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A B S T R A C T

The method of passive imaging in seismology has been developped recently in order to

image the Earth’s crust from recordings of the seismic noise. This method is founded on the

computation of correlations of the seismic noise. In this article, we give an explicit formula

for this correlation in the ‘‘semi-classical’’ regime. In order to do that, we define the power

spectrum of a random field as the ensemble average of its Wigner measure; this allows

phase-space computations: the pseudo-differential calculus and the ray theory. In this

way, we get a formula for the correlation of the seismic noise in the semi-classical regime

with a source noise which can be localized and non-homogeneous. After that, we show

how the use of surface guided waves allows us to image the Earth’s crust.

� 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

La méthode d’imagerie passive en sismologie a été développée récemment en vue

d’imager la croûte terrestre à partir d’enregistrements du bruit sismique. Elle repose sur le

calcul des fonctions de corrélation de ce bruit. Nous donnons, dans cet article, des formules

explicites pour cette corrélation dans le régime « semi-classique ». Pour cela, nous

définissons le spectre de puissance d’un champ aléatoire comme l’espérance de sa mesure

de Wigner, ce qui permet d’utiliser un calcul dans l’espace des phases: le calcul pseudo-

différentiel et la théorie des « rays ». Nous obtenons ainsi une formule pour la corrélation

du bruit sismique dans le régime « semi-classique », avec une source de bruit qui peut être

localisée et non homogène. Nous montrons ensuite comment l’utilisation des ondes

guidées de surface permet d’imager la croûte terrestre.

� 2011 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
1. Introduction

Correlation of the noisy wave fields is used as a new tool
in seismic imaging and monitoring, starting from the
pioneering work of Campillo and Paul (2003) (similar tools
have been used in helio-seismology Duvall et al., 1993) and
followed by many works (Derode et al., 2004, 2003; Roux
et al., 2005; Sabra et al., 2005; Sanchez-Sesma et al., 2006;
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Shapiro et al., 2005; Shapiro and Campillo, 2004; Weaver,
2005; Weaver and Lobkis, 2004); see also the review paper,
(Gouédard et al., 2008). It has also been used in the
monitoring of the deformations of volcanoes (Brenguier
et al., 2008). Because it is a very powerful method and,
hopefully, in order to make it more efficient, it is quite
challenging to give mathematical supports to this method,
now called ‘‘passive imaging’’. This has been done in a
rather great generality in Colin de Verdière (2009, 2011b)
using semi-classical analysis (see also Bardos et al., 2008;
Gouédard et al., 2008; Lobkis and Weaver, 2001; Roux
et al., 2005).
lsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crte.2011.03.002
mailto:yves.colin-de-verdiere@ujf-grenoble.fr
http://www.sciencedirect.com/science/journal/16310713
http://dx.doi.org/10.1016/j.crte.2011.03.002


1 The ‘‘Schwartz kernel’’ of a linear operator A is the ‘‘continuous

matrix’’ of A, we will denote it by [A](x, y) and it is characterized by

Af(x) =
R

X[A](x, y)f(y) dy.
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Exact formulas for the correlations of the fields are
known if the source noise is homogeneous (a white noise).
This assumption is not satisfied in applications. It is
therefore desirable to get formulas valid for more general
source noises, in particular if the source noise is localized
in some part of the domain. This turns out to be possible in
the so-called semi-classical regime where the wave-
lengths are negligible with respect to the size of the
propagation domain. The field correlation admits a
general expression in terms of the Green’s function and
the source correlation (Eq. (3)). The idea is to find the
asymptotics of this expression in the semi-classical
regime.

I will present in this article approximate formulas
which are valid in the range of high frequency wave
propagation and for which the source noise is localized in
some part of the domain of propagation. The correlation is
explicitly given in term of the decomposition of the Green’s
function as a sum over rays and the (phase-space) power
spectrum of the source noise. I can use ray theory if I
assume that the source noise has a short correlation
distance of the same order of magnitude as the wave-
lengths. This calculus can be presented in a very geometric
way using ray propagation, as well as a re-interpretation of
the source correlation in terms of the phase space power
spectra. I use the calculus of pseudo-differential operators
in a very essential way. I will not reproduce the
mathematical arguments which are presented in my
paper, Colin de Verdière (2009), but I will try not only to
give explicit formulas, but also to present the main ideas
and tools.

Here is a more precise description of the content: the
goal is to get the formula given in Theorem 5.1 which
gives the modification of the correlation of the seismic
noise induced by the non-homogeneity of the source
noise. The modification is given in terms of the power
spectrum of the source noise, the attenuation and the
ray dynamics associated to the deterministic wave
equation.

I first give a review of the pseudo-differential calculus
(Section 2): this allows me to put the basic terminology of
rays dynamics and to define power spectra of arbitrary
random fields (Section 3).

I then introduce the simplest mathematical model
where the source noise is simply the right handside of the
wave equation (Section 4) and I present the main formula
in Section 5. The interest of the result depends of the
relation between the 2 time scales discussed in Section 6:
the Ehrenfest time given in terms of the Lyapounov
exponent and the attenuation time.

How to use all of this in imaging problems? I do that
(Section 7) in the case of seismology using the effective
wave equation for the guided surface waves. The final
problem turns out to be an inverse spectral problem whose
mathematical solution is known.

Finally, I discuss in Section 8 a related issue, namely the
calculus of the correlations of plane waves scattered by an
obstacle or an inhomogeneity viewed as random waves:
the direction of the waves is supposed to be random and
uniform. This way, I show that the result of Sanchez-Sesma
et al. (2006) is completely general.
2. A short review of the pseudo-differential calculus and
Wigner measures

For the mathematics of pseudo-differential operators,
see Dimassi and Sjöstrand (1999); Evans and Zworski
(2011); Folland (1989); Trèves (1980).

The pseudo-differential operators (CDO’s) were intro-
duced in the 1960s by Calderon, Zygmund, Nirenberg,
Hörmander and others as a tool in the study of linear partial
differential equations with non-constant coefficients. They
provide also the geometrical extension of Hamiltonian
formalism of classical mechanics to wave mechanics (see
Duistermaat, 1996). In applications to physics, it is often
called ray theory (see Popov, 2002). The same tools apply to
the study of the semi-classical limit of quantum mechanics
and to the high frequency limit of wave equations (acoustic,
electromagnetic or seismic waves).

There is a small parameter e> 0 in the theory which is
the Planck ‘‘constant’’ 9 in quantum mechanics and the
wave length, or more precisely, the dimensionless ratio
between the wave length and the size of the propagation
domain for wave equations. Most results are only valid in
the limit e! 0, but, for simplicity, the reader can think of e
as a fixed, small enough, number.

2.1. CDO’s

A pseudo-differential operator (CDO) on Rd is a linear
operator on functions f : Rd!C, Ae :¼Ope(a), defined
using a suitable function defined on the phase space,
aðx; jÞ : Rd

x�Rd
j!C, called the symbol of Ae, by the formula

(Weyl quantization)

Aeð f ÞðxÞ ¼ 1

ð2pÞd
Z

Rd�Rd
eiðx�yÞ:ja

xþ y

2
; ej

� �
f ðyÞdy dj:

The function a is assumed to be smooth and homoge-
neous near infinity in j. The Schwartz kernel1 [Ae](x, y) of Ae
is located near the diagonal x = y and is of the form

½Ae�ðx; yÞffi e!0kðx; ðx� yÞ=eÞ

where k(x, z) is a smooth function outside z = 0 going to 0 as
z!1.

Simple examples are:
� O
pe(1) = Id by the Fourier inversion formula;

� O
peðj jÞ ¼ e

i
@

@x j
;

� O
pe(xj) is the multiplication by xj;

� If
 x is a positive function with bounded support, the

operator Ope(x(j)) is a frequency filter;

� O
p9(j j j 2 + V(x)) =� 92D + V(x): the Schrödinger operator;

� O
peðnðxÞjjj

2Þ ¼ �e2div nðxÞ gradð Þ: the acoustic wave
operator.
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The main properties are the following ones which hold
as e! 0:
� C
omposition:

OpeðaÞ�OpeðbÞ	OpeðabÞ;

Brackets:
�
½OpeðaÞ;OpeðbÞ� 	
e
i

Opefa; bg

where

fa; bg ¼
Xd

j¼1

@a

@j j

@b
@x j
� @a

@x j

@b

@j j

 !

is the Poisson bracket. This last property is very important

because it relates the algebra of CDO’s to the geometry of

the phase space given by the Poisson bracket.

2.2. Wigner functions

Wigner functions define the localization of energy in
the phase space Rd

x � Rd
j for a wave function u = u(x). They

involve the scale e. The Wigner function We
uðx; jÞ of u is the

function on the phase space defined by the identities

8 a2C10 R2d
� �

;

Z
R2d

aðx; jÞWe
uðx; jÞdx dj ¼ hOpeðaÞujui;

where hujvi ¼
R

uðxÞv̄ðxÞdx, or

We
uðx; jÞ ¼

1

ð2pÞd
Z

Rd
e�iv:ju xþ ev

2

� �
ū x� ev

2

� �
dv:

I have

Z
Rd

We
uðx; jÞdj ¼ juðxÞj2;

Z
Rd

We
uðx; jÞdx ¼ jF euðjÞj2;

where F euðjÞ ¼ is the e� Fourier transform of u given by

F euðjÞ ¼
1

ð2peÞd=2

Z
e�ix:j=euðxÞdx:

This means that the marginals of the Wigner measure
We

uðx; jÞdx dj are ju(x) j 2 dx and jF euðjÞj2 dj.

2.3. Hamiltonian dynamics and ray method

Let us consider the wave equation utt � Lu ¼ 0 where L
is an elliptic CDO like the acoustic operator
L ¼ divðn gradÞ. The symbol, usually called the dispersion
relation, of this equation is v2� n(x)||j||2 = 0. To this
relation is associated a dynamics called the ray dynamics
given by the Hamilton equations:

dx j

dt
¼ @H

@j j

;
dj j

dt
¼ � @H

@x j
(1)

with H ¼
ffiffiffi
n
p
kjk. The main result (Theorem 5.1 below) uses

the ‘‘Hamiltonian flow’’ Ft: Ft(x, j) is the value at time t of
the previous differential system (1) with data (x, j) at the
time t = 0. In the case of an homogeneous medium,
n = n0 =constant, I have

Ftðx; jÞ ¼ ðxþ t
ffiffiffiffiffi
n0
p

j=kjk; jÞ:

In the ray theory, this correspond to the group velocity of
waves

ffiffiffiffiffi
n0
p

.
The mathematical theory of rays is called the theory of

Fourier Integral Operators and has been developed in the
1970s by Hörmander and Duistermaat (Duistermaat,
1996), following some pioneering work of Lax and Maslov.
A presentation more adapted to physicists is given in
Popov (2002). Unfortunately, the geometrical background
is rather sophisticated and cannot be presented in a few
pages. However, explicit formulas, in terms of oscillatory
functions and oscillatory integrals, are available.

In what follows, I will use the fact that the Green’s
function G(t, x, y) of the wave equation admits, in the semi-
classical regime (short wave-length), a decomposition as a
sum of contributions of rays g going from y to x in time t:
G =

P
gGg.

3. Random fields: power spectra and correlations

Let f ¼ f ðxÞ; x2Rd; be a random complex-valued field
with zero mean value. Let us denote by E the expectation or
ensemble average.

Definition 3.1. The correlation of the random field f is the 2-

points function given by

Cðx; yÞ :¼Eð f ðxÞ f̄ðyÞÞ

The power spectrum of the random field f is the function on

the phase space given by the expectation of the Wigner

functions

pe :¼ EðWe
f Þ:

The power spectrum and the correlation contain the
same information:
� T
he correlation C(x, y) is ((2pe)d times) the operator
kernel of Ope(p) or

Cðx; yÞ ¼
Z

eihx�yjji=e pe
xþ y

2
; j

� �
dj:

pe is ((2pe)�d times) the symbol of the operator whose
�

integral kernel is C.

Example 3.1. White noise C = d(x� y), pe = 1/(2pe)d.

Example 3.2. Stationary noise on R with e = 1, C(s,
t) = F(s� t) and p1(s, v) is the Fourier transform FðFÞðvÞ.

4. A mathematical model

I will now discuss the basic mathematical model: it
consists of 2 parts:
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� A
 deterministic wave equation which could be the elastic
wave equation or more simply here the acoustic wave
equation. Because the source of noise will be permanent,
some attenuation in the equation is needed.

� A
 source noise assumed to be stationary and ergodic in

time. In seismology, this source is usually created by the
interaction of the fluids surrounding the earth crust
(atmosphere or ocean) with the crust itself. This source is
modeled by a random field which I put on the right-
handside of the equation.

For simplicity, I will discuss only the case of a scalar
acoustic wave equation on some domain in Rd

x with a
random source field f = f(x, t) (t is the time):

utt þ aðxÞut � Lu ¼ f (2)

where
� T
he field u = u(x, t) is scalar;

� a
, the attenuation, is a smooth>0 function. I will assume

for simplicity that a is time independent, but it is not
really necessary;

� L
 is a self-adjoint pseudo-differential operator of symbol
�e�2l20ðx; jÞ. Usually, l0 is homogeneous of degree 1
which makesL independent of e. This will not be the case
for dispersive waves like surface waves. Typical exam-
ples are the Laplace-Beltrami operator of a Riemannian
metric on X with l0ðx; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gi jðxÞjij j

q
and the acoustic

wave operator div nðxÞgradð Þ) with l0ðx; jÞ ¼
ffiffiffiffiffiffiffiffiffi
nðxÞ

p
kjk. I

introduce L0 :¼Opeðl0Þ ¼ e
ffiffiffiffiffiffiffiffi
�L
p

;

� f
 = f(x, t) is a stationary and ergodic (in time) random field

with correlation Eð f ðs; xÞ f ðs0; yÞÞ ¼ dðs� s0ÞGðx; yÞ and
power spectrum p(x, j); I assume that p(x, j) has bounded
support and that f is real valued and hence that p(x, j) is
even w.r. to j. I assume that p is independent of e, this
implies that the correlation is e� dependent: in
particular, G(x, y)
 j x� y j/e. The source noise decorr-
elates rapidly as j x� y j�e.

The Green’s function is the integral kernel G giving the
causal solution of Eq. (2) in terms of f:

uðx; tÞ ¼
Z 1

0
ds

Z
X

Gðs; x; yÞ f ðt � s; yÞdy:

Our goal is to compute the correlation
CA;BðtÞ ¼ lim
T!þ1

1

T

Z T

0
uðA; tÞuðB; t � tÞdt:
Lemma 4.1. The following relation holds: CA,B(� t) = CB,A(t).

Hence I can (and will!) restrict ourselves to t> 0.
Using the fact that the source noise is ergodic and

stationary, I get the following result:

Theorem 4.1. The field correlation is given by Equation (3)
only in terms of the Green’s function G and the correlation G of

the source noise

CA;BðtÞ ¼
Z 1

0
ds

Z
X�X

dx dyGðsþ t;A; xÞGðs;B; yÞGðx; yÞ:

(3)
All the work is now concentrated to get a more explicit

and more geometric expression: this will be done using an
expression of the Green’s function as a sum over rays going
from B to A in time t and using the power spectrum p of f

which is a semi-classical expression of the correlation of
the source noise.

5. The main formula

Let us denote by V�(t) the ‘‘one-parameter groups’’ of
linear operators generated by �iL0� ea/2: V+(t)u0 is the
solution of the differential equation u̇ ¼ ð ie L0 � a=2Þu with
u(0) = u0, and similarly for V�(t). The use of V�(t) is a way to
split the Green function of the wave equation usually given
by some ‘‘sinus’’ function into 2 exponentials: this way, I
reduce the wave equation from an equation with of second
order in time to a diagonal system of first order in time.

V�ðtÞ ¼ et �i
eL0�a=2ð Þ ¼ et �i

ffiffiffiffiffi
�L
p

�a=2ð Þ:

I will express the result in terms of operators instead of
expressing them in terms of their kernels (matrices). This
gives a much more compact expression! The symbol �
means the composition of operators while Ĉ(t) is the
operator whose integral kernel (matrix) is CA,B(t):
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ðĈðtÞuÞðAÞ ¼
Z

X
CA;BðtÞuðBÞdB:

The main result is:

Theorem 5.1. The correlation is given, for t> 0, as e goes to 0,
by

ĈðtÞffi VþðtÞ þV�ðtÞ
� �

�P; (4)

with P ¼ Opeðp̄Þ and

p̄ðx; jÞ ¼ e2

4l20

Z 0

�1
e�
R 0

t
aðFsðx;jÞÞds pðFtðx; jÞÞdt; (5)

and if a = a0 is constant

p̄ðx; jÞ ¼ e2

4l20

Z 0

�1
e�a0 jtj pðFtðx; jÞÞdt:

I will compare our result (Eqs. (4) and (5)) to the Green’s
function.

In the semi-classical regime, i.e. as e! 0, I have

Gðt;A;BÞffi e
2i
ðVþðtÞ �V�ðtÞÞ�L�1

0

� �
ðA;BÞ;

Let us now compute the t� derivative of CA,B(t):

d

dt
CðtÞffi � e

i
VþðtÞ �V�ðtÞ
� �

�L0�P:

In the case of white noise and constant attenuation a0, I
know (see, for example, Colin de Verdière (2009) Section
5.1 for a derivation) that

d

dt
CðtÞ ¼ � 1

2a0
GðtÞ (6)
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which is consistent with the previous semi-classical
formula.

I can now give a more concrete formula:

Corollary 5.1. Writing G(t, A, B) as a sum
P

gGg of contribu-

tions of rays g(s) with g(0) = (B, jB) and g(t) = Ft(B, jB) = (A,
jA), I get

d

dt
Cðt;A;BÞffi

X
g

MgGg ;

with

Mg ¼ �
1

2

Z 0

�1
e�
R 0

t
aðgðsÞÞds pðgðtÞÞdt:

In the case of the white noise p = 1 and a = a0, I recover
the formula

Mg ¼ �1=2a0: (7)

Let us also remark that, if there is an unique trajectory
from B to A in time t, the prefactor Mg applies to the Green’s
function itself. It is the case, if I work with wave equations
with constant coefficients in Rn.

The previous formula is consistent with the observa-
tions of the paper by Stehly et al. (2006): the correlation
CA,B(t) is not always an even function of t as it is if the
source is a white noise. The evenness is valid only up to
scaling of CA,B(t):

CB;AðtÞ ¼ CA;Bð�tÞ
 kCA;BðtÞ:

The factor k is the ratio of the integrals giving Mg for the ray
g(t) going from B to A and g(� t) going from A to B.

6. Time scales

As I see from the general expression of the correlation
given in Eq. (3), the proof of the main theorem 5.1 involves
the knowledge of the Green’s function at large times. This
is a well known difficulty and the semi-classical expan-
sions of the Green’s functions are valid up to the so-called
Lyapounov time which involves the Lyapounov exponent
measuring the rate of instability of the ray dynamics.
Roughly speaking, the Lyapounov exponent is the smallest
number l so that the distance between any to rays g1(t)
and g2(t) satisfies the estimates

dðg1ðtÞ;g2ðtÞÞ � Celtdðg1ð0Þ;g2ð0Þ

with C independent of g1(0) and g2(0). There is an
associated time scale TLyap = 1/l. On the other hand there
is an attenuation time scale for the wave dynamics
expressed in terms of the decay of the Green’s function

jGðt; x; yÞj � Ce�T=Tatt :

Tatt satisfies the estimate Tatt� 2/inf a. The approximation
given in Theorem 5.1 is better when Tatt� TLyap. In
particular, this condition is necessary in order to get
point-wise convergence (i.e. convergence for A and B

fixed).

7. The use of surface waves for passive imaging

A remarkable application of the previous tool is to the
imaging of the Earth’s crust (Campillo and Paul, 2003;
Lobkis and Weaver, 2001; Shapiro and Campillo, 2004;
Shapiro et al., 2005; Weaver and Lobkis, 2001, 2002).
This is done using the part of the Green’s function
associated to the surface waves: the earth crust acts as a
wave guide on elastic waves and these waves follow an
effective wave equation. The effective Hamiltonian is
described now: let us start with the acoustic wave
equation utt� div(n gradu) = 0 with the function n coming
from a stratified medium n = n(x, z) (here z = 0 is the
surface) where n is weakly dependent of x (this can be
formalized as n(x, z) = N(ex, z) with N smooth and e small).
Using the adiabatic separation of variables u
U(ex, z)eihxjji

with U weakly dependent of x, I can operate as if n was
independent of x and I get the reduced equation

Utt þ Op1ðlðx; jÞÞU ¼ 0

where l(x, j) is an eigenvalue of the Sturm-Liouville
operator

Lx;j ¼ �
d

dz
nðx; zÞ d

dz
þ nðx; zÞkjk2

with appropriate boundary conditions at z = 0.
From the correlation, I get the ray dynamics of the

surface waves and hence the effective Hamiltonians l(x, j).
The inverse problem to be solved is the following inverse
spectral problem: from the fundamental mode (or any
other available mode) of Lx0 ;j

in some range of wave
numbers jj j, recover n(x0, z). This is the kind of well posed
inverse problem for which analytical/numerical method
can be used (see Colin de Verdière, 2011a).

8. A formula for the scattering of random plane waves

I have seen an exact formula for the correlation of the
wave field when the attenuation a is constant and the
source noise is a white noise. I will see another exact
formula in the context of wave scattering by a
perturbation sitting in a bounded domain of Rd (see
Colin de Verdière, 2011b). This formula is very general
and applies in all situations of wave scattering (scalar or
elastic waves), i.e. for any medium which is homoge-
neous near infinity: non-homogeneity’s lies at finite
distances or there is a scattering by a bounded obstacle.
This calculus was motivated by the result of Sanchez-
Sesma et al. (2006), showing that this result is
completely general.

Let us consider for example an acoustic wave equation
(2) with n = n0 outside a bounded set of Rd. I will consider
scattering solutions of the stationary wave equation

divðn graduÞ �v2u ¼ 0 (8)
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which are of the following form: let us define, for k2Rd,
the plane wave

e0ðx;kÞ ¼ eik:x:

I am looking for solutions

eðx;kÞ ¼ e0ðx;kÞ þ esðx;kÞ

of Eq. (8) in Rd, with n0k2 = v2 (2), where es, the
scattered wave, satisfies the so-called Sommerfeld radia-
tion condition:

esðx;kÞ ¼ eikjxj

jxjðd�1Þ=2
e1

x

jxj ;k
	 


þ O
1

jxj

	 
	 

; x!1:

The complex function e1ðx̂;kÞ is usually called the
scattering amplitude and is a signature of the inhomogene-
ities. The functions e(x, k) are deformed exponentials and
allow to write an explicit spectral decomposition of our
wave operator, which is a ‘‘deformation’’ of the Fourier
transform.

Let us look at e(x, k) as a random wave with k ¼ v=
ffiffiffiffiffi
n0
p

fixed. The point-point correlation of such a random wave
Cscatt

v ðx; yÞ is given by:
Cscatt
v ðx; yÞ ¼

Z
k
ffiffiffiffi
n0
p ¼v

eðx;kÞeðy;kÞdsðk̂Þ:

It is proved in Colin de Verdière (2011b), section 8, that

Cscatt
v ðx; yÞ ¼ �

2dþ1pd�1nd=2
0

vd�2
IðGðvþ i0; x; yÞÞ;

where G(v, x, y) is the stationary Green’s function, i.e. the
Schwartz kernel of v2 þ divðn gradÞ

� ��1
.

9. Conclusions

I hope to have convinced the reader, even if he is
not very much involved in mathematics, that it is
possible to derive rather explicit asymptotic formulas for
the correlation CA,B(t) of seismic noise. The main
conclusion is that, in the semi-classical regime, even if
the source noise is not homogeneous, the field correla-
tion is very close to the Green’s function; in many cases,
there is only a prefactor which I computed and which
introduces no phase shift. This prefactor vanishes if the
support of the source noise does not meet the rays from
B to A.

Many other ideas and applications remains to be
exploited:
� Is
 it possible to use the previous tools in order to get
informations on the source noise?

� C
an I extend the previous calculus to the case where the

source noise is located on a surface?

� C
an I do something similarly in other regimes of

propagation, in particular in non-smooth media?

� C
an I get applications of the general formula to

monitoring?
2 As often, I denote k :¼ j k j and k̂ :¼k=k.
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