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Abstract In this paper, we propose a new class of bi-grid algorithm to solve large scale linear
algebraic equations. This method is based on homotopy, perturbation technique and Padé
approximants.To cite this article: R. El Mokhtari et al., C. R. Mecanique 330 (2002)
825–830.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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Un algorithme bi-grille basé sur les techniques d’homotopie et de
perturbation

Résumé Dans cette Note nous proposons une nouvelle classe d’algorithme à deux grilles, pour
résoudre les systèmes linéaires de grande taille. Cette méthode est basée sur des tech-
niques d’homotopie et de perturbation et sur les approximants de Padé.Pour citer cet ar-
ticle : R. El Mokhtari et al., C. R. Mecanique 330 (2002) 825–830.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

The efficiency of the Asymptotic-Numerical Method (ANM) is now well established for solving path-
following problems in many fields, for instance in non-linear elasticity or in plasticity, see Cochelin [1] and
Najah et al. [2]. Up to now, most of applications were limited to numbers of degrees of freedom (d.o.f.) that
do not exceed 20000. In view of actual industrial studies, ANM algorithms are to be rediscussed, in order
to be able to compute efficiently large scale problems. Indeed, ANM runs quickly if a direct solver is used
for the obtained linear problems, but such solvers are known to be expensive in the case of many d.o.f.

Recently Galliet et al. [3] proposed to use the FETI technique that couples a domain decomposition with
an iterative solver. The obtained ANM-FETI algorithm is efficient, especially with a parallel computer.
Another idea is to associate perturbation and homotopy to build up an efficient linear solver, which has
been tested in the case of Incomplete Cholesky preconditioner [4].

In this paper, we propose a new algorithm for large scale linear problems that is based on a multigrid
method, homotopy and perturbation techniques and Padé approximants. The basic idea of the present
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method is to pass from the coarse grid to the fine grid in a continuous way thanks to the homotopy
transformation. This is the main difference between a traditional multigrid method [5] and the present
method. Here we shall limit ourselves to two embedded grids: a coarse grid and a fine grid.

2. The proposed bi-grid algorithm

Let us consider the following linear algebraic system:

k · q = f (1)

that corresponds to partial differential equations discretised according to the fine grid. Herek is a symmetric
(n×n) matrix,q is the unknown vector andf is a given vector. First we distinguish the degrees of freedom
associated with the coarse grid, that are denoted byqg and called global d.o.f. The remaining d.o.f. are
called local d.o.f and denoted byql . Thus Eq. (1) can be split as:

{
kgg · qg + kgl · ql = fg (a)
klg · qg + kll · ql = fl (b) (2)

Within classical multigrid methods, a prolongation operatorP is defined to pass from the coarse grid to
the fine grid. Soqg is unchanged andql is defined fromqg by linear interpolation (operator Int).

q =

 qg

Int(qg)


 = P · qg (3)

Next the operatortP is used to reduce the starting equation (1) to coarse grid and the so reduced equation
replaces Eq. (2(a)). In this way, we define a new linear system, that is exactly equivalent to Eq. (1) on the
fine grid:

tP · k · q = F (4)

klg · qg + kll · ql − fl = 0 (5)

whereF = tP · f . Eq. (4) is set on the coarse grid, but accounts for arbitrary local variablesql . It can be
solved with respect toqg and this will be done by a direct method, because of a relatively small number
of d.o.f. The local Eqs. (5) will be solved by a homotopy transformation and a perturbation technique. An
artificial parameterε, with ε ∈ [0,1], is then introduced and (5) is replaced by:

(1− ε)
(
ql − Int(qg)

) + εC · {(klg · qg + kll · ql − fl)
} = 0 (6)

whereC is a preconditioning matrix. In this paper we only chooseC as the inverse of the diagonal part of
the matrixkll (equivalent to a Jacobi smoother). Forε = 0, the new system (4) and (6) is reduced to:

{
ql = Int ·qg

Kg · qg = F
(7)

whereKg = tP · k · P is a square matrix on the coarse grid. Generally,Kg is not exactly the usual stiffness
matrixK on this coarse grid. In a finite element framework, the number of Gauss points is not the same in
the computation ofK as forKg . Nevertheless, if the interpolation is linear and if the mesh is smooth, the
two matrices coincide. To solve the exact Eqs. (4) and (6), we use a perturbation technique. We search a
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parametric representation of the unknownq in the form of a truncated integro-power series ofε:

q =

 qg

ql


 =

I∑
i=0

εi


 qg(i)

ql(i)


 (8)

This vectorq is only an estimate of the solution of system (4) and (6) because the order of truncature I
is necessarily finite and also because the range of validity of polynomial approximations (8) can be smaller
than 1. Introducing (8) into (7) and equating like powers ofε, we obtain the following recurrent sequence
of linear problems. Finally we have to solve at each order the following set of problems:

At order 0: {
Kg · qg(0) = F

ql(0) − Int(qg(0)) = 0 (9)

At order 1:{
Kg · qg(1) = FQ(1)

ql(1) = Int(qg(1)) − R(1)
with

{
R(1) = C · {klg · qg(0) + kll · ql(0) − fl}
FQ(1) = tP · k · R(1)

(10)

At order i � 2:

{
Kg · qg(k) = FQ(i)

ql(i) = Int(qg(i)) − R(i)
with

{
R(i) = C · {klg · qg(i − 1) + kll · ql(i − 1)}

−ql(i − 1) + Int(qg(i − 1))

FQ(i) = tP · k · R(i)

(11)

One remarks that all the problems have the same matrixKg , so only one triangulation is needed for
solving theI + 1 linear problems and this triangulation should not require a consequent computing time,
because the matrix is defined on the coarse grid. Moreover, at each order only the right-hand sides of
Eqs. (10) and (11) need to be evaluated, and they depend on previous orders. Finally to accelerate the
convergence of series, one replaces the polynomial approximation (8) by rational fractions, called Padé
approximants [2]. The algorithm to deduce the Padé approximants is exactly the same as in many previous
papers. According to this algorithm, the series (8) is rewritten in the following form, where we putε = 1
and the real coefficientsci are deduced from the series as explained in [2].

q =
I−1∑
i=0

ci


 qg(i)

ql(i)


 (12)

3. Numerical results and discussion

To evaluate the performance of our multigrid scheme, a plane stress linear elastic example is presented
below. A plate modeled with nested meshes is considered.

All the problems were discretized by quadrilateral elements (Q4). For simplicity, we only consider
structured meshes. The fine mesh is deduced from the coarse mesh by dividing each element into four:
Fig. 1(b), or into nine: Fig. 1(c). Five numerical tests will be discussed, whose characteristics are presented
in Table 1. In the tests 1, 2 and 3, the first cutting (Fig. 1(b)) is chosen and the number of d.o.f. in the coarse
mesh is divided by about four, as compared with the fine one. As for the tests 4 and 5, this ratio is close
to 9. The stiffness matrices of the coarse grid is stored according to the skyline method while the stiffness
matrices of the fine grid and the prolongation operatorP are stored in a compact form. The convergence
of the multigrid method is defined by a residual criteriom‖k · q − f ‖/‖f ‖ � η where‖ · ‖ is the Euclidian
norm andη = 10−10 is chosen.
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(a) (b) (c)

Figure 1. Geometrical description (a) and meshes for the plate (nested meshes (b) and (c)).

Table 1. Number of d.o.f. of the nested meshes for the five computational tests.

Coarse grid Fine grid Ratio

test 1 2178 8450 3.88

test 2 8450 33282 3.93

test 3 33282 132098 3.99

test 4 1568 13448 8.57

test 5 13448 119072 8.85

(a) (b)

Figure 2. Logarithm of the residual vector versus the truncature order for tests 3 and 5. (a) Logarithm of the residual
vector versus the truncature order, test 3. (b) Logarithm of the residual vector versus the truncature order, test 5.

The evolution of the logarithm of the residual vector versus the order of truncature is pictured in Fig. 2, for
two tests and with the polynomial and the rational representations (8) or (12). Similar results were obtained
for the other tests. First, as with many ANM algorithms, the rational representation is clearly much more
efficient than the series. Second, the residual decreases more or less exponentially with I. Third, a rather low
order is sufficient to get the convergence. These two last features are typical of multigrid preconditioners,
that are much more powerful, for instance, than the Incomplete Choleski one [4,6].

In Table 2, the order necessary to achieve the convergence is presented. This order is very low: 30 if each
element in coarse mesh is divided by 4; 59 or 62 in the cases of a division by 9. Furthermore, this order
at convergence is almost independent of the density of the coarse mesh. This latter remark holds also for
classical two-grid algorithm, [5] and see results in Table 2. This is very important in view of applications to
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Table 2. OrderI needed to get the convergence of the proposed bi-grid method (PBM). The corresponding CPU-time
is compared with the ones of the conjugated gradient method with a diagonal preconditionning (CGD), with an

incomplete Cholesky factorization (CGIC), and a classical bi-grid algorithm (CBA). IT is the number of iterations.

PBM CGD CGIC CBA

OrderI CPU IT CPU IT CPU IT CPU

test 1 30 3.3 574 13.6 136 7.1 38 7.6

test 2 30 28.4 1154 150 274 64.3 38 47.9

test 3 30 276.5 2454 1387 554 541.1 38 364

test 4 59 8.8 729 35.5 169 16 86 24.9

test 5 62 144.7 2198 1176 512 462.4 86 300

Table 3. Detailed CPU-time for the proposed bi-grid method for test 3 (order 30) and test 5 (order 62).

test 3 test 5

Order 0

Computation ofK , coarse grid 4.87 1.81

Triangulation ofK 153.8 23.07

Backward-foreward substitution 2.7 0.91

Multiplication P · qg(0) 0.12 0.14

Residual 0.37 0.34

Total order 0 161.9 26.3

Orderi

r(i) = (kll · ql(i − 1) + klg · qg(i − 1)) 0.44 0.33

R(i) = C(r(i)) − ql(i − 1) + Int(qg(i − 1)) 0.07 0.06

k · R(i) 0.37 0.33
tP · k · R(i) 0.11 0.13

Time of resolution 2.7 0.91

Time of multiplicationP · Int(qg) 0.12 0.15

Total orderi 3.82 1.91

Total 276.5 144.7

large scale problems. Other tests have been carried out with alternative loadings and with very heterogenous
materials; they yield similar results. In Table 2, we present a first comparison between an iterative solver
(conjugated gradient, CG) with two kinds of preconditioning (diagonal and Incomplete Choleski [6]), a
classical bi-grid algorithm (CBA) [5] with a point Jacobi smoother (with two smoothing steps) and the
proposed bi-grid method. For the comparison, the relevant quantities are the CPU-time (the computation of
the stiffness matrix of the fine gridk being excluded) and the number of computed vectors: one per iteration
with CG, two per order with the present method and three per iteration with the CBA. The classical bi-grid
method has been designed to be the most efficient one, that uses the same Jacobi smoother as here.
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One can clearly see that for all the presented tests, the proposed bi-grid algorithm requires less CPU
times that any other method. The number of iterations and hence the number of computed vectors is less
than with the corresponding iterative bi-grid algorithm.

A detailed analysis of the CPU-time needed with the multigrid method is presented in Table 3, in cases
with a large number of degrees of freedom. As expected, the computations involving the diagonal matrix
C or the prolongation matrixP are inexpensive. In these two cases, much computation time is spent in the
triangulation of the coarse mesh matrixK (55% of the total time for the test 3, 16% for the test 5). Hence,
in order to limit this cost, the size of the coarse grid must be sufficiently small. The most important feature
is the small CPU-time needed at each order. This allows computations with a high order of truncature and
therefore leads to a high accuracy for a low cost.

4. Conclusion

In this paper, a new bi-grid algorithm has been proposed, that is based on the association of homotopy
transformation, perturbation technique and Padé approximants. This new method converges rapidly, even
with a great difference between coarse and fine mesh. It is more efficient than an iterative method or a
classical two-grid algorithm for problems with a large number of degrees of freedom. To our knowledge, the
coupling of a multigrid approach and of a perturbation technique had never been presented in the literature.
According to this first analysis, such an approach is very promising, what is probably due to the quality of
multigrid preconditioning. Of course, a lot of variants would be interesting: alternative preconditionersC,
algorithms with three grids, etc.
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