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Abstract By homogenization theory, one can predict the vibrations of long repetitive structures in the
low frequency range. Beyond this range, many modes have a modulated shape. Based on
a multiple scale analysis, a continuum model is presented, that is able to account for this
class of modes. This model involves a real coefficient that can be computed from the finite
element resolution of problems defined on a few basic cells. An application in 2D elasticity
is presented. To cite this article: E.M. Daya et al., C. R. Mecanique 330 (2002) 333–338.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

computational solid mechanics / solids and structures

Modèle continu pour les modes de vibrations modulés des longues
structures répétitives

Résumé Grâce à la théorie de l’homogénéisation, on peut prédire les basses fréquences de vibrations
des structures longues et répétitives. Pour des fréquences moyennes, beaucoup de modes
ont une forme modulée. Nous présentons ici un modèle continu qui permet de prendre en
compte cette classe de modes, grâce à la méthode des échelles multiples. Ce modèle dépend
d’un paramètre réel qu’on peut calculer en résolvant par éléments finis des problèmes
définis sur quelques cellules de base. Une application est présentée dans le cas de l’élasticité
2D. Pour citer cet article : E.M. Daya et al., C. R. Mecanique 330 (2002) 333–338.  2002
Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

mécanique des solides numérique / solides et structures

1. Introduction

Large structures exhibiting a repetitive form are used in many domains, as aerospace industry. Generally,
the eigenmodes of these structures can appear as overall modes or modulated ones. For instance, let us
consider a structure as the one pictured in Fig. 1. If the displacement is locked at one or several points
of each basic cell, only modulated modes exist, sometimes together with a few localized modes [1]. On
the contrary if all the basic cells have stress free boundaries except the first and the last one, the smallest
eigenfrequencies correspond to overall modes, also called beam modes. In these two cases, most of the
eigenfrequencies are closely located in well separated bands, see Fig. 2. Typical shapes for the modulated
modes are presented in Fig. 3: they appear as slow modulations of a periodic mode. The latter property
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suggests that a continuum model can be established to describe this type of modes, by using a classical
multiple scale analysis.

The classical homogenization theory [2] can be applied to get a good approximation of overall modes.
This approach is to replace the actual repetitive structure by a substitute beam model that is equivalent to
the original in some sense, by considering the constitutive relation, the strain energy and/or kinetic energy.
Thus, they are many ways to deduce such an equivalent continuum beam see for instance [3–6]. All these
theories are more or less based on Bernoulli kinematical assumptions. However, the latter theories are not
valid in the case where the repetitive structure presents modulated modes. Indeed, these modes involves
local deformations, that are not accounted by Bernoulli kinematics.

It is possible to built up another continuum modeling for this class of modes, as established in [7] in
the case of simple periodic beam. In this paper, we apply the same ideas when the starting model is two-
dimensional elasticity. The local deformations modes and the coefficient of the equivalent continuum model
will be computed by the finite element method.

2. Two-scale analysis

2.1. Basic expansions

Let us consider an elastic repetitive structure, as pictured in Fig. 1. It is defined by the repetition of
two-dimensional cells in x-direction. The corresponding classical free vibration problem can be written as
follows:

σxx,x + σxy,y + ρλu = 0, σxy,x + σyy,y + ρλv = 0 (1)

Eu,x − (σxx − νσyy) = 0, Ev,y − (σyy − νσxx) = 0, E(u,y + v,x)− (1 + ν)σxy = 0 (2)

where λ = ω2 is the square of the natural frequency. The total length in the x-direction is denoted by L and
the basic cell length is denoted by lx . N = L/lx is the number of cells.

We apply a two-scale expansion method to analyze the vibration problem (1), (2). The small parameter is
defined by η = lx/L. As usual within the multiple scale expansion method, the unknowns U = (u, v, σαβ)

are assumed to be functions of three independent variables, i.e., the rapid variables x , y and the slow
variable X. The definition of this X and the expansions rules are classical:

X = ηx, ∂x → ∂x + η∂X (3)

U(X,x, y)=
∞∑
i=0

ηiUi(X,x, y), λ =
∞∑
i=0

ηiλi (4)

The unknowns U = (u, v, σαβ ) and λ are expanded into powers of η. Each mode U is assumed to be
“locally” periodic, i.e., periodic with respect to the rapid variable x . Inserting Eqs. (3), (4) into (1), (2),
we find equations at the three first orders 1, η, η2. By combining the constitutive law and the equilibrium
equation, we get the following displacement problems for the displacement ui = (ui, vi):

L0u0 + ρλ0u0 = 0 (5)

L0u1 + ρλ0u1 = −∂XL1u0 − ρλ1u0 (6)

L0u2 + ρλ0u2 = −∂XL1u1 − ∂2
XL2u0 − ρλ1u1 − ρλ2u0 (7)

L0 = E

1 − ν2

[
∂2
x + (1 − ν)∂2

y ∂x∂y

∂x∂y ∂2
y + (1 − ν)∂2

x

]
, L1 = E

1 − ν2

[
2∂x ∂y

(1 − ν)∂y 2(1 − ν)∂x

]
,

L2 = E

1 − ν2

[
1 0
0 1 − ν

]
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Figure 1. The considered repetitive structure and
the basic cell.

Each Eq. (5), (6) or (7) will be considered as an elastic system posed on a period. The period consists of a
few basic cells. The latter equations have also to be completed, first by the usual periodicity along the ends
of the period, second by classical boundary conditions along the remainder of the cells. Here, we consider
the following conditions:

u(A) = u(B) = v(B) = u(C) = 0 (8)

and stress free conditions otherwise. With such restraints on each cell, the beam modes do not exist and the
present analysis can hold for any frequency rather than the standard homogenization theory [7].

2.2. Deducing the continuum model

The general solution of Eqs. (5) and (6) can be written in the following form:

u0(x,X,y)= A0(X)w0(x, y), u1(x,X,y)= A1(X)w0(x, y)+ A′
0w1(x, y) (9)

where w0 and w1 solve the following equations to be completed by periodicity conditions and boundary
conditions on the cell:

L0w0 + ρλ0w0 = 0, L0w1 + ρλ0w1 = −L1w0 − ρλ1w0 (10)

At this stage, the amplitudes A0(X) and A1(X) in (9) are arbitrary functions of the slow variable X, because
only the rapid variables x and y appear in the differential operator L0 + ρλ0I . This operator is singular.
Hence, the nonhomogeneous equations (6) and (7) have a solution if and only if the right-hand sides F of
these equations satisfy the following solvability condition:

〈F,w0〉 =
∫ ∫

period
F(X,x, y)w0(x, y)dx dy = 0 (11)

By using the solvability condition for the problems at the second order (6) and at the third order (7), we
obtain, first λ1 = 0 and second a differential equation to be satisfied by the envelope:

CA′′
0 + λ2A0 = 0 (12a)

C = 〈L1w1 +L2w0,w0〉
ρ〈w0,w0〉 (12b)

So the simple differential equation (12a) is the sought continuum model. It is an eigenvalue problem for
the amplitude A0(X), the eigenvalue being λ2. To get the real constant C, it is necessary to compute the
local deformation modes w0 and w1. The corresponding equations (10) are discretized by standard finite
elements.

2.3. What boundary conditions for the continuum model?

It is not an easy task to deduce boundary conditions for the amplitude equation (12a). Often, there exist
localized modes, that are not in agreement with the assumptions of the multiple scale method [1]. A correct
treatment of boundary conditions should include a boundary layer analysis [7,1], that should be intricate
in 2D elasticity. That is why we shall limit ourselves to a simple study of boundary conditions, and to
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an application where this simple analysis is more or less valid. As for the boundary condition associated
with the 2D model (1), (2), we assume here that the deflections at the ends v(0, y) and v(L,y) are zero. If
the boundary layers are disregarded, the expansions (4) would be valid up to these ends. As explained for
instance in [7], this yields boundary conditions for the amplitude. Let us underline that the latter boundary
condition is not the same for all the periodic modes. The so deduced boundary conditions for the amplitude
depend on the properties of the periodic mode w0(x, y), that can be identical to zero along the ends x = 0,
x = L (case 2) or not (case 1):

A0(0) = A0(Lη) = 0 in case 1, A′
0(0) = A′

0(Lη) = 0 in case 2 (13)

The constant C is deduced from formulae (12b) after computing w0 and w1. Thus the amplitude equation
(12a) is solved analytically on account of the boundary conditions. This leads to an approximation of the
spectrum close to λ0:

λ(n) = λ0 + Cn2π2

L2 + θ
(
η3), n = 1,2, . . . in case 1

λ(n) = λ0 + Cn2π2

L2 + θ
(
η3), n = 0,1, . . . in case 2

(14)

Note that in this way, we have generated an infinite number of approximated eigenvalues λ. The range of
validity of this approximation is now discussed.

3. Numerical results

Consider the structure defined in Fig. 1. The material data are E = 2.1 · 1011, ν = 0.3, ρ = 7800. The
boundary conditions along the cells have been presented previously, see (8), and those at the ends of the
whole structure are:

v(0, y) = v(L,y) = 0 (15)

The structure and the basic cell have been meshed by four node quadrilateral elements. The whole structure
with 20 cells has been split into 320 elements, which corresponds to 966 d.o.f. For the basic cell, only
54 d.o.f. are needed. The obtained eigenfrequencies ω/2π are reported in Fig. 2. They are closely located
in well separated packets. The first mode and the last mode of the first packet are plotted on Fig. 3. The
first mode appears as a slow modulation of a periodic one. The last mode is exactly periodic. Note that the
corresponding periodic modes are different: at the beginning of the packet, the period is 2lx and only lx at
the end. These periodic modes have been obtained by the eigenvalue problem (5) set on two basic cells.
The so computed eigenfrequencies λbegin = 133.03 and λend = 146.65 are quite the same as the limits of
the first packet.

Figure 2. The three first packets of
eigenfrequencies obtained by direct

simulation for N = 20, lx = 6 and ly = 1.
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Figure 3. The first and the 20th eigenmodes when N = 20, lx = 6 and ly = 1.

Table 1.The first eight eigenfrequencies of the first packet when N = 20, lx = 6 and ly = 1.

Mode number 1 2 3 4 5 6 7 8

Proposed method 133.08 133.22 133.46 133.80 134.23 134.75 135.37 136.07

Direct computation 133.05 133.10 133.20 133.33 133.52 133.76 134.07 134.45

Table 2.The last eight eigenfrequencies of the first packet when N = 20, lx = 6 and ly = 1.

Mode number 13 14 15 16 17 18 19 20

Proposed method 123.40 130.88 136.89 141.61 145.18 147.68 149.16 149.65

Direct computation 138.28 139.61 141.19 143.03 145.09 147.19 148.93 149.65

Table 3.The first eight eigenfrequencies of the first packet when N = 60, lx = 6 and ly = 1.

Mode number 1 2 3 4 5 6 7 8

Proposed method 133.03 133.05 133.08 133.11 133.16 133.22 133.29 133.37

Direct computation 133.03 133.04 133.05 133.06 133.08 133.10 133.13 133.16

Table 4.The last eight eigenfrequencies of the first packet when N = 60, lx = 6 and ly = 1.

Mode number 53 54 55 56 57 58 59 60

Proposed method 146.96 147.68 148.29 148.78 149.16 149.43 149.60 149.65

Direct computation 146.50 147.19 147.84 148.43 148.93 149.32 149.57 149.65

In Tables 1, 2 we present some eigenfrequencies at the beginning and at the end of the first packet. The
smallest frequencies are obtained from (13) with λ0 = λbegin, the constant C = 737811.25 being computed
from the first 2lx-periodic mode w0 and the boundary conditions of case 1. As for the last frequencies, we
get C = −842415.46 by starting from λ0 = λend, w0 being the second 2lx -periodic mode (that is the first lx -
periodic mode). Because the vertical component of w0 is zero at the end of the cell, the boundary conditions
are those of case 2. From the presented numerical results, it appears that the approximations are valid near
the ends of a packet, but not at the center. We also observed that the first term of the expansions (4) yields
good approximations of the exact modes.
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With 60 cells, the results are reported in Tables 3, 4. For this case, the asymptotic method is much more
accurate. Hence as expected, the larger the number of cells is, the more efficient the asymptotic method is.

4. Conclusions

A specific homogenized method has been developed to describe the modulated vibration modes of large
repetitive structures. So we have deduced an amplitude equation, that is similar to those from bifurcation
theory. In the present version of the theory, it is not possible to describe the whole packet. To achieve
this goal, it is necessary to account for the interaction between two periodic modes, a first approach being
presented in [1]. Likely, the approximated analysis would be better with a more accurate treatment of the
boundary conditions.
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