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This study suggests a novel approach to the retrieval of soil surface parameters using a
single-acquisition single-configuration synthetic-aperture radar (SAR) system. Soil surface
parameters such as soil moisture and surface roughness are key elements for many
environmental studies, including Earth surface water cycles, energy exchange, agriculture,
and geology. Remote sensing techniques, especially SAR data, are commonly used to
retrieve such soil surface parameters over large areas. Several backscattering models have
been proposed for soil surface parameters retrieval from SAR data. However, commonly,
these backscattering models require multi configuration SAR data, including multi-
polarization, multi-frequency, and multi-incidence angle. Here we propose a methodol-
ogy that employs single-acquisition single-configuration SAR data for the retrieval of soil
surface parameters. The originality is to use single-acquisition single-configuration SAR
data to retrieve the soil surface parameters using an optimization approach by the genetic
algorithm (GA); we have used the modified Dubois model (MDM) in HH polarization as the
backscattering model. Three HH polarization and C band data sets from Quebec (Radarsat-
1), Ontario (SIR-C), and Oklahoma (AIRSAR) were analyzed. The retrieved values of soil
moisture and soil surface roughness were then compared to ground truth measurements
with corresponding parameters. We employed diverse criteria, including the mean abso-
lute error (MAE), the root mean square error (RMSE), the coefficient of performance (CP),
and the correlation coefficient to investigate the performance of the proposed method-
ology. This analysis suggests the capability of the GA for the retrieval of soil surface pa-
rameters. Based on our findings, this method presents a viable alternative approach to the
retrieval of soil surface parameters when only single-acquisition single-configuration SAR
data is available.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

Soil surface parameters such as soil moisture and soil
surface roughness are key elements inmany environmental
studies, including earth surface water cycles, energy ex-
change, agriculture, and geology (Herrmann et al., 2016;
Paloscia et al., 2012; Sellami et al., 2014; Zhang et al., 2015).
d by Elsevier Masson SAS. A
Moreover, these parameters can be used to investigate
natural hazards, such as floods, droughts, and climate
changes (Costantini, 2016). Soil moisture and soil surface
roughness are especially critical parameters that well
describe soil surface. Soil moisture represents the abun-
dance of water in soil on a volumetric or gravimetric basis
(Zhao and Li, 2013). Soil moisture has received much
attention because it affects various processes involved in
atmosphereesurface interactions and has been reported as
an essential climate variable (Al-Yaari et al., 2014). Another
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main feature of the ground is its surface roughness
(Baghdadi et al., 2002). In particular, the latter influences
water infiltration. Therefore, obtaining information on soil
moisture and soil surface roughness is critical to many
applications.

Traditionally, soil moisture data has been collected by
field measurements. Yet those only provide sparse point
measurements. In recent decades, researchers proposed
several methods to estimate the soil water content using
remote sensing data in the thermal and microwave do-
mains (Haider et al., 2004; Maltese et al., 2013a, b;
Minacapilli et al., 2012; Rao et al., 2013). Synthetic-
aperture radar (SAR) is increasingly becoming a vital
sensor used to retrieve soil surface parameters because it
overcomes the limitations of the thermal sensors by
providing higher spatial resolution and weather condition
data acquisition (Aubert et al., 2013; Bousbih et al., 2017;
Capodici et al., 2013; Dong et al., 2013; El Hajj et al., 2017,
2018; Gao et al., 2017).

The backscattering coefficient (s0), which is the signal
returned from that SAR sensor, is affected by the soil's
dielectric constant, which is linked to soil moisture and to
soil surface roughness (Bertoldi et al., 2014; Kornelsen and
Coulibaly, 2013). The dielectric constant is defined as the
number of water dipoles per unit volume fraction (Dobson
and Ulaby, 1986). In soil surface parameters retrieval from
SAR data, it is common to use a backscattering model that
represents the relation between the soil surface parameters
and the SAR returned signal (Sahebi et al., 2002). In
particular, the backscattering models may be composed of
soil surface parameters and sensor configurations such as
incidence angle, polarization, frequency, and backscat-
tering coefficients. Therefore, it can be stated that the
backscattering models are employed to simulate the rela-
tion between SAR backscattering coefficient (s0) value and
sensor-surface condition. Clearly sensoresurface condition
refers to soil surface parameters and sensor configurations.
It should be noted that sensor configurations are provided
as the metadata hence the only unknown parameters are
the soil surface parameters. Professionally, the backscat-
tering coefficient is thereby determined by the sensor
configurations and soil surface parameters (MirMazloumi
and Sahebi, 2016). Researchers have developed various
backscattering models, which can be classified into three
groups: 1) theoretical models, based on electromagnetic
wave scattering, such as the Integral Equation Model (IEM)
(Fung et al., 1992) and the modified IEM (Baghdadi et al.,
2015); 2) empirical models that have been developed
based on corresponding ground soil surface parameters
and SAR backscattering coefficient measurements (Attema
and Ulaby, 1978; Sahebi et al., 2003); and 3) semi-empirical
models that have been developed based on the relation
between dielectric constant and signal behaviour as well as
laboratory measurements by scatterometer (Dubois and
VanZyl, 1994; Oh et al., 1992). Common backscattering
models are composed of two or three surface parameters
simultaneously, and therefore multi-incidence angle
(Srivastava et al., 2009), multi-polarization (Baghdadi et al.,
2015; Bourgeau-Chavez et al., 2013), and multi-frequency
(Pierdicca et al., 2008) SAR data are required to retrieve
the soil surface parameters. Anothermethodology has been
to use multi-temporal SAR data based on the assumption
that temporal changes in surface roughness occur over a
longer time than data acquisition delays (Lievens and
Verhoest, 2012). Therefore, the main limitation of
retrieving soil moisture and soil surface roughness simul-
taneously from SAR data using backscattering models is the
necessity to acquire multi-configuration SAR data.

The Modified Dubois Model (MDM) is one of the SAR
backscattering models for soil surface parameters retrieval
from SAR data (Sahebi and Angles, 2010; Sahebi et al., 2003;
Zhang et al., 2015). Since the MDM is composed of two
unknown variables, including soil dielectric constant (soil
moisture) and soil surface roughness, it is inevitable to use
multi-configuration (Rao et al., 2014; Sahebi and Angles,
2010; Sahebi et al., 2003) or multi-temporal (Zhang et al.,
2015) SAR data to retrieve soil surface parameters. Multi-
frequency techniques suffer from diverse penetration
depths of the different frequency SAR signals in the soil,
which means that various dielectric constants affect the
SAR returned signal. The main downside of multi-
polarization techniques is the low sensitivity to soil sur-
face roughness of the different polarizations (Sahebi et al.,
2002). A serious criticism of multi-incidence angle
methods is that they assume that soil moisture values are
constant over time, since multi-incidence angle SAR data
must be acquired in different days. Therefore, the goal of
this study is to propose amethodology based on the genetic
algorithm (GA) to retrieve both dielectric constant (soil
moisture) and soil surface roughness from single-
acquisition single-configuration SAR data in an optimiza-
tion approach. The GA is an optimization algorithm that
had been used in remote sensing for different applications
(Almeida and Torres, 2017; Zhang et al., 2017).

2. Data

In this study, we have used two types of data: 1) ground
truth data, which are field measurements of the two soil
surface parameters, 2) SAR data. Three SAR datasets with
corresponding ground measurements from the USA (one
site) and Canada (two sites) in HH (horizontal transmit and
horizontal receive) polarization and C band are used. The
first dataset includes twenty field measurements with the
corresponding AIRSAR C band SAR data from the Little
Washita Experimental Watershed (LWREW) located in
Oklahoma; it was acquired during the Soil Moisture Ex-
periments (SMEX03) (Jackson and Cosh, 2006). Eleven and
eighty-four field measurements with corresponding
Radarsat-1 and SIR-C data in the C band were used from
Quebec and Ontario provinces, respectively. Soil surface
roughness values were calculated through digitizing of
photographed grid boards and the soil moisture values
weremeasuredwith impedance probe (ThetaProbes) for all
three datasets. These values were measured for agricultural
parcels. In particular, a different number of measurements
(regarding the size of each parcel) were conducted within
an agricultural parcel and then themean valuewas devoted
to each parcel as the ground truth measurement. The
specifications of the three data sets are provided in Table 1.
The soil moisture values are converted into dielectric con-
stant and reverse (Delta-T Devices Ltd, 2017).



Table 1
SAR data specification for each study area used for the proposed meth-
odology evaluation.

Specifications Study area

Oklahoma Quebec Ontario

Number of ground
measurements

20 11 48

Incidence angle of
SAR acquisition (degree)

62e69 44e46 33e44

Dielectric constant 3e11 7e17 9e22
Soil surface roughness 0.4e3 cm 2e5 cm 1e5 cm
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The detailed pre-processing explanation steps and data
descriptions of the Quebec, Oklahoma, and Ontario data-
sets are provided in Sahebi and Angles (2010) and
MirMazloumi and Sahebi (2016), respectively. Hence, the
pre-processing steps are only briefly provided herein. At
first, we have applied a radiometric calibration on three
SAR datasets to convert the DN value to the backscattering
coefficient. Afterward, the SAR datasets of both Quebec and
Ontario were geo-referenced using ground control points
collected by GPS while the AIRSAR dataset of Oklahoma
was geo-referenced using a digital ortho photo quadrangle.
Finally, the mean value of the backscattering coefficient for
each (same as the ground measurements) parcel was
calculated for the three datasets.
3. Methodology

We have used themodified Dubois model (MDM)which
has been used by Sahebi and Angles in (2010) as the
backscattering model in this study. We have chosen the
MDM based on two reasons. In our previous investigation,
we recognized that the MDM has the most precise perfor-
mance to establish the relation between ground truth and
modeled (using MDM and SAR data) soil surface parame-
ters. The MDM was calibrated for HH polarization with
multi-incidence angle measurements as shown in Eq. (1):

s0
hh ¼ 10�3:67 cos1:5q

sin5
q
100:112 tan q ε ðk s$sinqÞ0:883l0:7 (1)

where s0
hh is the backscattering coefficient, q is the inci-

dence angle, l is the SAR wavelength, k is the wave number,
ε is the dielectric constant (soil moisture), and s is the soil
surface roughness. Eq. (1) contains two unknown variables
which are the dielectric constant (soil moisture) and soil
surface roughness. Therefore, multi-configuration SAR data
is required to retrieve the two unknowns from Eq. (1) as
explained earlier. The previous solution (Sahebi and Angles,
2010) was to invert the MDM in order to use the multi-
incidence angle inversion to solve the MDM and retrieve
the dielectric constant (soil moisture) and soil surface
roughness separately.

Optimization approaches can be utilized to solve an
equationwith two unknowns when only one observation is
available. Moreover, the optimization approach does not
require to invert the backscattering model. This can reduce
the complexity of retrieving soil surface parameters espe-
cially in cases that backscattering models are not invertible
and requires numerically iterative solutions (Oh et al.,
1992).

The GA is a subclass member of evolutionary algorithms
that are inspired by the natural selection process (Pal and
Wang, 2017; Sastry et al., 2014). Simply, the goal of the
optimization is to minimize or maximize a function by
selecting the best element from different input values (soil
dialectic constant and soil surface roughness in our case). In
particular, this best element is the global minimum of the
corresponding function. In this study, the cost function is a
reformation of the MDM, as shown in Eq. (2).

s0
hh � 10�3:67 cos1:5q

sin5q
100:112 tanq εðk s$sinqÞ0:883l0:7 ¼ 0 (2)

In an ideal situation, the difference between the first
term (backscattering coefficient) and the second term
(including the soil dielectric constant and soil surface
roughness as unknown variables) must be zero. It is worth
noting that the other variables in Eq. (2) are provided in the
metadata of the satellite data.

In the first step, an initial number of random pop-
ulations (initial populations), which are candidate solu-
tions, are generated by the GA. In our case, each candidate
solution is composed of a pair of soil dielectric constant and
soil surface roughness values. These values are randomly
selected within a pre-defined upper and lower boundary of
each variable. The upper and lower boundaries are deter-
mined based on the conditions each dataset. The infor-
mation regarding the conditions of the datasets are
provided based on field studies and ground truth values.
This will decrease the possibility for the GA to fall into local
minima and also help the GA find the best solution faster.

These candidate solutions are used tominimize Eq. (2). In
particular, the second term of Eq. (2) is calculated from the
metadata and each pair of candidate solutions. Then the final
form of Eq. (2) is calculated. A score value based on the final
value of Eq. (2) is assigned to each candidate pair. It is clear
that any candidate solution that leads Eq. (2) to be closer to
the ideal situationwill be assigned a better score. In the next
step, the tournament selection (TS) procedure is applied to
choose the suitable (with a high score in the previous step)
candidates as parents for the crossover stage. TS is a selec-
tion mechanism for selecting candidate solutions for the
further stage of the GA named crossover (Miller and
Goldberg, 1995). In the crossover stage, two candidate so-
lutions from TS are combined to produce a new solution.
Also, a number of new solutions are produced based on a
random change in the soil surface parameters value from the
initial population, which is called mutation. The reproduced
solutions in the crossover and mutation stages are evaluated
(computing their score) based on Eq. (2). All the solutions
from the initial population, crossover, and mutation stages
are sorted based on their score and a pre-defined number of
best solutions are selected. These solutions will be the
population in the new iteration. The GA continues to pro-
duce new generations (set of solutions) and all operation
above including TS, crossover, and mutation is applied to



Fig. 1. Flowchart of the proposed methodology.
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each solution. At last, the operation stops when the soil
surface roughness and dielectric constant pair (candidate
solution) validates the stopping criterion. In this study, the
stopping criterion is set based on the final value of Eq. (2). In
particular, if the calculated value from Eq. (2) for one solu-
tion is smaller than 105, the GAwill stop. Obviously, the final
optimum solution is the corresponding solution that vali-
dates the stopping criterion. Fig. 1 represents the flowchart
of the proposed methodology.

After the retrieval procedure using the GA, we have
compared the retrieved values of soil surface parameters
with the ground truth measurements. We have used four
criteria, including correlation coefficient (CC), mean abso-
lute error (MAE), root mean squared error (RMSE), and the
coefficient of performance (CP) (James and Burgess, 1982)
to evaluate the performance of the proposed methodology.
The CP is an error evaluation criterion that allows the
comparison of retrieved and ground measured values of
the soil surface parameters, which is shown in Eq. (3):

CP ¼
Xn

i¼1

ðRðiÞ � OÞðiÞ2
,Xn

i¼1

�
OðiÞ � OAverage

�2 (3)

where OðiÞ, OAverage, and RðiÞ represent the ground mea-
surement value, the mean value of the ground measure-
ments, and the retrieved values, respectively. The CP
approaches zero as the retrieved and ground measurement
values of soil surface parameters get closer. RMSE and MAE
are used to measure differences between retrieved and
groundmeasurement values. Both RMSE andMAE have the
Table 2
Obtained values (MAE, RMSE, and CP) of the dielectric constant, soil moisture, a

Parameters and
criteria Dataset

Soil dielectric constant Soil moist

MAE RMSE CP MAE

Quebec 0.51 0.71 0.68 2.32
Oklahoma 0.71 1.05 2.52 1.35
Ontario 1.02 1.3 1.34 3.23
same behaviour as CP. However, both RMSE and MAE have
comparable behaviour (Brassington, 2017); one important
advantage of RMSE overMAE is that RMSE is more sensitive
to outliers (Chai and Draxler, 2014; Pontius et al., 2008). CC
measure the similarity of a set of retrieved and ground
measurement values and approaches to one as the
retrieved values get closer to ground measurements.
4. Results and discussion

Table 2 represents the values of MAE, RMSE, and CP of
the soil dielectric constant, soil moisture, and soil surface
roughness for each dataset separately.

Table 2 shows that the retrieval procedure based on the
GA provided promising results with only single-acquisition
single-configuration SAR data. Fig. 2 shows the correlation
between the retrieved values of the soil dielectric constant,
soil moisture, and soil surface roughness, and the corre-
sponding ground measurement values. Generally, it can be
seen in soil dielectric constant and soil moisture scatter-
plots of Fig. 2 that there are two clusters of values. The
reason is that soil dielectric constant and soil moisture of
two datasets (out of three datasets) have nearly the same
ranges, as can be seen in Table 1. In addition, these clusters
are related to the physical characteristics of agricultural
parcels that have been used in this study. In addition, a
number of outlier points can be seen in Fig. 2. Falling into
local minima can be the reason for this behavior. In
particular, the best candidate solution of the GA which has
satisfied the stopping criterion may have fallen into local
minima. Local minima are defined as a point in which the
candidate solution may result in satisfying the stopping
criterion while it is not the actual (close to ground mea-
surements) best solution. This issue shall happen if the cost
function has several local minima around the global
minima. Whatever it be, Fig. 2 suggests that the optimiza-
tion approach for the retrieval of soil surface parameters
provides promising results based on the satisfying corre-
lation coefficients between retrieved and ground mea-
surement values of the soil surface parameters.

Also, we have investigated the relationship between the
soil surface parameters retrieval error (the difference be-
tween retrieved and ground measurement values) and the
incidence angle (Fig. 3). According to this investigation, the
retrieval errors of the soil dielectric constant, soil moisture,
and soil surface roughness in the optimization approach do
not have any dependency on the SAR incidence angle. Ac-
cording to Fig. 3, it can be understood that each cluster (the
first cluster from 30 to 40, the second cluster from 40 to 50
and the third cluster from 60 to 70) of soil surface param-
eters generally experience the same range of retrieved
nd soil surface roughness with genetic optimization for three datasets.

ure (%) Soil surface roughness (cm)

RMSE CP MAE RMSE CP

2.71 0.98 3.97 4.63 0.96
2.11 0.67 3.25 4.65 0.64
4.27 1.69 4.89 6.37 1.69



Fig. 2. Comparison between measured and retrieved soil surface parameters for all three datasets (Quebec, Ontario, Oklahoma).

Fig. 3. Investigating the relation between the incidence angle and the retrieved soil surface parameters for all three datasets (Quebec, Ontario, and Oklahoma).
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Fig. 4. Investigating the relation between measured values of soil surface parameters and retrieval (the GA) errors for all three datasets (Quebec, Ontario, and
Oklahoma).
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error. in other words, Fig. 3 illustrates that the retrieval
error does not have a dependency on the incidence angle.

Fig. 4 presents the relation between the retrieved soil
surface parameter errors and the ground-measured values
of the soil surface parameters. It shows that the higher
values of the soil dielectric constant, soil moisture, and soil
surface roughness contain higher retrieval errors. This
behavior can be explained through the inherent issue in the
MDM. The MDM backscattering model is sensitive to high
values of the soil surface parameters (Angles, 2001). In
Table 3
Comparison of the results of the current study with data from works by other sc

Year BM Technique Soil surface roughne

MAE

Sahebi et al. (2003) MDM Inversion
Multi-angle

2.49

Sahebi and Angles (2010) MDM Inversion
Multi-angle

1.23

Rao et al. (2014) MDM Multi-angle
Multi-polarization

Correlating root mea
height with polariza

Zhang et al. (2015) MDM Inversion
Multi-band

Assuming constant s
roughness during th

Current study MDM Optimization
GA
Single-configuration

0.87
particular, the Dubois model has been developed for mod-
erate soil surface roughness and, therefore, it may have less
accuracy in simulating the relation between high soil surface
values to backscattering coefficient (Dubois and VanZyl,
1994). Also, it should be noted that each backscattering
model has a validity range that shows the range inwhich the
model performs robustly, and the confidence of the model
should decrease out this range (Ulaby et al., 1982).

For a more comprehensive performance evaluation of
the proposed methodology, we compared our results with
holars carried out with alternative solutions.

ss (cm) Dielectric constant Soil moisture (%)

RMSE MAE RMSE MAE R RMSE

1.39 3.5 1.25 e e e

e 2.46 e 3.88 e e

n square
tions

Cross e e e 0.87
0.77

2.87
3.20

Co e e e 0.78
0.91

4.99
2.60

oil surface
e period of SAR acquisition

e e e 0.84
0.82

2.07
2.32

1.17 2.63 3.64 4.89 0.84 5.76
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alternative available approaches that employed multi-
incidence angle (Sahebi and Angles, 2010; Sahebi et al.,
2003), multi-incidence angle and multi-polarization (Rao
et al., 2014), and multi-frequency and multi-temporal
(Zhang et al., 2017) SAR data. It is worth noting that these
approaches used an inversion procedure to retrieve soil
surface parameters that require multi-configuration SAR
data. Table 3 provides the results when using the other
approaches. The two latter approaches (Rao et al., 2014;
Zhang et al., 2017) have used further assumption to elimi-
nate soil surface roughness from their computations. Zhang
et al., (2017) assumed that soil surface roughness is con-
stant during the period of SAR data acquisition. As the
result, soil surface roughness was omitted in the inversion
approach and, therefore, no retrieval for this soil surface
parameter was done. Rao et al., (2014) have used a cross
polarization ratio (HV/HH) to retrieve soil surface rough-
ness and then the other soil surface parameter was calcu-
lated using the inversion method.

Since the evaluation criteria have been explained earlier,
it can be understood from Table 3 that the proposed
methodology achieved promising results while only single-
configuration SAR data were used. In particular, the pro-
posed methodology retrieved both the dielectric constant
of the soil (soil moisture) and soil surface roughness
simultaneously without any further assumption (Zhang
et al., 2015), or use of any auxiliary procedure (Rao et al.,
2014).

5. Conclusion

This study presents an optimization approach using the
GA to the retrieval of soil dielectric constant, soil moisture,
and soil surface roughness values from single-
configuration SAR data. We have used the MDM as the
backscattering model for the retrieval of the soil surface
parameters. The satisfying correlation coefficients between
the retrieved and ground-measured values of the soil sur-
face parameters (R-soil surface roughness ¼ 0.71, R-
dielectric constant ¼ 0.79, and R-soil moisture ¼ 0.84)
suggest the feasibility of employing the GA. Despite the
common inversion methods that require multi-frequency,
multi-incidence angle, and multi-polarization SAR data,
the optimization approach can be applied to single-
configuration SAR data without any further assumption.
Besides, the proposed methodology does not share the
drawbacks associated with multi-configuration SAR data.
We have obtained promising results suggesting the capa-
bility of employing the GA to retrieve soil surface param-
eters simultaneously from a single-configuration SAR data.
We believe our approach would be well suited for use by
other SAR backscattering models and different frequency
SAR data. Our investigations into this area are still in
progress.
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