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A B S T R A C T

In this article, the complexities in the relationship between rainfall and sea surface

temperature (SST) anomalies during the winter monsoon over India were evaluated

statistically using scatter plot matrices and autocorrelation functions. Linear, as well as

polynomial trend equations were obtained, and it was observed that the coefficient of

determination for the linear trend was very low and it remained low even when

polynomial trend of degree six was used. An exponential regression equation and an

artificial neural network with extensive variable selection were generated to forecast the

average winter monsoon rainfall of a given year using the rainfall amounts and the SST

anomalies in the winter monsoon months of the previous year as predictors. The

regression coefficients for the multiple exponential regression equation were generated

using Levenberg-Marquardt algorithm. The artificial neural network was generated in the

form of a multilayer perceptron with sigmoid non-linearity and genetic-algorithm based

variable selection. Both of the predictive models were judged statistically using the

Willmott’s index, percentage error of prediction, and prediction yields. The statistical

assessment revealed the potential of artificial neural network over exponential regression.

� 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Dans cet article, les complexités de relation entre anomalies de pluviosité et de

température de surface océanique (SST) pendant la mousson d’hiver en Inde ont été

évaluées en utilisant les matrices de dispersion et les fonctions d’auto-corrélation. Des

équations à tendance linéaire, de même que des équations à tendance polynomiale ont été

obtenues et il a été observé que le coefficient de détermination dans le cas de la tendance

linéaire était très bas et restait bas, même quand la tendance polynomiale de degré 6 était

utilisée. Une équation de régression exponentielle et un réseau neuronal artificiel avec

sélection largement variable ont été générés, pour prédire la pluviosité moyenne de

mousson d’hiver, lors d’une année donnée, en utilisant en tant que prédicteurs les

anomalies de précipitations et de température de surface océanique pendant les mois de
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mousson d’hiver de l’année précédente. Les coefficients de régression pour l’équation de

régression exponentielle multiple ont été générés en utilisant l’algorithme Levenberg-

Marquardt. Le réseau neuronal artificiel a été généré sous la forme d’une perception

multicouche à non-linéarité sigmoı̈de et algorithme basé sur une sélection variable. Les

deux modèles prédictifs sont jugés statistiquement en utilisant l’index de Willmott, le

pourcentage d’erreur de prédiction et le rendement de bonne prédiction. L’évaluation

statistique révèle que le réseau neuronal artificiel a un potentiel supérieur à celui de la

régression exponentielle.

� 2010 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

Sea surface temperature (SST) in the tropical Indian
Ocean varies significantly at interannual time scales. This
variability is dominated by an Indian Ocean basin mode
and dipole mode. The Indian Ocean basin accounts for
about 30% of the total variance of the tropical Indian Ocean
SST anomaly (Yang et al., 2010). Murtugudde and
Busalacchi (1999) simulated the interannual variability
of the tropical Indian Ocean SST. The tropical Indian Ocean
is influenced by two contrasting air masses (continental
and marine) associated with the Indian monsoon system
(Li and Ramanathan, 2002). The summer monsoon
(southwest monsoon) usually starts by the end of May
and continues until November. The winter or northeast
monsoon rainfall, which occurs mainly from October to
December, is dominant over southern peninsular India,
consisting of the six meteorological subdivisions, coastal
Andhra Pradesh, Rayalaseema, south interior Karnataka,
coastal Karnataka, Tamilnadu, and Kerala (Rao, 1999)
(Fig. 1). The winter circulation prevails for the six months
from November to April. May and October are the
transitional months (Ananthakrishnan, 1977). During
summer monsoon, winds are mainly southwesterly or
westerly and during winter monsoon, the prevailing winds
are mostly northeasterly. The southwest (summer) mon-
[(Fig._1)TD$FIG]
Fig. 1. Map of southern India where winter or northeast monsoon rainfall

is prominent.

Fig. 1. Carte du Sud de l’Inde où les précipitations de la mousson d’hiver

ou du nord-est prévalent.
soon (SWM) and the northeast (winter) monsoons (NEM)
influence weather and climate between 30oN and 30oS
over the African, Indian, and Asian land-masses (Reddy and
Salvekar, 2003). Accurate long lead prediction of monsoon
rainfall can improve planning to mitigate the adverse
impacts of monsoon variability and to take advantage of
the beneficial conditions (Reddy and Salvekar, 2003). The
variability in the monsoon rainfall depends heavily upon
the SST anomaly over the Indian Ocean (Clark et al., 2000).
Several authors, for example Barsugli and Sardeshmukh
(2002), Branstor (1985), Clark et al. (2000), Guo et al.
(2002), Hartmann et al. (2007), Lau and Weng (2001),
Nicholls (1983) have discussed the association between
SST anomaly and rainfall. The SST anomalies cause local
changes in the low-level temperatures, winds, and
humidity, usually leading to precipitation anomalies in
the vicinity of the SST anomaly (Barsugli and Sardeshmukh
(2002)). Gradients of SST within the oceans are important
in determining the location of precipitation over the
Tropics, including the monsoon regions (Clark et al., 2000).

As the extra tropical circulation anomalies display
energy dispersion away from the region of anomalous
tropical convection, they are interpreted as a Rossby wave
response to the latent heat release associated with the
tropical convection (Ferranti et al., 1990). In regions of
anomalous tropical heating, there is a dynamical response
with anomalous large-scale ascent and upper tropospheric
divergence, which acts as a Rossby wave source (Sardesh-
mukh and Hoskins, 1988) for extra tropical waves.
Conversely, in regions of reduced convection and anoma-
lous cooling, the tropical responses are the anomalous
descent and upper-tropospheric convergence (Matthews
et al., 2004). Positive (negative) SST anomalies lead the
enhanced (suppressed) MJO convection by approximately
10–12 days (a quarter cycle), consistent with the atmo-
sphere responding to the ocean forcing (Matthews et al.,
2004). The SST anomalies themselves have been simulated
in thermo dynamical ocean models as the response to the
observed anomalous surface fluxes of latent heat and
short-wave radiation (Matthews et al., 2004; Shinoda and
Hendon, 1998) without the need to a mass flux approach
and closed on buoyancy. SST anomalies has been addressed
by Woolnough et al. (2000), who examined the equilibrium
response to an idealized, eastward-propagating equatorial
SST dipole anomaly in an ‘‘aquaplanet’’ atmospheric
general circulation model (AGCM).

The SST anomalies influence the atmosphere by altering
the flux of latent heat and sensible heat from the ocean
(Holton, 1972). The efficiency of such anomalies in exciting
global scale responses depends on their ability to generate
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Rossby waves. In the extra tropics SST, anomalies primarily
generate low-level heating and this is balanced by
horizontal temperature advection. In the tropics, positive
SST anomalies are associated with enhanced convection
and the resulting heating is balanced by adiabatic cooling.
SST anomalies also play an important role in producing
rainfall (Reddy and Salvekar, 2003). Linkage between Asian
winter monsoon and SST anomalies over tropical Indian
Ocean is discussed in the papers like Annamalai et al.
(2005), Yang et al. (2010) and the linkage between Asian
winter monsoon and SST anomaly in the tropical Pacific is
discussed in Wen et al. (2000).

El-Niño-Southern Oscillation (ENSO) is a coupled
Ocean-atmosphere phenomenon that has worldwide
impact on climate in general and Indian monsoons in
particular and the association between ENSO and Indian
monsoon rainfall has been thoroughly studied in Krishna-
murthy and Goswami (2000), Wu and Kirtman (2004) and
Xavier et al. (2007).

The long-recognized negative correlation between
Indian monsoon rainfall and ENSO (Webster and Palmer,
1997) in which a weak (strong) monsoon is related to a
warm (cold) event through an anomalous Walker cell
driven by tropical East Pacific SST anomalies, has
weakened rapidly since the late 1970s (Chang et al.,
2001). This weakened relationship is defined by the
correlation between June and September all-India rainfall
and Niño-3 (58S–58N, 1508–908W) SST (Chang et al., 2001;
Qiaoping et al., 2007). A handful of significant studies are
available where the relationship between SST and rainfall
has been studied (e.g. Nobre and Srukla, 1996; Uvo et al.,
1998). Chongyin (1990) investigated the relationship
between El-Nino event and NEM over South-East Asia.

The oscillations in wind stress owing to the Southern
Oscillation are associated with changes in the circulation of
the ocean and the SST anomaly that are referred to as El-
Nino. This term was originally applied to a warming of the
coastal waters of Peru and Ecuador, which occurs annually
near Christmastime. ENSO’s maximum SST anomalies
occur in the equatorial eastern and central Pacific, ENSO
affects the global ocean (Wang et al., 2006). Outside the
tropical Pacific significant ENSO related SST anomalies are
found over many places, such as in the tropical North
Atlantic, the tropical Indian Ocean, the extratropical North
and South Pacific, and the South China Sea (Deser et al.,
2004; Klein et al., 1999). The strength of ENSO is measured
by two principle indices namely Southern Oscillation Index
(SOI) and SST index over Nino-3.4 region, which refers to,
the anomalous SSTs within the region bounded by 5oN–5oS
and 170oE–120oW. Warm ENSO episodes are characterised
by increased number and intensity of tropical storms over
the Bay of Bengal and hence enhanced NEM rainfall. An
analysis of mean monthly data of 124 years by Bhanu
Kumar et al. (2004a) reveals that the relationship between
the SOI in April and May and the NEM rainfall during
October through December over South India is variable and
non stationery.

Present paper attempts to develop a predictive model
for NEM over India using SST anomaly as one of the
predictors. Some significant studies in the field of NEM
over East Asia and its association with SST anomalies have
been reviewed. The literatures include Qiaoping et al.
(2007), Wen et al. (2000) and Zhang et al. (1997) . A handful
of works are available on the prediction of SWM over India
(e.g. Guhathakurta, 2008; Sahai et al., 2000; Venkatesan
et al., 1997 and many others). However, limited studies
could be identified where prediction of NEM rainfall over
India has been discussed. During the NEM season, southern
peninsular India receives dominant rainfall. Nayagam et al.
(2009) studied spatial and temporal variability of rainfall
over Peninsular India during NEM. Bhanu Kumar et al.
(2004b) established a probable link between mean
September upper-air temperatures at Indian stations
and the ensuing winter monsoon rainfall over eight
individual meteorological subdivisions of southern India
where the winter monsoon accounts for a large percentage
of mean annual rainfall. During the season of NEM, India
receives about 11% of its annual rainfall, while many of the
above subdivisions receive 17–49% of their annual rainfall.
Major agricultural operations in this southern part of the
country are normally undertaken during this season. The
winter monsoon rainfall is of considerable economic
importance for this region, which constitutes about 15%
of the Indian subcontinent (Rao, 1999). Rao (1963)
provided a detailed description of the Indian NEM. Dhar
and Rakhecha (1983) examined the association between
the SWM and NEM rainfall over Tamilnadu for the 100-
years period (1877–1976) and found that the SWM rainfall
is negatively correlated with that of the northeast
monsoon. Singh (1995) studied the influence of Bay of
Bengal on NEM rainfall in two contrasting winter monsoon
years 1987 and 1988. Similarly, Raj (1996) studied the
thermodynamic structure of the atmosphere over coastal
Tamilnadu during the NEM season. Deviating from these
works, Rao (1999) examined the sub divisional and time
variations of the SO relationship with the rainfall over India
during summer as well as winter monsoon seasons, by
using long time data for the 122-years period from 1872 to
1993.

In the present work, we decided to generate a predictive
model for rainfall during NEM over India. From the above
discussion and the literatures mentioned in the earlier
paragraphs we felt the necessity of incorporating SST
anomaly as a predictor. Since artificial neural network
(ANN) is being attempted in several papers dealing with
complex non-linear meteorological events (e.g. Elsner and
Tsonis, 1992), we decided to attempt an ANN in this
problem. The subsequent sections are organized as
follows: section 2 discusses some literatures in the
application of ANN in rainfall prediction. Section 3
describes the structure of the time series considered in
the study. Section 4 describes theory, implementations
details, and statistical assessment of the ANN and non-
linear regression based models. The conclusion is pre-
sented in Section 5.

2. Artificial Neural Network in rainfall prediction – a
brief overview

Accurate rainfall predictions are essential for planning
day-to-day activities. Several papers are available where
the rainfall time series have been dealt with statistically
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(Bell and Suhasini, 1994; Singh and Kripalani, 2007; Ward
and Folland, 1991; Wilks, 1991). Present paper endeavours
to develop an ANN model to forecast average winter
shower in India. The ANN technique is widely accepted as a
potentially useful way of modeling complex non-linear
and dynamic systems for which a large amount of data is
used (Hornik, 1991; Hsieh and Tang, 1998). It is
particularly useful, where the underlying physical pro-
cesses or relationships are not fully understood or may
display chaotic properties (Sivakumar, 2000). Convention-
al weather forecasting models are highly data specific and
based on complex and expensive to maintain mathemati-
cal models that are built many months in advance of the
events. ANN offers real prospects for an effective, more
flexible, less assumption dependent adaptive methodology
well suited for modeling weather forecasting which by its
nature are inherently complex because of non-linearity
and chaotic effects (Maqsood et al., 2002). The ANN is
based on biological neural systems (Kartalopoulos, 2000).
It is highly vital with respect to underlying data distribu-
tion and no assumptions are made about relationships
between variables. The basic unit of ANN is the artificial
neuron, which stimulates the four basic functions of
natural neurons. The artificial neurons are much similar
than biological neuron. The input layers consist of neurons
that received input from the external environment. The
outputs of the system layer communicate to the user about
the external environment. There are usually numbers of
hidden layers between these two layers. To determine the
number of hidden neurons the network should have
performed its best, are often left out to the method trial
and error. Usually the available data are separated into
training set and test set. The optimal weights are obtained
by using ‘Back Propagation’. The quality of the prediction is
obtained from the performance with the test set of data.
The weights are determined by iteration to produce the
lowest error in the output. Initial weights are randomly
assigned in subsequent iterations, individual weights are
incrementally adjusted to reduce error (Kamarthi and
Pittner, 1999).

Since the last few decades, ANN has opened up new
avenues to the forecasting task involving atmosphere
related phenomena (Gardner and Dorling, 1998; Hsieh and
Tang, 1998). Michaelides et al. (1995) compared the
performance of ANN with multiple linear regressions in
estimating missing rainfall data over Cyprus. Kalogirou
et al. (1997) implemented ANN to reconstruct the rainfall
time series over Cyprus. Lee et al. (1998) applied ANN in
rainfall prediction by splitting the available data into
homogeneous subpopulations. Wong et al. (1999) con-
structed fuzzy rule bases with the aid of SOM and Back
propagation neural networks and then with the help of the
rule base developed predictive model for rainfall over
Switzerland using spatial interpolation. Application of
ANN in forecasting monsoon rainfall over India is not very
new. We have surveyed the literature and could get some
significant papers in this direction. Chattopadhyay (2007),
Chattopadhyay and Chattopadhyay (2010a); Guhatha-
kurta (2008); Sahai et al. (2000); Venkatesan et al.
(1997) implemented ANN based methodologies in predic-
tion of SWM rainfall over India. Iyengar and Raghu Kanth
(2005) decomposed the Indian monsoon rainfall time
series into six intrinsic mode functions, and handled the
non-linear part by ANN technique. In a study by Singh and
Deo (2007) alternative forms of neural networks have been
applied to forecast daily river flows on a continuous basis
with the purpose of understanding how recent architec-
tures like adaptive neuro fuzzy inference system (ANFIS),
generalized regression neural network (GRNN) and radial
basis function (RBF) and compared with traditional back
propagation ANN, when monsoon-fed rivers involving
significant statistical bias are involved. Banik et al. (2008)
used ANN, ANFIS, and genetic algorithm (GA) for forecast-
ing Bangladeshi monsoon rainfall and their findings
suggest that ANFIS and GA approaches can be used more
accurately than the other two selected approaches to
forecast the Bangladeshi monsoon rainfall. Chakraverty
and Gupta (2008) modelled southwest monsoon rainfall
over India using ANN with different network configura-
tions and predicted Indian southwest monsoon rainfall
6 years in advance. Karmakar et al. (2009) developed 3-
layer perceptron feed forward back propagation ANN
model on mean rainfall variable of 102-rainguage station
of Chhattisgarh, India.

3. Autocorrelation structure of the time series

The existence of autocorrelation in meteorological and
climatological data has important implications regarding
the applicability of some standard statistical methods to
atmospheric data. In particular, uncritical application of
classical methods requiring independence of data within a
sample will often give badly misleading results when
applied to strongly persistent series (Wilks, 2006, page 59).
The present article deals with the monthly average winter
shower data and the SST anomaly data from 1950 to 1998.
The rainfall and SST anomaly data have been collected
from www.tropmet.res.in and http://jisao.washingto-
n.edu/. The winter shower (mm) and tropical SST anomaly
(oC) has been examined for their autocorrelation pattern.
We have calculated autocorrelation function (ACF) for the
average (over November-January) rainfall time series up to
25 lags and displayed in Fig. 2a. This figure shows that the
ACF does not follow any specific sinusoidal pattern and the
autocorrelations fall below 0.3 in numerical value.
Moreover, the ACF is not decaying to 0 with increase in
the lag number. These features of the ACF indicate that the
time series does not have any persistence and it is not
stationary in nature. The ACF of the average NEM rainfall
has been examined because this is the prediction of the
modeling problem. The monthly rainfall amounts in
November, December, and January are also examined for
their ACF and similar nature is discerned (Fig. 2b-d).
Similarly, the ACF are calculated for tropical SST anomaly
in the said months (Fig. 3a-c) and it is revealed that ACF for
the SST time series are remaining at positive level up to
more than 10 lags. However, the ACF is lying below 0.5 in
magnitude. This indicates that despite more positive
association with past values than the NEM rainfall no
persistence exists within the time series. Like the rainfall
time series, the ACF for SST anomaly is not showing any
sinusoidal pattern and hence it can be said that stationarity

http://www.tropmet.res.in/
http://jisao.washington.edu/
http://jisao.washington.edu/
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Fig. 2. (a). Autocorrelation function (ACF) for rainfall averaged over

November, December, and January in India and during November (b),

December (c), and January (d) over India.

Fig. 2. (a). Fonction d’auto-corrélation (ACF) pour la pluviosité moyennée

sur novembre, décembre et janvier en Inde et pendant les mois de

novembre (b), décembre (c) et janvier (d) sur l’Inde.

[(Fig._3)TD$FIG]

Fig. 3. Autocorrelation function (ACF) for tropical sea surface

temperature (SST) anomaly during November (a), December (b), and

January (c).

Fig. 3. Fonction d’auto-corrélation pour l’anomalie de température de la

surface océanique (SST) tropicale pendant les mois de novembre (a),

décembre (b) et janvier (c).
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is not there with the SST anomaly time series. Thus, it can
be said that neither the time series of the predictors (i.e.
rainfall amounts and SST anomaly in November, Decem-
ber, and January for year n) nor the time series of the
predictand (i.e. average NEM rainfall for year (n + 1))
exhibits stationarity. The non-linear association between
the predictors and the predictand is also apparent from the
widely distributed data clouds in the scatterplot matrix
presented in Fig. 4. The scatterplot matrix, which shows
the arrangement of individual scatterplots, is a graphical
extension of the correlation matrix. The physical arrange-
ment of the correlation coefficients in a correlation matrix
is convenient for quick comparisons of relationships
between pairs of variables, but distilling these relation-
ships down to a single number such as a correlation
coefficient inevitably hides important details (Wilks, 2006,
page 65). In the scatterplot matrix presented in Fig. 4, it is
found in all rows and columns that there is no linear
association between the SST anomalies and the NEM
rainfall amounts. It is apparent from the absence of any
straight line like clouds of data pairs in the scatter
diagrams. Even in the case of rainfall amounts or SST
anomalies, there are no linear associations between the
monthly observations. In Fig. 5, we have calculated the
cross-correlation functions (CCF) between average SWM
rainfall time series and SST anomalies for the three winter
months under consideration. We have calculated by taking
the predict and (average NEM rainfall) as fixed time series
and time shifting the SST anomaly data set relative to the
predictand. It is observed that there is no symmetry in the
CCF plot about the horizontal (lag k) axis. This indicates
that there is stable relationship between the two time
series under consideration. Moreover, none of the cross
coefficients are showing any high value, which indicates
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Fig. 4. Scatterplot showing the association between pairs of data considered in the study.

Fig. 4. Diagramme de points montrant l’association entre paires de données considérées lors de l’étude.
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that there is no strong association between SST anomalies
and NEM rainfall amounts. Computation of cross correla-
tion has been performed using the software citable as
Wessa (2010). The ACF, scatterplot, and CCF strongly
indicate the requirement of ANN in the present prediction
problem.

4. Theory

4.1. Multiple non-linear regression

Initially, all of the six predictors are tested over time for
their trend. Linear as well as non-linear (polynomial of
degree 6) trend equations (Wilks, 2006) are examined and
the corresponding coefficients of determination (R2) are
calculated. We have presented the values of R2 in Table 1,
which shows that in all of the cases the values are small.
This indicates the absence of any significant trend within
the time series of all of the predictors. In the previous
section, the non-stationarity of the time series under study
has been revealed. It is also understandable from the ACF
patterns that there are no seasonality and trend in the time
series. Non-linear regression equations are now generated
to discern the relationship between the predictors and
predictands. A non-linear regression equation involving
exponential terms is generated as follows (Chattopadhyay
and Chattopadhyay, 2008a):

ŷ ¼
X6

i¼1

aiexp bixið Þ: (1)

where, ai, bi are the regression parameters, and
xi i ¼ 1;2; :::;6ð Þ denote the six predictors i.e. rainfall in
November, December, January, and the tropical SST
anomalies in November, December, and January respec-
tively for the year n; in the left hand side ŷ denotes the
estimated average NEM rainfall in the year (n+1).

The regression parameters are estimated using Leven-
berg-Marquardt algorithm and iterating up to 500 steps.
Finally, the regression parameters come out to be 0.355
a1ð Þ, 0.031 b1ð Þ, 4.705 a2ð Þ, 0.018 b2ð Þ, 2.505 a3ð Þ, 0.056 b3ð Þ,

4.730 a4ð Þ, 0.001 b4ð Þ, 3.343 a5ð Þ, 0.001 b5ð Þ, 3.480 a6ð Þ, and
0.002 b6ð Þ. The results would be analyzed statistically in
the subsequent sections.
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Fig. 5. The cross correlation function (CCF) between the average monsoon

rainfall time series and SST anomalies for November (a), December (b)

and January (c).

Fig. 5. Fonction de corrélation croisée (CCF) entre les séries temporelles

moyennes des précipitations de mousson et les anomalies de température

de la surface océanique (SST) pour les mois de novembre (a), décembre (b)

et janvier (c).

Table 1

Coefficient of determination (R2) of linear and polynomial trends.

Tableau 1

Coefficient de détermination (R2) des tendances linéaire et polynomiale.

Parameters R2 for linear

trend

R2 for polynomial

trend (degree 6)

November-SST 0.0029 0.1725

December-SST 0.0026 0.1592

January-SST 0.0052 0.1241

November-shower 0.0057 0.1837

December-shower 0.0822 0.1574

January-shower 0.024 0.0466

SST: sea surface temperature.
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4.2. Artificial Neural Network

In the present paper, the data have been transformed to
�1;þ1½ � before applying them to ANN formation using the

transformation

yi ¼ �1þ 2 xt � xminð Þ xmax � xminð Þ�1 (2)

This transformation is performed to get rid of the
asymptotic effect arising from the sigmoid activation
function to be used in the ANN model. A thorough
discussion on the usefulness of scaling of data prior to
ANN model generation is presented in Section 5 of Maier
and Dandy (2000). An exhaustive variable selection
procedure is adapted to find a good subset of the full set
of input variables created as a result of data analysis and
transformation. This selection has been done by means of
genetic algorithm, where the cross over probability and
mutation factor has been selected as 0.7 and 1, respective-
ly, while generating the ANN model in the form of
multilayer perceptron (MLP), using a modified cascade
method together with an adaptive gradient learning rule
(Lundin et al., 1999). The cascade mode of construction
involves adding hidden nodes, one or more than one at a
time, and always connecting all the previous nodes to the
current node. The Cascade-Correlation architecture has
several advantages over existing algorithms: it learns very
quickly, the network determines its own size and topology;
it retains the structures it has built even if the training set
changes (Fahlman and Lebiere, 1990).

The adaptive gradient learning rule uses back-propa-
gated gradient information to guide an iterative line search
algorithm. Sigmoid function ( f xð Þ ¼ 1þ e�xð Þ�1) (Widrow
and Lehr, 1990) has been used as activation function for
both hidden and output layer. From the entire dataset
under consideration, we have chosen 70 percent of the
original data as training set. The training set formation has
been done using the method of Round Robin (O’Neill and
Song, 2003), which is an arrangement of choosing all
elements in a group equally in some rational order, usually
from the top to the bottom of a list and then starting again
at the top of the list and so on. The root mean squared error
(RMSE) has been used to evaluate the model. After training,
the network has been validated over the entire dataset. It
should be mentioned that there is no strict rule to decide
the ratio of training and test cases. In a survey on the ANN
literatures it is found that the ratios 1:1 (Chattopadhyay
and Chattopadhyay, 2008b), 7:3 (Lundin et al., 1999), and
3:1 (Perez et al., 2000, Perez and Reyes, 2001) are
frequently used in ANN applications. In the present paper
the approach similar to that of Lundin et al. (1999) has
been adopted after examining the other approaches. The
ANN has been validated over the entire dataset under
consideration. We have started with 30 nodes in the
hidden layer and after training through adaptive gradient
learning, we have obtained the final structure of the MLP as
5-12-1. It should be noted that this is the optimal
architecture of the ANN. Number of hidden nodes has
reduced to 12 because this has led to the minimum mean
squared error. The error curve showing the evolution of the
mean squared error with the number of epochs is shown in
Fig. 6. This implies that there are five units (it is reduced
from six due to exhaustive variable selection) in the final
input set, twelve nodes in the final hidden layer, and there
is only one output node. Results obtained from this
network architecture are explained in the subsequent
section.

4.3. Statistical assessment

In the present section, the results obtained in the last
two sections would be analyzed. A confusion matrix
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Fig. 6. Evolution of the mean squared error with epochs while training

the artificial neural network (ANN).

Fig. 6. Évolution de l’erreur quadratique moyenne pendant le déroule-

ment du réseau neuronal artificiel (ANN).

Actual sub ranges

Confusion

matrix

4.23 13.13 22.02 30.91 39.81 Totals

Predicted

sub ranges

4.23 2 8 0 0 0 10

13.13 2 10 3 1 0 16

22.02 0 4 8 0 0 12

30.91 0 1 2 2 1 6

39.81 0 0 2 0 1 3

Total 4 23 15 3 2 47
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(Fielding and Bell, 1997), whose rows and columns
represent the sub-ranges for the real world target and
model outputs respectively, has been generated to view
the prediction capacity of the ANN model. The value in the
(i,j) position of the matrix is the number of records for
which the real world target output is in the ith sub-range
and whose real world model output is within the jth sub-
[(Fig._7)TD$FIG]
Fig. 7. Scatter plot showing the associations between actual rainfall amounts a

regression.

Fig. 7. Diagramme de dispersion de points montrant les associations entre ten

artificiel (ANN) et la régression non linéaire.
range. The confusion matrix for the ANN prediction comes
out to be:
From the above matrix, it is found that for the sub range
(4.23 mm to 13.13 mm) there are actually 23 observations
and 16 predictions fall in this sub range. Thus, 69.57%
accuracy is there for this sub range. For the sub range
13.13 mm to 22.02 mm, there are actually 15 observations
and 12 predictions fall in this sub range. This means that
there is 80% accuracy for this sub range. Thus, it can be
interpreted that for higher NEM rainfall amounts there is
more possibility of accurate forecast by ANN than in the
case of lower rainfall amounts. Following Kuligowski and
Barros (1998), we call the error of underforecast by dry bias
and subsequently over forecast by wet bias. It is observed
that there is lower possibility of dry bias than wet bias,
nd those predicted by the artificial neural network (ANN) and non-linear

eurs en précipitations actuelles et celles prédites par le réseau neuronal
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Fig. 8. Line diagram of the actual and predicted rainfall amounts for the

validation cases of the artificial neural network (ANN).

Fig. 8. Tracé linéaire des teneurs en précipitations actuelles et prédites

pour les cas de validation du réseau neuronal artificiel (ANN).
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which indicates that the model tends to overforecast
precipitation amount in some validation cases. This may be
due to the presence of some heavy rainfall events during
training of the ANN.

In the next step, the predictions are judged using the
scatter plot matrix presented as Fig. 7, where it is apparent
that the data cloud is well distributed around the linear
trend line, thus it is understood that there is a good linear
association between the actual and the ANN predicted
values, which is further supported by the correlation
coefficient of 0.641. However, the values deviated signifi-
cantly from the trend line indicate that there are some
cases where the prediction performance of the ANN is not
satisfactory. Now, the predictions from ANN are judged
case wise over the entire validation set. Line diagram
presented in Fig. 8 shows the comparison between actual
and predicted rainfall amounts for the validation cases.
Computing the percentage of errors in the validation cases
we find that if maximum 15% error of prediction is allowed,
then prediction yield is 0.30. If 20, 25, and 30% errors of
prediction are allowed, then the prediction yields are 0.45,
0.55, and 0.62 respectively.

Now we consider the predictions from the exponential
regression presented in Eq. (1). Observing the scatter plot
presented in Fig. 4, we find that there is a near-linear
association between actual and regression-predicted
values of the rainfall. To test the results statistically we
calculate the Willmott’s index (WI) for the regression as
well as ANN. The Willmott’s index is given by (Willmott,
1982):

WI ¼ 1�
XN

i¼1

Pi � Oið Þ2=
XN

i¼1

Pi � Ō
�� ��þ Oi � Ō

�� ��� �2

" #
(3)
Table 2

Values of different statistical parameters used to assess the prediction potentia

Tableau 2

Valeurs des différents paramètres statistiques utilisés pour évaluer le potentiel

(ANN).

Models Willmott’s

index

Percentage error

of prediction

Prediction yield

(for 15% error)

Regression 0.67 30.96 0.23

ANN 0.72 27.16 0.30
where, Oi, Pi, and Ō denote the observed value in the ith
case, predicted value in the ith case, and mean observed
value respectively.

The utility of WI in judging the predictions has been
discussed thoroughly in Chattopadhyay and Chattopad-
hyay (2008a). In the present case, the WI for non-linear
regression and ANN come out to be 0.672 and 0.724
respectively. As the higher value of WI indicates better
predictive model, it can be said that the ANN based
predictive model performs better than non-linear regres-
sion. Further, we calculate percent error of the prediction
(PE) given by (Chattopadhyay, 2007):

PE ¼ Pi � Oij jh i
Oih i

� 100 (4)

where, h i implies the average over the whole test set.
The predictive model is identified as a good one if the PE

is sufficiently small. In the present case, PE for non-linear
regression and ANN come out to be 30.96 and 27.16
respectively. This further proves that ANN is performing
better than regression in predicting NEM rainfall. Like
ANN, the prediction yields are also calculated for the non-
linear regression based prediction. It is found that if 15, 20,
25, and 30% errors of prediction are allowed, then the
prediction yields are 0.23, 0.30, 0.45, and 0.51 respectively,
and each of the prediction yields is less than the
corresponding values in the case of ANN. This further
proves the better prediction potential of ANN than
regression. For better viewing, the values of the statistical
parameters are presented in Table 2.

It should be noted that there may be atmospheric
problems where regression may perform better than ANN
(e.g. Chattopadhyay and Chattopadhyay, 2010b). The
physical mechanism that is behind the better performance
of ANN than the exponential regression in the present
problem may be the following:
� t
l

de
here is an unstable relationship (indicated by the cross-
correlation function) between the SST anomalies and
NEM rainfall, and it is well-established fact that ANN
performs better than conventional regression in such
cases where underlying processes are difficult to
understand;

� u
se of cascade mode while training the MLP has its own

advantages over the regression approach;

� a
s the predictor-predictand relationship is highly non-

linear (indicated by the very small correlation coeffi-
cient), ANN has proved its well-established prediction
potential over a non-linear regression model.
of regression and artificial neural network (ANN) based models.

régression prédit et les modèles basés sur le réseau neuronal artificiel

Prediction yield

(for 20% error)

Prediction yield

(for 25% error)

Prediction yield

(for 25% error)

0.30 0.45 0.51

0.45 0.55 0.62



G. Chattopadhyay et al. / C. R. Geoscience 342 (2010) 755–765764
5. Conclusion

The present article dealt with the prediction of NEM
rainfall time series over India. The study compared
Machine-learning approach namely ANN and a statistical
approach namely exponential regression method for
forecast of NEM rainfall using SST anomaly as a predictor.
The purpose was to predict the average winter-monsoon
rainfall using six predictors. To do the same, we
considered the rainfall amounts and the SST anomalies
for the NEM months of a given year to predict the average
NEM rainfall of the next year. Consequently, we had six
predictors and one predictand. The study also justified the
use of non-linear methods for prediction of rainfall by
analyzing autocorrelation structure of the data series. The
results showed that ACF neither follows any specific
sinusoidal pattern nor the autocorrelations fall below 0.3
in numerical value. These features of the ACF indicate that
the time series does not have any persistence and it is not
stationary in nature. Thus, highly non-linear trends and
absence of any serial correlation in the time series under
study prompted us to go for a non-linear regression
equation in the form of exponential regression. To
compare the results of the non-linear methods i.e.
exponential regression and ANN, Willmott’s index,
Prediction Errors, Yield of Prediction and scatter plots
were used. Higher value of Willmott’s index for ANN
(0.724) as compared to exponential regression (0.672)
favours the ANN method for rainfall prediction. Lower
value of Prediction Error for ANN (27%) as compared to
exponential Regression (30%) recommends ANN approach
over the other non-linear methods of prediction of
rainfall. Average Yield of Prediction was 11% higher for
ANN than regression method. Further, visual inspection of
linearity in scatter plots (actual vs. predicted values) for
each method using all the cases shows that there is
apparently more linearity in ANN method as compared to
the regression method hence ANN method should be used
for predicting the rainfall. The results obtained in the
paper are specifically valid for the data collected for India.
In future, there is a scope to apply the similar methodology
to other regions in the world and suggest general
suitability of ANN over other methods for prediction of
rainfall using SST anomaly.
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