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Abstract

We consider a two-dimensional boundary value problem for the Helmholtz equation with Neumann boundary cond
a set of arcs. This set is obtained from a closed curve by cutting out small holes situated closely each to other an
locally periodic structure. We construct asymptotics of scattering frequencies (poles of analytic continuation of solutio
small imaginary parts and show that these scattering frequencies imply resonances.To cite this article: R.R. Gadyl’shin, C. R.
Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur les résonances dans un problème d’homogénéisation. On considère un problème aux limites bidimensionnel p
l’équation de Helmholtz avec des conditions de Neumann sur un ensemble d’arcs. Cet ensemble s’obtient à partir d’u
fermée en supprimant des petites parties très proches les unes des autres et disposées de façon périodique. Nous
comportement asymptotique des fréquences de diffusion (pôles des prolongements analytiques des solutions) avec
partie imaginaire et nous montrons qu’elles impliquent l’existence des résonances.Pour citer cet article : R.R. Gadyl’shin,
C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

It is known that the scattering ofH -polarized electromagnetic field with an ideally conducting cylindr
surface the cross-section of which is the curveΓδ , and vibrations of a membrane which is not fixed on the
Γδ , are described by the solution of the following boundary value problem inΩδ = R

2 \ �Γδ:(
� + k2)uδ = f, x ∈ Ωδ,

∂uδ

∂ν
= 0, x ∈ Γδ,

∂uδ

∂r
− ikuδ = o

(
r−1/2), r → ∞ (1)

wherex = (x1, x2), r = |x|, ν is the normal toΓδ, k is a positive number. Hereinafter we assume that
functionf belongs toL2(R

2) and has bounded support,Γ0 ∈ C∞ is a boundary of a bounded simply-connec
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Fig. 1. The perturbed problem.

domainΩ , and for δ = ε > 0 the curvesΓε is obtained fromΓ0 by cutting out a great number of openin
of small diameter located closely to each other. Namely (see Fig. 1), letω be a unit circle with center at th
origin. Suppose thatγ0 = ∂ω, N 
 1 is an integer number,ε = 2N−1, γε = {(r, θ): r = 1, ε(a(ε) + mπ) < θ <

ε(π(m + 1) − a(ε)), m = 1, . . . ,N}, whereθ is a polar angle andP is a diffeomorphismR
2 into R

2. We denote
Ω =P(ω), Γδ =P(γδ). Forδ = ε we will call the problem (1) the perturbed problem. SinceΩ0 = Ω ∪ (R2 \ Ω),
it follows that forδ = 0 the problem (1) decomposes into two Neumann problems, inΩ and inR

2 \ �Ω . We will
call them the limit internal and the limit external problems, respectively. In what follows we assume that:

a(ε) = exp

(
− 1

εA(ε)

)
, A(ε) > 0, lim

ε→0
A(ε) = 0, ε → 0 (2)

For this case it is known [1] (see also [2]) that ifλ = k2 is not the eigenvalue of the limit internal problem th
a solution of the perturbed problem converges to solutions of the limit problems inΩ andR

2 \ Ω . Assume that
k0 > 0 andλ0 = k2

0 is an eigenvalue of the Neumann problem for the operator−� in Ω . In [3] one can find that the
analytic continuation (with respect tok) of the solution to a boundary value problem (1) has a poleτ ε with small
imaginary part (a scattering frequency), converging tok0 asε → 0. This pole lies in the lower complex half-plan
Imk < 0, and the residue of the analytic continuation of the solution is a solution of the boundary value pro

(
� + (τ ε)2)ψε = 0, x ∈ Ωε,

∂ψε

∂ν
= 0, x ∈ Γε (3)

Let us emphasize that for fixedε the functionψε increases exponentially asr → ∞. At the same time, it being
solution to the homogeneous boundary value problem (3), we will call it a quasi-eigenfunction. Letλ0 = k2

0 > 0
be a simple eigenvalue of the limit problem, andψ0 be the associated eigenfunction normalized inL2(Ω). For this
case in [3] one can find that fork, close tok0, solutions of the problem (1) and their analytic continuation mee
representation

uε(x, k) = ψε(x)

k2 − (τ ε)2

∫

R2

ψε(y) f (y)dy + ũε(x, k) (4)

ψε →
ε→0

ψ0 in H 1(Ω), ψε →
ε→0

0, ũε →
ε→0

u in H 1
loc

(
R

2 \ �Ω )
, ‖ũε‖H1(Ω) � C‖f ‖L2(R

2) (5)

whereu(x; k) is a solution (and its analytic continuation) of the boundary value problem

(
� + k2)u = f, x ∈ R

2 \ �Ω,
∂u

∂ν
= 0, x ∈ Γ0,

∂u

∂r
− iku = o

(
r−1/2), r → ∞ (6)

From (4) it follows that for the real frequenciesk the first term in the right-hand side causes most affect in
case

k = k(ε) = Reτ ε + O
(
Imτ ε

)
(7)

The main goal of this paper is to construct the leading terms of the asymptotics for Imτ ε andψε in R
2 \ �Ω

allowing to employ formula (4) to establish the resonance nature of the first term in this formula for th
frequencies (7).
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The leading terms of the asymptotics for the poleτ ε and associated quasi-eigenfunctionψε outside a
neighborhood ofΓ0 are constructed in the form

τ ε = τ0
(
A(ε)

) + · · · , τ0 →
A→0

k0 (8)

ψε(x) = Ψ+
0

(
x;A(ε)

) + · · · , x ∈ Ω, Ψ+
0 →

A→0
ψ0 (9)

ψε(x) = A(ε)Ψ−
0

(
x; τ ε;A(ε)

) + · · · , x ∈ R
2 \ �Ω (10)

whereΨ−
0 (x; k;A) is a solution (and its analytic continuation) of the equation and radiation condition

(
� + k2)Ψ−

0 = 0, x ∈ R
2 \ �Ω,

∂Ψ−
0

∂r
− ikΨ−

0 = o
(
r−1/2), r → ∞ (11)

DenoteΛ0(A) = τ2
0 (A). Substituting (8), (9) in (3), we obtain the following equation forΨ+

0 :

(� +Λ0)Ψ
+
0 = 0, x ∈ Ω (12)

In a small neighborhood ofΓ0 (moreover, outside smaller neighborhood of the openings) the asymptot
ψε are constructed in another form, employing the method of matching asymptotic expansions [4–6]. I
to do so, we introduce local coordinates(s, t) in a neighborhood ofΓ0. Here t is the distance from the poin
to Γ0 measured in the direction of the internal normal, containing this point, ands is an arc length of the
curveΓ0. SinceΓ0 = P(γ0), it is obvious that the angleθ parameterized the curveγ0, can be expressed bys:
θ = θ(s), θ ′(s) > 0, θ(0) = 0. We denote

φ+
0 = Ψ +

0

∣∣
Γ0

, φ+
1 = ∂Ψ+

0

∂ν

∣∣∣∣
Γ0

, φ−
0 = Ψ−

0

∣∣
Γ0,k=τ0

, φ−
1 = ∂Ψ−

0

∂ν

∣∣∣∣
Γ0,k=τ0

(13)

ξ = (ξ1, ξ2) = (θ(s)ε−1, tθ ′(s)ε−1). Hereafter we considerν as an outer normal toΩ . By the matching condition
of the series (9), (10) with new series in theξ variables in a neighborhood ofΓ0 we deduce that these series ha
the form

ψε(x) = V ±
0 (ξ; s;A)+ εV ±

1 (ξ; s;A)+ · · · , ±ξ2 > 0 (14)

V +
0 (ξ; s;A) ∼ φ+

0 (s;A), V +
1 (ξ; s;A) ∼ −φ+

1 (s;A)

θ ′(s)
ξ2, ξ2 → +∞

V −
0 (ξ; s;A) ∼ Aφ−

0 (s;A), V −
1 (ξ; s;A) ∼ −A

φ−
1 (s;A)

θ ′(s)
ξ2, ξ2 → −∞

(15)

Heres is a ‘slow’ variable. All the openings expressed inξ being exponentially small, we will introduce anoth
expansion at each opening. Therefore, the coefficients of the series (14) should obey the homogeneous
condition

∂V ±
j

∂ξ2
= 0, ξ2 = 0, ξ1 �= πm, m ∈ Z (16)

Substituting (14) and (8) in (3) and passing toξ , we obtain the equation forV ±
j and, for instance:

�ξV
±
j = 0, ±ξ2 > 0 (17)

for j = 0. It is clear that the functions

V +
0 (ξ; s;A) ≡ φ+

0 (s;A), V −
0 (ξ; s;A) ≡ Aφ−

0 (s;A) (18)
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Fig. 2. The half-strip,Π . Fig. 3. The boundary value problem.

satisfy (17) and have the asymptotics (15). Keeping in mind (18) we conclude that the equations forV ±
1 have the

form (17) wherej = 1. DenoteX(ξ) = Re lnsinz + ln2, wherez = ξ1 + iξ2 is a complex variable. By definitio
the functionX is harmonic in a half-stripΠ = {ξ : −π/2< ξ1 < π/2, ξ2 > 0} (see Fig. 2), can be continued ov
the periodπ on the half-planeξ2 > 0 and satisfies the condition

∂X

∂ξ2
= 0, ξ2 = 0, ξ1 �= πm (19)

Let us extend this function on the semi-planeξ2 < 0 in a even way and keep the same notationX for this extension
As a result, we conclude that the functionX has the asymptotics

X(ξ) = ±ξ2 + O
(
exp{∓2ξ2}

)
, ξ2 → ±∞, X(ξ) = lnρ + ln2+ O

(
ρ2), ρ = |ξ | → 0 (20)

Using (19) and (20), we obtain that the functions

V +
1 (ξ; s;A) = −φ+

1 (s;A)

θ ′(s)
X(ξ), V −

1 (ξ; s;A) = A
φ−

1 (s;A)

θ ′(s)
X(ξ) (21)

are the solutions of Eqs. (17) satisfying the boundary condition (16) and having the asymptotics (15).
The coefficients ofV ±

j have the jump on the openings, that is why in a neighborhood of them-th opening the
asymptotics of the quasi-eigenfunctionψε is sought as a new series whose coefficients depend on the var
ζ (m) = (ζ

(m)
1 , ζ2) = ((ξ1 − πm)a−1, ξ2a

−1), wherea(ε) is defined by formula (2). Rewriting the asymptotics
the series (14) as(ξ1 − πm,ξ2) → 0 in the variablesζ (m) and according to the method of matching asympt
expansions, by (18), (20) and (21) we obtain that in the neighborhood of them-th opening the asymptotics of th
functionψε has the form

ψε(x) = W
(m)
0

(
ζ (m); s;A) + εW

(m)
1

(
ζ (m); s;A) + · · · (22)

whereW(m)
j satisfies the asymptotics as|ζ (m)| → ∞

W0(ζ ; s;A)∼ φ+
0 (s;A)+ A−1φ

+
1 (s;A)

θ ′ , W1(ζ ; s;A)∼ −φ+
1 (s;A)

θ ′
(
ln |ζ | + ln2

)
, ζ2 > 0

W0(ζ ; s;A)∼ Aφ−
0 (s;A) − φ−

1 (s;A)

θ ′ , W1(ζ ; s;A)∼ A
φ−

1 (s;A)

θ ′
(
ln |ζ | + ln2

)
, ζ2 < 0

(23)

Hereinafter for the sake of brevity we omit the indexesm of W(m)
j andζ (m). Substituting (22) and (8) in (3) an

passing toζ , we obtain the boundary value problems forWj , and, in particular:

�ζW0 = 0, ζ ∈ R
2 \ �Γ 0,

∂W0

∂ζ2
= 0, ζ ∈ Γ 0 (24)

whereΓ 0 is an axisOζ1 without the segment[−1,1] (see Fig. 3). Clearly, under the condition

φ+
0 (s;A)+ (

Aθ ′(s)
)−1

φ+
1 (s;A) = Aφ−

0 (s;A)− (
θ ′(s)

)−1
φ−

1 (s;A) (25)
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the solution to the boundary value problem (24), having the asymptotics (23), has the form

W0(ζ ; s;A)≡ φ+
0 (s;A)+ φ+

1 (s;A)

Aθ ′(s)
(26)

and it is independent ofζ . By (26) the boundary value problem forW1 is

�ζW1 = 0, ζ ∈ R
2 \ �Γ 0,

∂W1

∂ζ2
= 0, ζ ∈ Γ 0 (27)

DenoteY (ζ ) = Re ln(w + √
w2 − 1), wherew = ζ1 + iζ2 is a complex variable. It is easily checked that

harmonic inR
2 \ �Γ 0 functionY ∈ H 1

loc(R
2 \ �Γ 0) ∩C∞(R2 \ �Γ 0) satisfies the boundary condition

∂Y

∂ζ2
= 0, ζ ∈ Γ 0 (28)

and has the following asymptotic at infinity:

Y = ±(
ln |ζ | + ln2

) + O
(|ζ |−2), ±ζ2 > 0 (29)

By (28), (29) the function

W1(ζ ; s;A)= −φ+
1 (s;A)

θ ′(s)
Y (ζ )

is a solution to the boundary value problem (27) and meets the asymptotics (23) if

φ+
1 (s;A)

θ ′ = A
φ−

1 (s;A)

θ ′ (30)

From (30), (25) and (13) for Eqs. (11), (12) we obtain the boundary conditions of the conjugation type:

∂

∂ν

(
Ψ+

0 (x;A)+ AΨ−
0

(
x; τ0(A);A)) + Aθ ′(s)

(
Ψ+

0 (x;A)− AΨ−
0

(
x; τ0(A);A)) = 0

∂

∂ν

(
Ψ+

0 (x;A)− AΨ−
0

(
x; τ0(A);A)) = 0, x ∈ Γ0

(31)

From the solvability conditions of (11) and (12), the boundary conditions (31) and the conditionsτ0 → k0 and
Ψ+

0 → ψ0 asA → 0 by (8) and (9) we determineτ0(A), Ψ±
0 and, in particular, we get that

τ0(A) = k0 +Aτ0,1 + A2τ0,2 + O
(
A3), Ψ−

0 (x; k;A) →
A→0

ψ−
0 (x; k) (32)

whereψ−
0 (x; k) is a solution of the boundary value problem

(
� + k2)ψ−

0 = 0, x ∈ R
2 \ �Ω,

∂ψ−
0

∂ν
= −θ ′ψ0

2
, x ∈ Γ0,

∂ψ−
0

∂r
− ikψ−

0 = o
(
r−1/2), r → ∞ (33)

if k > 0 and its analytic continuation in the complex plane with the cut along the imaginary axis,

τ0,1 = 1

4k0

∫
Γ0

ψ2
0

(
x(s)

)
dθ(s) > 0, Im τ0,2 = −σ

2
< 0, σ = lim

R→∞

∫
|x|=R

∣∣ψ−
0 (x; k0)

∣∣2 ds > 0 (34)

Thus from (8)–(10) and (32) it follows that the pole of the analytic continuation and the associated
eigenfunction have the asymptotics

τ ε ∼ k0 + Aτ0,1 +A2τ0,2, ψε(x) ∼ ψ0(x), x ∈ Ω, ψε(x) ∼ Aψ−
0 (x; k0), x ∈ R

2 \ �Ω (35)

whereτ0,j is defined by (34),ψ0 is a normalized inL2(Ω) eigenfunction of the Neumann problem for−� in Ω ,
associated with the eigenvalueλ0 = k2

0 > 0, andψ−
0 is the solution of (33).
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3. Resonances of solutions to problem (1)

Let t be an arbitrary real number. From (7), (35), (34) it follows that the peak frequencies have the form

k(ε) = k0 + A(ε)τ0,1 + A2(ε)t + o
(
A2(ε)

)
(36)

DenoteT (t) = 2k0(t − τ0,2). Suppose that suppf ⊂ Ω (the radiation problem). Then substituting (36) in (
using (34), (35) and (5) we obtain that for realk satisfying (36) the leading terms of the asymptotics of the solu
to the boundary value problem (1) have the form

uε(x; k) ∼ ψ0(x)

A2(ε)T (t)

∫
Ω

ψ0f dy, x ∈ Ω, uε(x; k)∼ ψ−
0 (x; k0)

A(ε)T (t)

∫
Ω

ψ0f dy, x ∈ R
2 \ �Ω (37)

Let suppf ⊂ R
2 \ �Ω (the scattering problem) andu(x; k) be a solution of the boundary value problem (6). Th

from the same formulae and due to (6) and (33) it follows that

uε(x; k) ∼ − ψ0(x)

2A(ε)T (t)

∫
Γ0

ψ0
(
x(s)

)
u
(
x(s); k0

)
dθ(s), x ∈ Ω

uε(x, k) ∼ −ψ−
0 (x; k0)

2T (t)

∫
Γ0

ψ0
(
x(s)

)
u
(
x(s); k0

)
dθ(s)+ u(x; k0), x ∈ R

2 \ �Ω

From (37) it follows that in the case of the radiation problem the solution increases unboundedly inR
2 on the

peak frequencies. In the case of the scattering problem on the peak frequencies the solution increases iΩ only,
while in R

2 \ �Ω it differs from the solution of the limit external problem (6) up to O(1). Exactly this phenomeno
was discovered by Rayleigh for the classic acoustic resonator with one opening in [7].
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