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Abstract

Upscaling is needed to transform the representation of non-additive space-dependent variables, such as permeability, from the
fine grid of geostatistical simulations (to simulate small-scale spatial variability) to the coarser, generally irregular grids for
hydrodynamic transport codes. A new renormalisation method is proposed, based on the geometric properties of a Voronï grid. It is
compared to other classic methods by a sensitivity analysis (grid, range and sill of the variogram, random realisation of a
simulation); the criterion is the flux of a tracer at the outlet. The effect of the upscaling technique on the results appears to be of
second order compared to the spatial discretisation, the choice of variogram, and the realisation. To cite this article: M. De Lucia et
al., C. R. Geoscience 341 (2009).
# 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Calcul de la transmissivité de bloc en maillage polygonal irrégulier 2D pour un écoulement monophasique : une étude
de sensibilité. Le changement d’échelle pour la perméabilité est incontournable, entre une simulation géostatistique sur grille fine
(reproduisant la variabilité spatiale à petite distance) et le maillage plus grossier et généralement irrégulier des codes de transport.
Une nouvelle méthode de renormalisation, exploitant les propriétés géométriques du maillage de Voronï, est comparée à deux
méthodes classiques, par une étude de sensibilité (maillage, portée et palier du variogramme, tirage ou « réalisation » d’une
simulation) suivant un critère de flux d’un traceur en sortie de perméamètre. La technique de changement d’échelle apparaît du
second ordre par rapport à la discrétisation spatiale, au variogramme et à la réalisation. Pour citer cet article : M. De Lucia et al., C.
R. Geoscience 341 (2009).
# 2009 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

Upscaling is a required step to adapt a fine grid
geostatistical simulation (to reproduce spatial varia-
bility at a different scale) to equivalent parameters on
(usually irregular) grids used by transport codes. A
new renormalisation method is proposed, based on
the properties of a Voronï grid used in the code Hytec,
to compute the inter-block permeability; this method
does not require the knowledge of the local flow
direction. Our computation of the scalar block
permeability is compared to two other classical
renormalisation methods, based on a parametric
sensitivity analysis to the spatial variability, in two
dimensions. The chosen observable is the cumulative
flux of a non-reactive tracer through the outlet of the
domain.

2. Bibliographical elements

Since the Renard and de Marsily synthesis [19],
developments on upscaling methods are still carried out,
in various domains: multiphase flow [6], fractured
media [10,11,21], reactive transport [14], etc. Two
general classes of methods can be highlighted:

� on the one hand cell aggregation, which aims at
adapting the grid to the medium properties and the
flow boundary conditions [1,3,12];
� on the other hand, methods which aim at attributing

equivalent values (or at least an interval) for
properties on a fixed geometry.

The second seems better adapted for numerical
models with a high spatial variability [7], particularly
when permeability or transmissivity are obtained
by geostatistical simulations based on the anamor-
phosed Gaussian model. Furthermore, for reactive
transport applications, the possible evolution of the
pore structure, due to precipitation or dissolution
reactions, is still a serious limitation to the use of
adaptive grids.

2.1. Block permeability: exact results or
inequalities

The equivalent permeability of a block is precisely
known in a few particular cases [16]. According to the
fundamental inequality, a block permeability is
bounded by the harmonic- and the arithmetic-mean
of its elements. When the permeability is simulated on a
fine grid, the interval can become very large, if the
blocks are constituted of numerous fine cell elements, or
if the dispersion variance of the permeability of the cells
inside the block is high. Several authors suggested
tighter bounds, for particular media or boundary
conditions [18]. For instance, for relatively general
conditions (linear pressure or constant flux on the
boundary), Pouya [17] shows the rise of two particular
tensors, linked by an inequality: equivalent permeabil-
ities in the direction of the mean gradient and the mean
flux respectively. He then proposes to use these tensors
as upper and lower bounds for the results, according to
the problem to solve. While bounding the result is more
rigourous, ‘‘realistic’’ values are sometimes sufficient,
particularly when the computation times are large as in
reactive transport.

2.2. Empirical formulas

For lack of a general rule for permeability
composition, several empirical formulas have been
studied, notably renormalisation methods: iterative
treatments to remove small scale fluctuations [8]. In
the following, we retain two expressions of block
permeability.

The first one is based on Matheron’s formula [16], a
composition of the arithmetic mean ma and the
harmonic mean mh, as a function of the dimension D
of the space:

KM ¼ ðmaÞaðmhÞ1�a (1)

where a ¼ D�1
D . In dimension 2,

KM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma � mh

p

so that the equivalent transmissivity is the geometric

mean of the harmonic and the arithmetic means of the

transmissivities of the cells inside the block. This for-

mula has since been generalised, e.g., [2,4].

The second method is based on the simplified
renormalisation by Renard and Renard et al. [18,20]: it
consists in an iterative composition of the values of the
elementary cells contained by the block, alternating
arithmetic and harmonic means. This method yields two
bounds, following each axis of the grid: the lower (cmin)
and upper (cmin) bounds are obtained when the first
iteration uses a harmonic and an arithmetic mean,
respectively. These bounds are then composed by
power-average, taking into account the medium
anisotropy if needed. Let u be the assumed direction
of the tensor, taken parallel to one of the axes for
simplicity; let cu

min and cu
max be the associated lower and

upper bounds, respectively; let Ku be the diagonal
component of the permeability tensor on the elementary
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cell in this direction. Then, for a 2D isotropic medium,
the simplified renormalisation is the geometric mean of
the two bounds given by the alternating means:

Ku
SR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cu

max � cu
min

p
(2)

This relationship is similar to Matheron’s formula,
but applies with tighter bounds. For an anisotropic
medium, the upscaling transforms a scalar permeability
into a tensorial permeability. If the flow solver accepts
scalar values only, the block permeability can be
computed by assuming the direction of the head
gradient to be known. In 2D, for a diagonal permeability
tensor in the directions (Ox,Oy), the permeability along
the flow direction~s ¼ ðcosu; sinuÞ is:

KRS ¼ cosu � KX
SR þ sinu � KY

SR

When the local direction of the flow~s is not known,
the consistency of the equivalent permeability obtained
by this method decreases when the effective direction of
~s diverges from its supposed direction.

3. Irregular grid renormalisation

In his Ph.D thesis, Renard extends the simplified
renormalisation to irregular blocks, by weighting the
successive means depending on the blocks geometry
([18], p. 92–93). In the following, we investigate the
transmissivity composition for a 2D medium, dis-
cretised by an irregular grid. While we work in the
plane, we still use the term ‘‘permeability’’: this is
consistent, e.g., with a flow in a constant depth
aquifer. The flow code is briefly introduced, then a
new upscaling method is proposed, based on the
specific properties of the spatial discretisation
scheme.

3.1. The Hytec code: finite volumes on a Voronï
polygons grid

Hytec [13,14] is a coupled hydrodynamic and
geochemistry code. It is based on the resolution of the
macroscopic equations of flow and advective/disper-
sive transport on a finite volumes scheme (or integrated
finite differences), using a spatial discretisation by
irregular Voronï polygons. The convex polygons are
built, starting from an arbitrary set of points, by
intersection of the perpendicular bisector of each pair
of nodes. In a finite volumes formulation, all
parameters are considered uniform inside each poly-
gon.
For a one-phase stationary flow, Hytec solves the
diffusivity equation and the associated Darcy’s equation
[15]:

0 ¼ div ðK � grad
!

hÞ
~U ¼ �K � grad

!
h

(

where h is the head (in m), ~U is the Darcy velocity

vector (in m/s), and K the permeability (in m/s). The

equation is resolved with respect to the unknown h; then

the normal component of ~U is computed, on each cell

boundary, via Darcy’s equation. Once determined the

flow velocity field, the transport equation is written:

@vc

@t
¼ div ððDe þ ak~UkÞ � grad

arrow

c� c � ~UÞ

where v is the porosity, c is the tracer concentration, De

is the effective diffusion coefficient (in m2/s) and a the

dispersivity (in m).

Hytec proposes a choice of algorithms for the
resolution of the transport equation. The time and space
interpolations are one-step, but the centring can be
configured by the user. We chose for this study a time-
centred pattern (Crank–Nicholson scheme), which has
little effect on the result apart from the maximum
admissible time step.

As to the space discretisation, Hytec proposes both
an upward and a centred scheme. The first is
unconditionally stable, but creates a numerical disper-
sion term (mathematically equivalent to a physical
dispersivity a), locally of the order of a half-cell
diameter. The second scheme is space-centred: it does
not create numerical dispersion, but its stability is
conditional on the local value of a. The first scheme is
generally preferred for coupled reactive transport
problems: indeed, the geochemistry usually limits the
effects of dispersion by a chemical sharpening of the
fronts. However, the numerical dispersion is propor-
tional to the (local) size of the cells, so that an accurate
comparison between several grid computations is
difficult. The effects of the space centring are discussed
further in the results, section 5.

3.2. Simplified renormalisation for a polygonal cell
(Fig. 1)

The simplified renormalisation algorithm can be
readily adapted to an irregular mesh, by weighting the
means at each iteration according to the actual number
of cells inside the polygon. This is indeed a local
algorithm.
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Fig. 1. Simplified renormalisation on a polygonal cell. When the flow direction is known a priori, the renormalisation is performed on the circum-
rectangle, with weighting according to the relative surface of the blocks inside the polygon.

Fig. 1. Renormalisation simplifiée sur maille polygonale. La direction du flux étant fixée a priori, on procède à la renormalisation sur le rectangle
qui contient le polygone, en pondérant les moyennes par la surface relative des blocs qui recouvrent le polygone.
In the following, a ‘‘cell’’ will refer to the fine regular
mesh of the geostatistical simulation. The simplified
renormalisation algorithm on an irregular mesh is then
as follow (see Fig. 1):

1. each polygonal mesh is discretised into cells,
following the circum-rectangle of the polygon;

2. a weight 1 is attributed to each cell if the centre of the
cell is inside the polygon, 0 otherwise;

3. the permeabilities of the rectangle are iteratively
composed, weighted by the sum of the cells used at
the iteration; therefore, if the centre of mass of a cell
falls out of the polygon, the permeability of the cell is
not taken into account.

The last step of the algorithm is repeated until a
unique value is obtained for each polygon, for the
considered mean.

3.3. Normal component renormalisation

Using the properties of a Voronï mesh, we can
introduce an empirical upscaling, without hypothesis on
the flow direction and on the principal directions of the
permeability tensor. Indeed, the mass balance equation
is computed using only the normal component of the
flux between adjacent polygons.

For each polygon, an equivalent permeability is
computed by considering the polygon as a sum of
triangles: their bases are two adjacent vertices of the
polygon and their summit the centre of the polygon
(Fig. 2, right). By construction of the Voronï mesh, the
triangles with common base from two adjacent
polygons are identical, in particular their surface areas
are the same. These triangles are gathered by pairs to
form ‘‘kite’’ figures. The inter-block permeability used
by the finite volume scheme is precisely the block
permeability of these quadrilaterals, following a similar
reasoning to [9]. In the mass balance, only the normal
component of the flow through the shared side of two
adjacent polygons is used; for this normal flow, the
equivalent permeability can be computed, e.g., by
simplified renormalisation.

Due to historical choices, the code Hytec uses only
scalar components: indeed, in coupled reactive trans-
port phenomena, the geochemistry often limits the
effects on the transport of a possible anisotropy of the
medium. Assuming isotropic conditions, the diagonal
terms of the permeability tensor obtained by this
method are combined following the direction of the
normal flow, which is determined by the mesh geometry
(by construction of the Voronï mesh). This inter-block
permeability is used directly in the Hytec code: it
corresponds to the mid-nodal permeability of finite
differences. It is worth mentioning that the discretisa-
tion obtained by this method is finer than the finite
volume partition of space for which the permeability
would be uniform inside each polygon. To preserve the
consistency with the finite volume formalism, a intra-
block upscaling of the permeability can also be
computed: each polygon can be divided in as many
triangles as it has vertices (two adjacent vertices form
the basis of the triangle, the centre of the polygon forms
its summit); on these triangles, the simplified renorma-
lisation yields a value of the equivalent permeability for
a flow normal to the opposite side. The equivalent
permeability are then composed to get the equivalent
permeability of the polygon; an arithmetic composition
has been chosen, weighted by the relative surface of
each elementary triangle of the polygon.
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Fig. 2. Renormalisation along the normal component. The geometry
of the grid gives the local direction of the normal flow. For the intra-
block formulation, the permeability is computed on each sub-triangle,
with a final recomposition to obtain the equivalent permeability of the
polygon. For the inter-block formulation, the equivalent permeability
on each quadrangle (pair of adjacent triangles) is provided as is to the
hydrodynamic model.

Fig. 2. Renormalisation suivant la composante normale. La géomé-
trie du maillage fixe la direction du flux normal. Dans la version intra-
bloc, on calcule les perméabilités de chaque triangle et on les
recompose pour obtenir la perméabilité équivalente du bloc. Dans
la version inter-bloc, la perméabilité équivalente de chaque
« losange » est fournie directement au modèle.

Fig. 3. Boundary conditions for the numerical experiments.

Fig. 3. Conditions aux limites pour les expériences numériques.
For anisotropical cases, the reasoning is not so easy.
Beyond the necessity to take the permeability tensor
into account, it is no longer possible to use the
simplification based on the normal component of the
flow at each polygon interface, so that the renormalisa-
tion scheme has to be heavily modified.

In the following, all three modes of composition are
tested: Matheron’s mean, simplified renormalisation,
renormalisation along the normal component of
the flow. Each yields two values: an intra-block
permeability (uniform inside each polygon), and an
inter-block permeability (on the quadrilateral between
the centre and adjacent side of each pair of adjacent
polygons). For the simplified renormalisation, the
(intra- or inter-block) scalar permeability is computed
assessing a local direction of the flow parallel to the
macroscopic head gradient, determined by the boundary
conditions.

4. Design of the numerical experiments

The sensitivity study aims at discriminating between
the influence of the spatial variability of the medium
(represented by the geostatistical simulation on the fine
grid) and the representation of this variability, which
depends on the spatial discretisation for the finite
volumes and the upscaling scheme. To this end,
numerical experiments are carried out on geostatistical
simulations of the permeability only; inter- or intra-
block equivalent values are computed using all three
upscaling methods, for several types of Hytec grids.

The domain of study is a permeameter: it consists in
a rectangle, with a uniform inflow along a boundary, a
uniform constant head condition along the opposite
boundary, while the other two boundaries are imperme-
able (Fig. 3). The permeameter has been extended with
two lines of cells just outside the control lines, for better
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control of the boundary conditions independently of the
polygonal grid inside the permeameter. At the initial
time, a perfect tracer A is at constant concentration 1
inside the permeameter; the incoming flow flushes the
permeameter with a tracer B at concentration 1 (and no
tracer A).

In the bulk of the permeameter, the permeability K is
assumed lognormally distributed, obtained from a
(multi-) Gaussian random function Y:

K ¼ Mes�Y�s2

2 (3)

where M is the arithmetic mean, and s2 the logarithmic

variance of the permeability. In this model, the spatial

variability is characterised by the variogram g of the

random function Y. Once fixed the variogram model

type (spherical, exponential), the set of parameters

which fully describe the spatial model is limited to

the range a (correlation length) and the standard devia-

tion sln K of the Napierian logarithm of the permeability.

Due to the choice of boundary conditions, the flow is

independent of the mean M of the permeability. We

chose M = 10�3 m/s.

The results of the study are all presented adimen-
sionally; e.g., the length of the field is fixed to
L = 100 m: all the other parameters of the same
dimension (range of the variogram, dispersivity,) are
given relative to the unit L. For the hydrodynamics
resolution, the time is expressed adimensionally, as a
number of pore volumes injected (the total pore volume
is equal to the surface of the permeameter in 2D
multiplied by its mean porosity); we refer to this
adimensional time also as ‘‘water renewal cycles’’.

The observable chosen to describe the system is the
cumulative flux of tracer through a control line at the
outlet of the permeameter: tracer A, initially at
concentration 1 inside the permeameter, is flushed
Fig. 4. Grids for the second series of numerical experiments.

Fig. 4. Maillages de la deuxième série d’expériences.
out by the injection of fresh (A-free) water at the inlet.
Throughout the study, we will show the cumulative flux
of A through the outlet after an adimensional time 0.8
(i.e. after 80% of the pore volume has been renewed).
This particular time is particularly interesting: later on,
most of the initial tracer has been flushed, so that the
cumulative fluxes are close to the initial total amount of
A; for shorter amounts of time, the effects of the spatial
variability are still limited to the neighbourhood of the
inlet, and have low effects on the fluxes at the outlet.

Two series of numerical experiments were carried
out. The first one is based on a 64 � 64 geostatistical
simulation, which allows for a Hytec reference
simulation, without preliminary upscaling. The upscal-
ing techniques are then applied to build coarser Hytec
grids: 16 � 16 and 8 � 8 rectangular grids. For both
sizes, three classes of Hytec grids are investigated:
regular rectangular, diamonds (actually 458-tilted
rectangles), and rectangular with diamond inclusion
(Fig. 4); so that six coarse grids are investigated. For the
second series of numerical experiments, 500 � 500
reference simulations have been attempted. However,
the implicit geochemistry in Hytec (even for non-
reactive tracer) leads to a degradation of the precision of
the results for such fine grids; in our specific case, where
precise comparisons of fluxes across a boundary are
performed, the quality of the results were not sufficient
to provide a definite reference. This point should be
improved in further versions of Hytec.

For the first series of experiments, the 64 � 64
geostatistical simulations were performed by the
discrete spectral method: the method is very CPU-
effective, and offers the possibility to vary the range a at
‘‘constant random draw’’, i.e. using the same realisation
of random numbers. We can thus investigate the effect
of the range without interference from the random
variability between two draws [5]. For the second series
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Table 1
The logarithmic standard deviation sln K.
Tableau 1
Écart-type logarithmique sln K.

Variance (m2/s2) 10�4 5 � 10�5 10�5 5 � 10�6 10�6

sln K 2.15 1.98 1.55 1.34 0.83

Fig. 5. Cumulative flux for the 64 � 64 reference grid; homogeneous
permeability, range 0.1L and 0.5L and large standard deviation.

Fig. 5. Flux cumulés pour le maillage 64 � 64 de référence ; cas
homogène et portées 0,1L et 0,5L avec écart-type élevé.
of experiments, we chose the turning bands method; the
code has not been adapted for this specific purpose, so
that the 500 � 500 grid simulations for different ranges
correspond to different random draws.

Three values were tested for the range of the
spherical variogram of the Napierian logarithm of the
permeability (Eq. (3)): a = 10, 30 and 50% of the length
L of the permeameter. The five values chosen for the
logarithmic standard deviation Vln K are listed in
Table 1. The other parameters were chosen as follows:

� high dispersivity: a = 0.1 � L;
� uniform porosity: v = 0.3;
� effective diffusion coefficient: De=10�10 m2/s.

It is important to note the need for a careful control of
the computation conditions on the precision of the
result, for the chosen observable, particularly, the time
step. Hytec determines an optimal time step, following
several criteria (e.g., speed of convergence for the
coupling); the maximum time step is bounded by the
Courant–Friedrich–Levy stability criterion; however, a
precise comparison between computations at different
time discretisations revealed that the criterion was not
stringent enough. We finally made all simulations with
the same time step, based on the smaller time step
obtained for the finer grid.

5. Experiments results

The transport computations were performed in an
advective/dispersive framework, with a dispersion
around 103 times larger than diffusion. The dispersivity
coefficient is quite high, around 0.1 times the length of
the permeameter.

5.1. Simulations without numerical dispersion

The transport simulation using the centred scheme,
without numerical dispersion, shows that the cumula-
tive flux on a homogeneous medium are independent of
the grid. In Fig. 5, the cumulative fluxes curves are
strictly identical for the 64, 16 and 8 grids.

On the other hand, the upward scheme, with added
numerical dispersion, produces a delay on the arrival of
the tracer; the delay increases with the size of the
polygons. The cumulative flux curves converge towards
the theoretical limit (a proof that the code does not loose
mass), but the time needed to converge towards the limit
increases with coarser grids: indeed, for coarse grids,
the numerical dispersion is larger, which clearly creates
longer dispersion tails, and delays the complete flushing
of the tracer.

In the following, results are given using the
numerically dispersive scheme.

5.2. Upscaling between rectangular cells 64 � 64,
16 � 16, and 8 � 8

The parametric study is performed systematically
using the same initial random realisation, and the
several values for the geostatistical parameters: 5 values
for s, 3 for the range, 3 renormalisation methods, intra-
or inter-block variation, fine initial grid and the two
other grids.

Fig. 6 shows the cumulative fluxes obtained on the
reference simulation (64 � 64 grid), for media with range
0.1L and 0.5L. For a = 0.1L, the curves are superimposed
for all variance values, and close to the uniform
permeability reference. For a = 0.5L, the variance plays
a major role: the cumulative fluxes diverge from the
uniform permeability reference. A possible explanation is
that longer range geostatistical simulations create
spatially well-structured fluctuations in the flow velocity
field; increasing variances accentuate the discrepancy
between low and high permeability zones, so that the
effect of preferential pathways increases.
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Fig. 6. Cumulative flux for the 64 � 64 reference grid, compared to
the homogeneous case. For the larger range, the logarithmic variance
has a large impact; on the contrary, for the smaller range (in blue), the
differences are very small.

Fig. 6. Flux cumulés sur maillage 64 � 64 de référence, comparés au
cas homogène. Pour les grandes portées, la variance logarithmique a
une grande influence ; au contraire, pour les faibles portées (en bleu),
les écarts sont minimes.

Fig. 7. Difference of the cumulative flux relative to the reference
simulation; 16 � 16 grid, inter-block formulation, range 0.3L.

Fig. 7. Écart du flux cumulé par rapport au calcul de référence ; grille
16 � 16, calcul inter-bloc, portée 0,3L.

Fig. 8. Difference of the cumulative flux relative to the reference
simulation; 16 � 16 grid, inter-block formulation, range 0.5L.

Fig. 8. Écart du flux cumulé par rapport au calcul de référence ; grille
16 � 16, calcul inter-bloc, portée 0,5L.
The spatial variability of permeability systematically
introduces a delay on the cumulative flux curves,
compared to the homogeneous reference or small range
or small variance simulations. In the short term,
preferential pathways allow for a faster circulation of
the tracer; however, in the longer term, slow circulation
areas delay the complete flush of the tracer. The spatial
variability has thus a dual effect on the system
behaviour: the breakthrough of the tracer B is faster,
but the complete leaching of the initial tracer A takes
longer.

Let Qref(t) be the cumulative flux in the reference
simulation, on the initial 64 � 64 grid, and Qups(t) the
results after upscaling. Figs. 7–10 show the effect of the
upscaling, as the difference Qups(t) � Qref(t). Indeed, in
this case, the ratio Qups/Qref tends to decrease the
difference between simulations results, so that it is not a
good discriminating observable.

The variance of the permeability discriminates
between the curves. Unexpectedly, the maximum
difference compared to the reference is obtained for
small values of the variance. This can be explained by
the transformations due to the upscaling, which modify
the preferential pathways for a small variance. On the
contrary, for larger values of s, the preferential
pathways are more pronounced, and resist to all the
upscaling techniques. The differences between upscal-
ing methods can be seen on the 16 � 16 grid (Figs. 7
and 8), and even more on the 8 � 8 grid (Figs. 9 and 10,
with different scales than from that of the 16 � 16 grid
figures).

Logically, the effect of the range on the upscaling is
more related to its ratio to the mean size of the blocks.
For the same range, the influence of the upscaling (of
the hydrodynamic grid) increases with the block sizes
(Figs. 7 and 9 on the one hand and Figs. 8 and 10 on the
other hand). For a fixed hydrodynamic grid, the
differences between the three upscaling methods
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Fig. 9. Difference of the cumulative flux relative to the reference
simulation; 8 � 8 grid, inter-block formulation, range 0.3L.

Fig. 9. Écart du flux cumulé par rapport au calcul de référence ; grille
8 � 8, calcul inter-bloc, portée 0,3L.

Fig. 11. 16� 16 rectangular grid, intra-block formulation: ratio of the
cumulative flux relative to the homogeneous case as a function of s.

Fig. 11. Grille carrée 16, intra-bloc : rapport du flux cumulé à celui à
perméabilité constante, en fonction de s.
increase with the range (Figs. 7 and 8 on the one hand
and Figs. 9 and 10 on the other hand), and are greater
when the variance increases.

It is not straightforward to set a hierarchy between the
upscaling methods. For the inter-block method, the
results of the normal component renormalisation are a
little closer to the reference, compared to the simplified
renormalisation. Matheron’s mean is systematically less
precise for the 8 � 8 grid, but better for the 16 � 16 grid.
Fig. 10. Difference of the cumulative flux relative to the reference
simulation; 8 � 8 grid, inter-block formulation, range 0.5L.

Fig. 10. Écart du flux cumulé par rapport au calcul de référence ;
grille 8 � 8, calcul inter-bloc, portée 0,5L.
5.3. Experiments on complex grids

A second series of numerical experiments was
carried out, with higher relative influence of the
upscaling, and with more complex spatial discretisa-
tions for the hydrodynamic resolution (Fig. 4). For that
purpose, the geostatistical simulations were performed
on a much finer grid 500 � 500. Two independent
realisations for each range a = 0.1L, 0.3L and 0.5L were
drawn using the turning bands method. It was thus
possible to control the influence of the random draw, but
as explained in section 4, a direct comparison of
simulations with different range was no longer possible.
A major difference, compared to the previous section, is
the absence of a reference hydrodynamic simulation, as
discussed in section 4.
Fig. 12. 8 � 8 rectangular grid, intra-block formulation: ratio of the
cumulative flux relative to the homogeneous case as a function of s.

Fig. 12. Grille carrée 8, intra-bloc : rapport du flux cumulé à celui à
perméabilité constante, en fonction de s.



M. De Lucia et al. / C. R. Geoscience 341 (2009) 327–338336

Fig. 13. Scatter diagram of the cumulative flux relative to the uni-
form case, for several grids: diamond-shape size 8 and 16, intra-block
formulation, all variances together.

Fig. 13. Nuage de corrélation entre les flux cumulés rapportés au cas
à perméabilité constante, pour différents maillages : intra-bloc, grille
losange 16 et 8, toutes variances confondues.

Fig. 15. Scatter diagram of the cumulative flux relative to the uni-
form case, for inter- and intra-block formulations; 16 � 16 diamond-
shape grid, all variances together.

Fig. 15. Nuage de corrélation entre les flux cumulés rapportés au cas
à perméabilité constante, pour le calcul inter-bloc et intra-bloc ; grille
losange 16, toutes variances confondues.
The hydrodynamic simulation results for the
different grids are presented via the cumulative flux
of tracer A through the outlet relative to the flux for the
same grid with uniform permeability. In the absence of
Fig. 14. Scatter diagram of the cumulative flux relative to the uni-
form case, for several grids: diamond-shape size 8 and 16, inter-block
formulation, all variances together.

Fig. 14. Nuage de corrélation entre les flux cumulés rapportés au cas
à perméabilité constante, pour différents maillages : inter-bloc, grille
losange 16 et 8, toutes variances confondues.
reference, this smoothes the effects of the spatial
discretisation.

The results are displayed in Figs. 11 and 12,
respectively on the square 16 � 16 and 8 � 8 grid in the
Fig. 16. Scatter diagram of the cumulative flux relative to the uni-
form case, for inter- and intra-block formulations; 8 � 8 diamond-
shape grid, all variances together.

Fig. 16. Nuage de corrélation entre les flux cumulés rapportés au cas
à perméabilité constante, pour le calcul inter-bloc et intra-bloc ; grille
losange 8, toutes variances confondues.



M. De Lucia et al. / C. R. Geoscience 341 (2009) 327–338 337
intra-block formulation. The different upscaling meth-
ods are represented by different line codes (dashes,
dots,). The differences between the upscaling methods
are visible only for the larger values of the range and the
variance. The discrepancy also increases with larger
block sizes. The results for the other types of grids
(diamonds, and inclusion) give similar results.

The impact of the random draw itself is far more
important than the effect of the upscaling technique,
particularly for range a = 0.5L. In this latter case, the
field is not large enough to ensure the ergodicity of the
realisation: the spatial mean can thus be different from
its expectation.

Owing to its limited influence (at least compared to
the impact of the spatial variability itself), it is difficult
to find systematic effects due to the upscaling
techniques. Figs. 13 and 14 show a comparison for
two 16 � 16 and 8 � 8 diamond-shape grids, in intra-
and inter-block respectively. The inter-block formula-
tion seems more robust relative to the mean size of the
cells. This is understandable, since the implicit under-
lying grid for permeability is at least twice as fine for
inter- than for intra-block. At any rate, the effects of
upscaling towards coarser grids is more pronounced for
the intra-block formulation.

The cumulative fluxes obtained on a dense grid are
generally lower than fluxes on a coarser grid (the points
are below the first bisector on the scatter diagram), with
the exception of the diamond-shape grids.

Figs. 15 and 16 (for the 16 � 16 and 8 � 8 diamond-
shape grids, respectively) show a comparison between
the inter- and intra-block formulations. It appears that
the inter-block simulations yield systematically higher
cumulative fluxes than the intra-block (the points are
over the first bisector on the scatter diagram).

Finally, the simulations do not show systematic
differences of behaviour between the three upscaling
methods.

6. Conclusion

Several conclusions can be drawn from the
comparison of the results on different simulated media
and different hydrodynamic grids. The upscaling
method itself has less influence on the cumulative
flux of tracer at the outlet than the actual spatial
discretisation (the hydrodynamic grid), or the effective
spatial variability of the medium. The discrepancy
between the three upscaling techniques for the inter-
block permeability is even negligible, except for the
larger values of the variance of the permeability and for
the larger ranges. The three techniques do not display
systematic effects (e.g., under-estimation). The geo-
metry of the hydrodynamic grid should be carefully
evaluated, and should be fully considered as one of the
influential parameters for the observable.

Finally, the importance of the random draw has been
displayed. Consequently, it could be worth devising a
probabilistic quality criterion for the simulations; i.e.,
the best method should provide an unbiased estimation
of the results distribution, at least in the mean or better
in the mean and variance.
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