
C. R. Geoscience 342 (2010) 855–863
Hydrology, environment (Hydrology-hydrogeology)

Construction of three-phase data to model multiphase flow
in porous media: Comparing an optimization approach to the
finite element approach

Construction de données triphasiques pour la modélisation des écoulements

multiphasiques en milieu poreux : comparaison entre une approche par

optimisation et une approche par éléments finis
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Écoulement multiphasique

Milieu poreux
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A B S T R A C T

Multiphase flow modelling is a major issue in the assessment of groundwater pollution.

Three-phase flows are commonly governed by mathematical models that associate a

pressure equation with two saturation equations. These equations involve a number of

secondary variables that reflect the fluid behaviour in a porous medium. To improve the

computational efficiency of multiphase flow simulators, several simplified reformulations

of three-phase flow equations have been proposed. However, they require the

construction of new secondary variables adapted to the reformulated flow equations.

In this article, two different approaches are compared to quantify these variables. A

numerical example is given for a typical fine sand.

� 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

La simulation des écoulements triphasiques représente un enjeu majeur dans la

caractérisation et le suivi des pollutions dans les hydrosystèmes souterrains. Les modèles

mathématiques qui régissent ces écoulements sont généralement décrits par une equation

en pression et deux équations en saturation. Au sein du milieu poreux, ces équations

associent un certain nombre de variables secondaires qui traduisent le comportement des

fluides entre eux. En cherchant à améliorer l’efficacité de la résolution numérique,

plusieurs reformulations simplifiées des équations initiales ont été proposées. Elles

nécessitent cependant la reconstruction de nouvelles variables secondaires adaptées à

l’écoulement reformulé. Nous nous proposons de comparer ici deux approches différentes

permettant de générer ces variables. Un test numérique est mené sur un sable fin.

� 2010 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

Multiphase flow is widely encountered in the fields of
hydrology and environmental engineering sciences in the
context of soil and groundwater pollutions of non-aqueous
phase liquids (NAPL), such as chlorinated solvents; they
constitute a large and serious environmental problem
(Cohen and Mercer, 1993). In addition, in soil and
groundwaters, they are subject to natural attenuation.
Identification of pollution sources is difficult due to the fact
that organic pollutants can rapidly migrate down to the
bottom of the aquifer and/or along paths different from the
water (Bano et al., 2009; Benremita and Schäfer, 2003;
Bohy et al., 2004, 2006; Dridi et al., 2009). Among the
different attenuation processes involved, such as disper-
sion, adsorption, volatilisation, chemical and biological
destruction, biodegradation is often considered most
important (Nex et al., 2006; Sinke and Le Hecho, 1999).
Taking into account all of these mechanisms to quantify
and characterise groundwater pollution by NAPLs, multi-
component transport equations require a fast and accurate
resolution of three-phase flow primary and secondary
variables.

Two different strategies are currently used to model
multiphase flow in porous media (Helmig, 1997). Using the
first approach, in the case of a NAPL migrating in an
unsaturated zone, the water-oil-gas three-phase system
can be modelled by three pressure equations obtained by
introducing the Darcy velocities of each fluid phase into
the individual mass balance equations. This system of
pressure equations can be transformed into a pressure-
saturation form by using relationships between the
wetting phase saturation and the capillary pressure, which
is defined as the pressure difference across the interface
between a non-wetting and a wetting phase. The pressure
of the second and third fluid phases can then be removed
by expressing this pressure in terms of the saturation and
pressure of the other phase. This latter approach is useful
when phase disappearance occurs and saturation becomes
zero. The system of partial differential equations describ-
ing a three-phase flow is highly non-linear due to the
nature of the relative permeability and capillary pressure
functions needed to close the system.

Alternative forms of these governing flow equations
have been investigated to develop better computational
algorithms. This has led to the fractional flow approach,
which originates from the petroleum industry. In this
approach, the total fluid flow describes the individual
phases as a fraction of the total flow (Binning and Celia,
1999). Through the fractional flow formulation, the
immiscible displacement of oil, gas and water can usually
be expressed in terms of three coupled equations, namely a
mean pressure equation (Nayagum et al., 2001, 2004) or
global pressure equation (Antoncev and Monahov, 1978;
Chavent and Jaffré, 1986) and two saturation equations.

In this article, a fractional three-phase flow formulation
is chosen using a global pressure approach. Numerical
simulation of three-phase compressible flow in a porous
medium usually requires the knowledge of the corre-
sponding three-phase data. Experimental values for
relative three-phase permeabilities and capillary pressures
are usually known only for three two-phase sides of a
water-oil-gas triangular diagram T. Three-phase relative
permeabilities are generally derived from these sets of
two-phase data by interpolation formulas (Baker, 1988;
Stone, 1970, 1973). The compressible flow equations
reformulated in terms of the global pressure and satura-
tions of the gas and water phases are derived under the
assumption that the three-phase data satisfy the total
differential (TD) condition (Amaziane and Jurak, 2008;
Chavent and Jaffré, 1986). This condition allows the two
gradients of two-phase capillary pressure to be rewritten
as a single gradient of a mathematical function called the
global capillary function.

Comparisons with classical approaches such as pres-
sure-pressure or pressure-saturation formulations have
shown the computational efficiency of the global pressure-
saturation formulation, as it reduces the coupling between
pressure and saturation equations (Chen, 2005; Chen and
Ewing, 1997). The aim of this article is to compare two
different parameterisation approaches used to assess the
reformulated three-phase data needed to simulate three-
phase flow.

To assess the three-phase data, a step-by-step algo-
rithm based on the approximated global pressure
formulation was originally proposed by Chavent and
Salzano (1985), and Chavent and Jaffré (1986) for
compressible three-phase flow. It is derived under the
TD condition so that each of the three-phase volume
factors are evaluated at the global pressure level instead of
their own phase pressure. The two corresponding degrees
of freedom of this original interpolation are fractional flow
functions fj for each fluid phase j and the global mobility d.
Resulting TD three-phase data are ultimately determined
with the resolution of two constrained optimization
problems.

Recently, a new class of TD-interpolations algorithm
was introduced by Chavent (2009), Chavent et al. (2008),
and di Chiara Roupert et al. (2010), which allows the use of
an exact global pressure formulation. The phase volume
factors are evaluated at their own phase pressure. The two
degrees of freedom of this new class of TD interpolation
include the global capillary function Pg

c and the global
mobility function d, which are computed by a C1 and C0

finite element interpolations, respectively. Corresponding
procedures are designed in such a way that the resulting
three-phase data satisfy important mathematical and
physical properties, including:
� m
onotonicity, regularity and bound constraints of the
resulting three-phase data;

� t
he TD condition introduced in the mathematical model

to simplify the pressure equation in the three-phase flow
model.

In this article, we analyse the implementation of both
approaches and assess the numerical results obtained in
the case of two-phase data for a typical homogeneous
porous medium. In the first section, the exact global
pressure approach is employed using the conventions
introduced by Chavent (2009) and Chavent et al. (2008).
This leads to a simplified water and gas saturation
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equation and an expression of the pressure equation
under Darcy’s law. Then, we briefly discuss the imple-
mentation of both interpolation approaches to obtain
three-phase TD data, which coincide with the given two-
phase data set on the boundaries of the ternary diagram.
Finally, in the fourth section we show numerical results,
including the TD-interpolated water fractional flows,
global mobilities and the global capillary function
obtained by both approaches for an incompressible test
case. Finally, we highlight practical aspects concerning
the use of these two approaches in the context of a flow
simulator.

2. Governing equations for three-phase flow in porous
media

Let us recall the equations associated with the
reformulated three-phase flow under the TD condition.
The following notations are used for three fluid phases:
j = 1 indicates water, j = 2 indicates oil, j = 3 and indicates
gas.

2.1. Global pressure equation

We introduce the volume factor Bj evaluated at a
pressure level p:

B jð pÞ ¼ r jð pÞ=r jð p0Þ; (1)

for j = 1, 2, 3 with p0 being the reference pressure and rj (p)
equal to the density of the fluid phase j. We do not
deliberately specify which kind of pressure we use in the
evaluation of the volume factors, as they are different in
both approaches. The classical numerical solutions that use
a fractional flow formulation lead to a so-called pressure
equation with respect to one of the three phase pressures,
for example, the oil pressure P2, and two saturation
equations with respect to S1 and S3. For a saturation
distribution S = (S1, S3), Muskat’s law is often used to
represent the volumetric flow vector for fluid phase j at the
VER scale (Bear, 1972):

j j ¼ �d jðP jÞkr jðSÞK:ðrP j � r jðP jÞgrZÞ; (2)

where dj = Bj/mj, krj, mj, Z, g and K are the relative phase
mobility, the relative phase permeability, the dynamic
viscosity, the depth, the gravity constant and the absolute
permeability, respectively. Summing up the mass balance
equations for j = 1,2,3 leads to the global pressure
equation:

f
@
@t
ð
X3

j¼1

B jS jÞ þ r:ðqÞ ¼
X3

j¼1

Q j; (3)

where f is the porosity and Qj is the source-sink term of the
jth phase. We assume that f and K are only functions of
space. The global pressure P is defined as related to the oil
pressure P2 and saturation S = (S1, S3) by:

P ¼ P2 þ Pg
c ðS; PÞ; (4)
where Pg
c is a global capillary function. This function must

satisfy the TD condition (Chavent, 2009; Chavent and
Jaffré, 1986):

for all S1ðx; tÞ; S3ðx; tÞ and Pðx; tÞ;

rPg
c ðS;PÞ ¼ f 1ðS;PÞrP12

c þ f 3ðS;PÞrP32
c ðS3Þ þ

@Pg
c

@P
ðS;PÞrP;

8<
:

(5)

where P12
c is the water-oil capillary pressure function, P32

c

is the gas-oil capillary pressure function, f1 and f3 are the
water and gas fractional flows, respectively. When
condition (5) holds, the volumetric flow rate q is rewritten
in terms of Darcy’s law:

q ¼ �dK: vrP � r̄grZ½ �; (6)

with v ¼ 1� @Pg
c

@ p
, where @Pg

c =@ p, d, fj and r̄ are the
compressibility factor, the global mobility, fractional flow
of phase j and the global density expressed as function of
the pressure level P, respectively:

f jðs; pÞ ¼ kr jðsÞd jðpÞ=dðs; pÞ; j ¼ 1;2;3

dðs; pÞ ¼ kr1ðsÞd1ðpÞ þ kr2ðsÞd2ð pÞ þ kr3ðsÞd3ðpÞ

r̄ðs; pÞ ¼
X3

j¼1

r jð pÞ f jðs; pÞ

X3

j¼1

f jðs; pÞ ¼ 1:

8>>>>>>>>>><
>>>>>>>>>>:

(7)

The original global pressure formulation employs the
global pressure level p to evaluate the volume factors Bj. In
the exact global pressure formulation, phase pressure levels
pj are used. Based on the capillary pressure conventions,
relative phase mobilities are written as , d1 ¼ d1ð p2þ
P12

c ðs1ÞÞ, d2 = d2(p2), and d3 ¼ d3ð p2 þ P32
c ðs3ÞÞ; a similar

framework is used for r1, r2, and r3.

2.2. Water and gas saturation equations

The corresponding water and gas saturation equation
satisfying the TD condition can be written for j = 1,3:

f
@
@t
ðB jS jÞ þ r:ðq jÞ ¼ Q j

where

q j ¼ v�1 f jq� d f jK: rP jg
c þ g Dr j þ r̄

1�v
v

� �
rZ

� �
;

(8)

with qj being the jth phase volumetric flow rate, r̄ ¼P3
j¼1 f jr j and Dr1 = (1� f1)(r2�r1) + f3(r3� r2) for j = 1

together with Dr3 = (1� f3)(r2�r3) + f1(r1� r2) for j = 3.
We also introduce the following notation: P jg

c ¼ P j2
c � Pg

c .
One can see that some secondary variables, such as

fractional flows fj, global mobility d, and the global
capillary function Pg

c , must be quantified to satisfy the TD
condition (Chavent, 2009) and thus to solve the three-
phase reformulated flow. In the next section, we give a
short description of the two approaches used to
interpolate TD three-phase data using the water-
oil-gas diagram T.
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3. Description of two TD-interpolation approaches and
the data required for both methods

3.1. TD interpolation by optimization (approach A)

We first describe the data required for the original
global pressure formulation introduced by Chavent and
Jaffré (1986). For each pair of fluids belonging to the water-
oil side (12) and the gas-oil side (32) (see Fig. 1), we require
relative permeabilities kri j

i , kri j
j capillary pressure curves

P12
c , P32

c , and phase mobilities dj for each fluid phase
j = 1,2,3. A convenient continuation of the two-phase oil
fractional flow curves is chosen inside T. The three-phase
oil fractional flow f2 is chosen to be equal to the one
obtained by Stone’s model (Stone, 1970). Then, factional
flows and are obtained using the TD equivalent condition
(Chavent and Jaffré, 1986).

This TD equivalent condition yields two simple linear
equations, which can be solved on the ternary diagram
using (7) and the three-phase oil fractional flow f2.
Therefore, we are able to build the global capillary function
Pg

c (Chavent, 2009; di Chiara Roupert et al., 2010). The
global pressure varies between water pressure and gas
pressure, then Pg

c ð1;0; PÞ ¼ 0 at the water vertex. The TD
condition (see (5)) can be re-written for all s in T in an
equivalent form:

@Pg
c

@s1
ðs; pÞ ¼ f 1ðs; p� Pg

c Þ
dP12

c

ds1
ðs1Þ;

@Pg
c

@s3
ðs; pÞ ¼ f 3ðs; p� Pg

c Þ
dP32

c

ds3
ðs3Þ:

8>>><
>>>:

(9)

Therefore, the global capillary function Pg
c must

satisfy a differential equation along any given smooth
curve C in T (see Fig. 1). From the previous step, the TD
fractional flow functions allow the construction of the
global capillary function Pg

c using the two two-phase
capillary pressure gradients and using a convenient path
(see Fig. 1) along the water-oil side (curve C1) and gas-oil
[(Fig._1)TD$FIG]

Fig. 1. Illustration of the ternary diagram T and the location of the

required two-phase data used in approach A.

Fig. 1. Schéma du diagramme ternaire T et des données diphasiques

requises dans l’approche A.
side (curve C3):

Pg
c ðs; pÞ ¼

Z s1

1
f 1ðs;0; pÞ dP12

c

ds1
ðsÞds

þ
Z s3

0
f 3ðs1;s; pÞ dP32

c

ds3
ðsÞds: (10)

Following Chavent and Salzano (1985) and Chavent and
Jaffré (1986), the next step determines d on the third side,
that is, the water-gas side of T. The global mobility of the
water-gas side d13must be determined carefully. Other-
wise, corresponding relative permeabilities kr13

1 for water
and kr13

3 for gas computed from (7) may range out of the
interval; they also may decrease in directions in which one
would expect them to increase. Therefore, a constrained
optimization problem is built up on the relative perme-
abilities using previous TD fractional flows for water and
for gas to obtain the corresponding TD relative perme-
abilities. Once the ternary diagram T is closed using the
initial values on the water-oil boundary T12, the gas-oil
boundary T32 and optimised TD data on T13, the global
mobility is assessed for T. Similarly, two additional
constrained optimization problems are solved to compute
TD three-phase permeabilities and, therefore, global
mobility; see equation (7). At the end of optimization
procedure, the corresponding TD three-phase permeabil-
ities shall have a Laplacian value that is not too large but
ranges between 0 to 1 and strictly increases towards the
phase-related vertex of T (Jégou, 1997; Chavent and
Salzano, 1985; Chavent and Jaffré, 1986). Bound con-
straints and regularity behaviour are set for the objective
functions of the TD data using a Quasi-Newton algorithm
(Byrd et al., 1994). The resulting problem is weakly
parameterized, a damped or trust region Gauss-Newton
method like Levenbeg-Marquardt, or a ‘‘Dog Leg’’ method
could also be implemented to solve sequentially the
optimization issue. Details of the construction of objective
functions, their gradients and linear-bound constraints are
given in di Chiara Roupert (2009).

At the end of the procedure, global mobility d(s,p),
fractional flows fj(s,p) and global capillary function Pg

c ðs; pÞ
are known and, thus, are used to solve the global pressure
equation (4), the global volumetric flow rate (6) and the
saturation equations (8).

3.2. New TD interpolation by finite elements (approach B)

In the exact global pressure formulation, d, f1, f2, f3, and
r̄ are functions expressed by the oil pressure level p2; see
equation (4). Initial two-phase flow data are set on water-
oil side T12, gas-oil side T32 and water-gas side T13, gas-oil
side and water-gas side (see Fig. 2). The reader may refer to
di Chiara Roupert et al. (2010) for details of the algorithm
we use here.

We solve first the initial value problems on the
three two-phase sides of the ternary diagram T. The three
ODEs are built up from tangential derivatives of Pg

c over
the three sides of the ternary diagram. Their expressions
are deduced from relations (9) and solved with an
adaptative predictor-corrector scheme (di Chiara Rou-
pert, 2009; Quarteroni et al., 2007). Therefore, the global



Table 1

Initial data settings used for the three two-phase boundaries.

Tableau 1

Données initiales utilisées pour les trois systèmes diphasiques.

Symbol Value Description Unit

a 0.0001 a Van Genuchten parameter,

fine sand

[Pa�1]

m 0.93 m Van Genuchten parameter,

fine sand

[–]

m1 1.2 Water dynamic viscosity [�10�3Pa.s]

m2 0.55 Oil dynamic viscosity [�10�3Pa.s]

m3 0.015 Gas dynamic viscosity [�10�3Pa.s]

s13/s32 2.5 Gas-oil dimensionless

surface tension

[–]

s13/s12 2.1 Water-oil dimensionless

surface tension

[–]

Bj 1 Volume factor for j = 1, 2, 3 [–]

p 1 Global pressure level [bar]

[(Fig._2)TD$FIG]

Fig. 2. Illustration of the ternary diagram T and the location of the

required two-phase data used in approach B.

Fig. 2. Schéma du diagramme ternaire T et des données diphasiques

requises dans l’approche B.
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capillary function is calculated on the three two-phase
boundaries.

To satisfy the TD condition on the boundaries, the
global capillary function must be slightly modified on the
gas-oil side to provide an exact matching value at the gas
vertex (Chavent, 2009; di Chiara Roupert, 2009; di Chiara
Roupert et al., 2010).

The three two-phase global mobilities d on boundaries
are then computed (see Eq. (7)) with P replaced by
P2 ¼ P � Pg

c ðs; pÞ. The global mobility is then obtained from
previous Dirichlet boundary condition by solving a
harmonic equation on T by means of C0 piecewise linear
finite elements.

In the last step, the global capillary pressure is
extended to the entire ternary diagram T. It is necessary
to complete the Dirichlet conditions known from ODE
calculations with Neumann conditions along the same
boundaries (see Fig. 2). Thus the problem amounts to
enquire on each node the function Pg

c and its normal
derivative on each mid-side node belonging to the border
(Chavent, 2009; di Chiara Roupert et al., 2010). Normal
derivatives are computed as linear combinations of
derivatives @Pg

c =@s1 and @Pg
c =@s3 from (9). A bi-harmonic

equation over is needed to provide a continuous global
capillary pressure field. It is solved using a C1 Hsieh-
Clough-Tocher finite element method (Bernadou and
Hassan, 1980; Clough and Tocher, 1965), which ensures
that the fractional flows derived from Pg

c are continuous
over the entire ternary diagram. At the end of the C1 finite
element interpolation, Pg

c , @Pg
c =@s1 and @Pg

c =@s3 are
provided. For each fluid phase, the corresponding
fractional flow is then derived for j = 1,3 using:

f jðs; pÞ ¼ ð@Pg
c =@s jðs; pÞÞ=ðdP j2

c =ds jðs jÞÞ; (11)

with oil fractional flow given by the closure relation
f2 = 1� f1� f3. Similarly to approach A, global mobility
d(s,p), fractional flows fj (s,p) and global capillary function
Pg

c ðs; pÞ are known and, thus, used to solve the global
pressure equation and saturation equations.
4. A comparison of numerically derived three-phase TD
data

In this section, we compare the water fractional flow f1,
the global mobility d and the global capillary pressure Pg

c

obtained from approach A and approach B for an incom-
pressible three-phase flow (v=1). Input data were chosen
for a typical fine sand; we considered the van Genuchten
model function (Van Genuchten, 1980) coupled with
Parker’s normalisation method (Parker et al., 1987) to
express the capillary pressure-saturation relationship in the
two-phase systems for water-oil P12

c and gas-oil P32
c .

Specifically, we used both the Van Genuchten parameters
(a and n) in the two-phase gas-water system and the
corresponding surface tensions of water-oil and gas-oil. The
perfect gas law is used at a temperature of T = 293 K. All
parameters used in the case study are given in Table 1. Here,
the oil phase is made of trichloroethylene (TCE). In terms of
wettability, water is the wetting phase in the water-oil
system and oil is the wetting phase in the gas-oil system.
Consequently, water is the wetting phase in the water-gas
system. The resulting TD water fractional flows are shown in
Figs. 3 and 4. Differences occur on the water-gas side T13

because optimization does not take into consideration any
relative permeabilities or initial capillary pressures. In Fig. 4,
numerical results obtained from the bi-harmonic problem
are given; Pg

c , @Pg
c =@s1 and @Pg

c =@s3 and are computed using
the three two-phase data given on the sides as Dirichlet and
Neuman boundary conditions.

TD fractional flows computed from (11) exactly match
the given initial models of two-phase capillary pressures
and relative permeabilities (see Fig. 2). To compare both
approaches, we calculated relative differences at the point
of the ternary diagram at which s1 = 45% and s3 = 40%. At
this point, the TD fractional flow obtained with approach A
is about 25% higher than the one evaluated with approach
B. In this case, the water volumetric flow vector (8) is
higher in approach A than B. Figs. 5–7 show the global
capillary function obtained from the optimization ap-
proach and the C1 finite element approach, respectively.
Resulting values vary in the same range. One can see that
the initial value Pg

c ð1;0; pÞ ¼ 0 is satisfied at the maximum
water saturation. Both functions grow very rapidely near



[(Fig._5)TD$FIG]

Fig. 5. Global capillary pressure Pg
c obtained with approach A.

Fig. 5. Pression capillaire globale Pg
c obtenue avec l’approche A.

[(Fig._3)TD$FIG]

Fig. 3. Water fractional flow f1 obtained with approach A.

Fig. 3. Flux fractionnaire en eau f1 obtenu suivant l’approche A.

R. di Chiara Roupert et al. / C. R. Geoscience 342 (2010) 855–863860
the gas vertex due to two-phase capillary gradients. Each
computed function Pg

c ¼ P � P2 shows a regular behaviour
near the maximum oil saturation. It shows that for both
methods, global pressure is a more appropriate unknown
than oil pressure, as p2� pj is singular near the jth vertex.
Figs. 8 and 9 show global mobility as obtained from the
optimization approach and the C0 finite element approach.
In Fig. 8, the resulting TD global mobility is expected to be
regular and smooth over T. Due to the water-gas optimised
value found on T13, the TD global mobility field is quite
different in the water-gas region compared to the gas-oil

[(Fig._4)TD$FIG]

Fig. 4. Water fractional flow f1 obtained with approach B.

Fig. 4. Flux fractionnaire en eau f1 obtenu suivant l’approche B.
region. To discuss differences between approach A and B,
relative differences are calculated at s1 = 25%, s1 = 65%. At
this point, the TD global mobility as predicted by approach
B is about 50% higher than the value calculated by
approach A. Hence, in that particular case, the TD global
mobility as obtained by the new TD interpolation scheme
(approach B) allows the global volumetric flow vector (6)
to achieve higher values than that provided by approach A.
In the vicinity of the oil vertex, TD global mobility is the
same as that obtained using Stone’s model, which is not
really surprising as it has been chosen as the oil fractional
[(Fig._6)TD$FIG]

Fig. 6. Global capillary pressure Pg
c obtained with approach B.

Fig. 6. Pression capillaire globale Pg
c obtenue avec l’approche B.



[(Fig._7)TD$FIG]

Fig. 7. Global capillary pressure Pg13

c (left) and capillary pressure P13
c (right) calculated on the water-gas side.

Fig. 7. Pression capillaire globale Pg13

c (gauche) et pression capillaire P13
c (droite) calculées sur le côté eau-gaz.
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flow model f2 in approach A (see Section 3.1). Here,
mobilities which are built in approach A are based on an
approximated formulation of the global pressure while
results of approach B are obtained with the exact
formulation: the volume factors Bj are measured at
pressure level pj and not at the global pressure level p. If
the two approaches are both TD compatible, the global
mobility obtained in approach A (see Figs. 8 and 9) will

[(Fig._8)TD$FIG]

Fig. 8. Global mobility d obtained with approach A.

Fig. 8. Mobilité globale d obtenue suivant l’approche A.
tend to underestimate the total flux for s2< 40% compared
to approach B. This situation represents the majority of
cases encountered in real pollution situations with a plume
at residual oil saturation (s2<<< 40%). Furthermore, we
present specific results for Pg

c data on T13 (see Fig. 7, left). In
the case of approach B, the resulting water-gas capillary
pressure curve exactly fits the Van Genuchten model,
whereas at low water saturations, the capillary pressure
[(Fig._9)TD$FIG]

Fig. 9. Global mobility d obtained with approach B.

Fig. 9. Mobilité globale d obtenue suivant l’approche B.
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values of approach A are several times higher than the
physical data. This difference is a consequence of the sharp
contrast of the global mobility towards the gas vertex. This
difference is due to the TD relative permeabilities
optimized on the water-gas side (approach A). In approach
A, the total flow will thus be underestimated for three-
phase flows where the gas saturation is high.

5. Conclusion

In this article, we analysed two three-phase para-
meterisation approaches to assess the TD secondary
variables required for efficient multiphase flow simula-
tors using a global pressure formulation. Usually, experi-
mental three-phase data are rarely investigated inside the
three-phase water-oil-gas diagram (Bano et al., 2009; Oak
et al., 1990). From a practical point of view, these two TD
interpolations have given similar CPU times within the
order of a second. They represent robust and innovative
approaches for efficiently modelling three-phase flow
equations. Both methods satisfy the TD condition and
allow the three-phase compressible flow equation to be
rewritten in a more suitable fractional form; see equations
(6) and (8). However, by construction, the resulting two-
phase water-gas data, such as the capillary pressure curve,
differ between the original and the new TD interpolation.
When flow takes place only in a two-phase water-gas
system, TD three-phase data obtained by the optimization
(approach A) might be significantly different from that
derived using the finite element interpolation (approach
B). It also may differ from the data from methods using
classical capillary curves, such as the Van Genuchten
model, as is often employed in the field of environmental
sciences. As shown in Fig. 7, the finite element approach
seems to be more suitable for explicitly taking into
account two-phase capillary pressure and relative per-
meability data in a water-gas system. Furthermore,
optimization parameters may be difficult to select. They
depend on the governing parameters of the simulated
cases (eg. viscosities, pressure levels, etc.) and more
specifically initial values for the two relative permeability
models used on the water-gas side optimization. More-
over, numerical tests (see approach A) showed that the
global mobility field heavily depends on dynamic
viscosity of the gas phase. Therefore, a finite element
interpolation approach combined with a flow simulator
seems to be better suited to generate three-phase flow
variables than the optimization approach. In other words,
the finite element approach appears to be a robust and
efficient solution for three-phase flow simulation. At the
reservoir scale, we can expect these differences to have
little impact on the flow behaviour, as it is knwon that the
shock saturation mainly dominates two phase flows. Note
that in the TD approach, Chavent and Jaffré (1986) showed
that the hyperbolicity condition is not fully verified
particularly for large oil saturation values in the first Stone
model. This condition should be satisfied by any three-
phase data set if one wants small capillary pressure
problems to be well posed for any values of volume
factors. Besides, Stone’s models are not TD compatible and
therefore do not allow reformulation of the flow in a
simplified way (see (6). Further research will be focussed
on more systematic numerical flow comparisons with
other three-phase correlations.
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perméabilités relatives triphasiques satisfaisant une condition de
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