =f(x1) — ZTI):el in (0,1) x Y
divyv®=0 in(0,1) x Y 2)
vW=0 on(0,1) x I'*, vPandp?! 1-periodiciny;

Jy (V0), (x1, ) dy = co

and
—)/Aya)o =g in0,1)xY

=0 on(,1) x I't, % 1-periodiciny;

3)
where(-)1 represents the first component. The condition {&)a consequence of the compatibility condition for
the Stokes problem satisfied by the following tefwh, p2) of the asymptotic expansion, henggwill be a constant
which does not depend on the varialbie

Remark 1. The constantg is not arbitrary but it will be defined later thanks to the condition imposed in order to
construct boundary layers which decay exponentially to zero at infinity.

We first prove the following result:
Theorem 2.1.For any ¢g € R, there existsp® € L2(0, 1)/R such that problen{4) admits an unique solution
O, p1) in L?0,1; W(Y)) x L%, 1; L3(Y)/R). Moreover, problem(3) has also a unique solution? in
L2(0,1; HY(Y)).

Remark 2. In the proof of this theorem, we ge? =vO(y), pt = p1(y) andw?® = °(y).
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To compensate the trace vff(f) andwo(g) on X¢(i) (fori =0, 1), we introduce boundary layers terms. For
this purpose, we define two semi-infinite wavy stripg; = U (Y +le1)] andGy = [U (Y —le1)] where
for any setA, A is the closure and’ is the set of the |nter|or points. Denote bﬁt = {(yl, +h*(y1)) € R%;
y1 € (0, +00)}, ST = {(y1, £h*(y1) € R?; y1 € (—00,0)} and X; = G; N {y1 =0} (for i = 0, 1) the boundaries
of these domains.

3. The boundary layers

Fori =0, 1, we consider the exponentially decaying solution of problem:
: —(u+ x)AVY, +VpL, =0, divvd, =0 inG;
0
v.=0 ons*, V). +vWV=¢ onx

(4)

Suppose thatg = [ - (0)(¢)1(O y2) dy2, then problem (4) has a unique soluti(ovngl, p,}ll) € Hle(G») X
IOC(G )/R with Vbl decreasing exponentially to zero at infinity, in the sense that: faR all 0, the following
estimate holdsnvb,l I 1(Gin1yy> kY2 < 0 €X—AR) whereo anda are positive constants (see, e.g., [16]).
Fori=0,1, Ietw,?“ € H(G;) be the unique solution of the problem:

—yAa)gl =0 inG;
), =0 onSF, oY) +e®=0 onZx;

This solution satisfies the estimate: for &I 0, ||a)gll. I 1 Ginfy)>RY < 0 EXP(—AR) whereo and are positive
constants.

4. Convergence of the asymptotic expansion

We define , forx € G¢, the functions:

O _ 2],,0 x 1

W0 =2 (5) +o(5) + (5 - 7o) |
P(l)(x)=P0(X1)+8{p< >+pb,0< >+pl}11<§——e1)}
Oy — g2l 0 FY w0 (K)o (X 1

o (x)=¢ {a) (8)+a)b10<8)+wb11(8 891)}

The functionv© belongs taH}, (G*) but does not verify the second condition of{&Zhdw® does not vanish on
X¢(i) fori = 0, 1. However, they can be modified by adding a funcihe H}, (G*)? such thav® —D* = £2¢,
ondG* and afunctiorzﬁg € H(G?) suchthaw©@ — CS 0 0ndG*. Moreover, these functions satisfy the estimates
DNl g1cgeyz < & 26 exp(—A/€) and||C? |l y1gey < € 20 exp(—A /) whereo anda are two positive constants which
do not depend on.

Denote byvé =v(©@ — Df andwf = 0@ — C*.

Theorem 4.1.For f1 € L(0, 1), the following estimates hald
||V — Ve ||H1(Gs)2 Ce 5/2
lwf — @t |l 1oy < Ce™?

whereC is a positive constant which does not depend on
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5. The higher order approximations

The higher order approximations can be written in the following general fornk o2, we seek the solution
(k=1 p*, k1) of problems

. L. . 0 .
(4 0ANV TV ph = (V7L pl oY) (< k), divyvil= _3_(ka2)1 in0,1) xY
x1
vi=1=0 on(0,1) x r'*, v 1andp* 1-periodicinys, /(v"fl)l(xl, y)dy =cr_1
Y
and

—y Ay t=g(Vi L o) i<k inY x(0,1)
of"1=0 onI'* x(0,1), k1 1-periodiciny;

wheref andg are some functions.

Remark 3. It can be proved recursively that = r%(y) + h&(x1) for all k > 2. Then we obtain diw*~1 = 0 and
the last condition for the velocity is satisfied.

6. The method of asymptotic partial decomposition of domain

This method for variational problems was introduced in [11]. In this section, we shall apply the ideas of this
paper for the variational problem obtained from (1):

Find (uf, »®) € V(G*) x H3(G*) such that

(M+X)/Vu£.Vz+/(u8'V)u€z+ez{/(<pe . V)u£z+/(u8~V)<p€z} — X/curl oz
Gé‘ GS GS GS

GS

=/f-2—84/(¢g 'V)¢gz+82(H+X)/V‘Pe -Vz
GS GS GS

(5)
y/Va)S-V,o+j/u£-Va)g,o+j£2/(08-Va)s,o+2x/a)8,0—xfcurlu£p
G* G* G* G* G*
=/gp+82x/0ur|¢8p
G* G*

forallze V(G¢) and for allp € H}(G®)

We introduce another parameter K ¢[|In ¢|], with some finiteK € N*.
Let V£ (G*) and Ho:5(G?) be the spaces

Vi (G®) = {u € V(G®): u(x) =8ZC|:V0(§) —q;s(x)], ceR, if x1 € (5, 1—3)}
HYE(G) = {g € H3(G®): g(@:a%d’(%), ceR, ifxe (5,1—5)}

The partially decomposed solutigw, »f)) is defined by, = uf; + e, where(uf, @) is the unique solution
of the following variational problem:
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Find (U, f) € V3i(G®) x Hyi(G®) such that

(M+X)/Vu§,.Vz+/(ufl«V)u§,z+ez{/(q)g«V)uflz+/(ufl«V)q)€z} —x/curl -z
Gé‘ GS

GS GS Gé‘

=/f'2—84/(¢5'V)¢52+82(u+x)/v<05‘2
GS GS GS

(6)
y/Va)jl-V,o+j/u§-Vw§p+j£2/(o8-Vw§p+2x/w§p—xfcurlujp
GS GS Gé‘ Gé‘ Gé‘
=/gp+82x/0urlwgp
Ge Ge
forall ze V3,5 (G¢) and forallp € H}:5(GF)

Theorem 6.1.1f (u®, ®) is the solution of problertb) and (v§, o) the partially decomposed solution defined by
problem(6), then, for sufficiently smad:

Ve = VE I a(geye < Ce™/2
lwf = fll g1 (gey < Ce™?

wherev® = U® + ¢, andC is a positive constant independentof

Acknowledgements

This research was supported by the EURROMMAT project, contract No. ICA1-CT-2000-70022.

References

[1] A.C. Eringen, Simple Microfluids, Int. J. Engrg. Sci. 2 (1964) 205-217.
[2] A.C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966) 1-18.
[3] G.P. Galdi, S. Rionero, A note on the existence and uniqueness of solutions of micropolar fluid equations, Int. J. Engrg. Sci. 14 (1977)
105-108.
[4] M. Padula, R. Russo, A uniqueness theorem for micropolar fluid motions in unbounded regions, U.M.1. 5 (1976) 660—666.
[5] R. Stavre, A distributed control problem for micropolar fluids, Rev. Roum. Math. Pures Appl. 45 (2) (2000) 353-358.
[6] R. Stavre, Optimization and numerical approximation for micropolar fluids, Numer. Funct. Anal. Optim. 24 (3&4) (2003) 223-241.
[7] R. Stavre, The control of the pressure for a micropolar fluids, Z. Angew. Math. Phys. (ZAMP) 53 (6) (2002) 912-922.
[8] R. Stavre, Optimal control of nonstationary, three dimensional micropolar flows, in: V. Barbu, I. Lasiecka, D. Tiba, C. Varsan (Eds.),
Analysis and Optimization of Differential Systems, Kluwer Academic, Boston, 2003, pp. 399—-409.
[9] G.P. Panasenko, Method of asymptotic partial decomposition of domain, Math. Mod. Meth. Appl. Sci. 8 (1) (1998) 139-156.
[10] G.P. Panasenko, Method of asymptotic partial decomposition of rod structures, Internat. J. Comput. 8 (1) (1998) 139-156.
[11] G.P. Panasenko, Asymptotic partial decomposition of variational problems, C. R. Acad. Sci. Paris, Ser. lIb 327 (1999) 1185-1190.
[12] G.P. Panasenko, Asymptotic expansion of the solution of Navier—Stokes equation in tube structure and partial asymptotic decomposition
of domain, Appl. Anal. 76 (2000) 363-381.
[13] G.P. Panasenko, Asymptotic expansion of the solution of Navier—Stokes equation in a tube structure, C. R. Acad. Sci. Paris, Ser. lIb 326
(1998) 867-872.
[14] G.P. Panasenko, Partial asymptotic decomposition of domain: Navier—Stokes equation in tube structure, C. R. Acad. Sci. Paris, Ser. lIb 326
(1998) 893-898.
[15] F. Blanc, O. Gipouloux, G.P. Panasenko, A.M. Zine, Asymptotic analysis and partial asymptotic decomposition of domain for Stokes
equation in tube structure, Math. Mod. Meth. Appl. Sci. 9 (9) (1999) 1351-1378.
[16] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier—Stokes Equations, 1: Linearized Steady Problems: Springer, 1994.



