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THEME ARTICLE: COMPUTATIONAL SCIENCE IN THE FIGHT
AGAINST COVID-19, PART II

Computational Decision Support for the
COVID-19 Healthcare Coalition
Andreas Tolk ,MITRE Corporation, Charlottesville, VA, 22911, USA

Christopher Glazner and Joseph Ungerleider ,MITRE Corporation, McLean, VA, 22102-7539, USA

The COVID-19 Healthcare Coalition was established as a private sector-led response
to the COVID-19 pandemic. Its purposewas to bring together healthcare
organizations, technology firms, nonprofits, academia, and startups to preserve the
healthcare delivery systemand help protect U.S. populations by providing data-driven,
real-time insights that improve outcomes. This required the coalition to obtain, align,
and orchestratemany heterogeneous data sources and present this data on
dashboards in a format thatwas understandable and useful to decisionmakers. To do
this, the coalition employed an ensemble approach to analysis, combiningmachine
learning algorithms togetherwith theory-based simulations, allowing prognosis to
provide computational decision support rooted in science and engineering.

In the early months of 2020, the SARS-CoV-2 Coro-
navirus took the world by surprise, resulting in the
COVID-19 pandemic that has caused significant

loss of lives and challenged the sustainability of our
health care systems. In mid-March, it became obvious
that government and communities had to react imme-
diately. Under the lead of the Mayo Clinic and The
MITRE Corporation, the COVID-19 Healthcare Coali-
tion (C19HCC) was established as a coordinated pub-
lic-interest, private-sector response. The coalition
brought healthcare organizations, technology firms,
nonprofits, academia, and startups to support supply
chains, inform coordinated social policies, and provide
data-driven insights to protect people and preserve
the healthcare delivery system. The coalition quickly
reached more than 1000 member organizations, many
of them working in computational fields. Although the
efforts focused on the United States, we had several
international partners who not only observed, but also
contributed to the efforts.

This article summarizes selected research results and
lessons learned when highly diverse and heterogenous

organizations bring their data and computational infra-
structure together to provide computational decision
support in a newproblem domainwith daily changing sci-
entific insights, as is the casewithCOVID-19. Of particular
interest for this journal is the work of the analytics
working groups who had to obtain and align distributed
and diverse data, orchestrate heterogenous modeling
approaches, use machine learning (ML) and artificial
intelligence (AI) methods to identify trends, apply simula-
tions implementing latest research insights, and visualize
the results using dashboards that allow decision makers
in federal and state governments to understand the
results, leading to actionable recommendations.

DATA CHALLENGE
One of the first activities of the coalition was to obtain
data that could provide insight into the situation as it
unfolded in the United States and around the world. In
the early weeks and months of the outbreak, there
was a strong need for open, available authoritative
data. In the absence of official government sources,
the Johns Hopkins University’s Center for Systems
Science and Engineering established one of the first
global sources of updated, curated epidemiological
data, compiling information from around the globe.
Their work was soon augmented with data provided
by third parties such as the COVID Tracking Project,
C19HCC partners, such as hospitals, pharmacies, and
medical suppliers, and eventually, from the Centers
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for Disease Control (CDC). As to be expected, these
data differed in many ways, including the definition of
categories (e.g., all cases, lab confirmed cases, sus-
pected cases), what level of geospatial granularity (if
any) it provided, the temporal frequency at which it
was obtained, and what standards were used to struc-
ture its format. This inconsistency in the data can be
attributed to the lack of standards for this data, which
is usually managed at the state and local levels in the
United States. The heterogeneity of the data required
detailed analysis and cleansing and led to a series of
normalization and conditioning steps that were neces-
sary for our exploration. As the coalition’s response
and partnerships grew however, other datasets from
open, public, and scientific organizations would fur-
ther enrich and complicate the analytic approach.

OUR SECOND ANDMORE DIFFICULT
CHALLENGEWAS NORMALIZING
DATA ACCORDING TO A COMMON
CONTROLLED VOCABULARY OR
STANDARD DATA FORMAT.

Our process for synthesizing and reporting the data
in support of decision-making began with the identifica-
tion of scientific questions which were derived from sev-
eral key documents originating at the CDC, White House
Task Force, and National Governor’s Association. Using
these documents, we derived analytic goals of the coali-
tion that could be used to align and assign datasets into
appropriate categorization for exploratory data analysis.
While data was made immediately available through the
volunteer partnerships within the coalition, much of
these data were not geospatially bound to the same
common standard. In order for the coalition to provide
both situational awareness and localized recommenda-
tions in response to the crisis, geospatial accuracy was a
critical component that was often missing or inconsis-
tent. As such, we had to implement multiple geocoding
techniques to assign location accuracy to the data that
was unbound, provide look-up tables to translate to loca-
tions conformant with the Federal Information Process-
ing Standard Publication (FIPS) (as most analytics were
structured around States or Counties), and to merge
datasets of overlapping geospatial locations into appro-
priate location codes.

Our second and more difficult challenge was nor-
malizing data according to a common controlled
vocabulary or standard data format. Although the coa-
lition attempted to define a schema by which all data
would comply, it was difficult to implement such a

standard across the broad spectrum of data providers.
Most data providers followed a schema consistent
with their current customer base (i.e., hospital group,
care provider, pharmaceutical provider), which were
disparate from similar providers across the health
industry. Our inability to standardize recording practi-
ces to include both what data was collected, and how
that data was stored, resulted in a series of translation
tables, and heuristic optimization techniques to com-
bine similar data into common tables. In lieu of gener-
ally accepted and applied standards, the coalition had
to agree on case-specific mappings to support the
short-term goals. To ensure much quicker reaction
times for comparable challenges to COVID-19 in the
future, better standards allowing the alignment of
such diverse data sources will be needed, including
pedigree data. A data-centric enterprise requires a
guiding data strategy that allows data to remain appli-
cation specific, while at the same time able to be
aligned with alternative viewpoints and structures.

Ultimately, we were able to takemany disparate data
sources and solve dozens of analytic questions using
this approach within the coalition. Where federal stand-
ards existed, we resolved the differences in data format
through our translators and data normalization engines,
and established our own data pull frequency to ensure
similar cadence and conditioned all data into the FIPS
format for geospatial accuracy. Where such agreements
weremissing, coalition specific solutionswere required.

USING AI/ML FOR FORECASTING
The pioneer in systems thinking, Ackoff is credited
with the development of the data, information, knowl-
edge, wisdom pyramid. By putting data into context,
we are gaining information, and by adding causal rela-
tionship in procedural manner, we reach knowledge.

AI and ML became ubiquitous over the recent
years with their ability to quickly apply methods
rooted in statistics to evaluate huge amounts of data
to discover hidden relations by looking at correlations
and related means of multivariate statistics. By not
only using these insights for the visualization of live
data but additionally for the visualization of fore-
casted behavior as well, it becomes a reliable tool for
decision support for various operational decisions.
Applying it to better understand the COVID-19 pan-
demic was therefore a logical early step for the coali-
tion. However, there were two challenges of general
interest to the community using computing in science
and engineering quickly identified in the process.

First, because this was a novel coronavirus, there
was not a significant amount of data for AI/ML to train
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on, and what data was available often was inconsis-
tent. Without consistent, curated big data to learn
from, ML approaches were of limited use. With the
addressed standardization efforts and agreements on
data structures and tags to capture themeaningwithin
the community, and with unfortunately more days of
transmission, these challenges could be overcome.

The second challenge, however, was harder. If
AI/ML identified a trend, using it to forecast future
developments that forecast is dependent on the con-
straints and assumptions underlying this trend when
they were observed. To create a valid forecast these
constraints must remain unchanged. But decision mak-
ers and the population want to do exactly the opposite
of that: to counteract an undesirable trend, they want
to change the constraints and assumptions. In the face
of seeing others sick and dying around them, people will
modify their behavior, but not all populations will
respond in similar ways. Without amassive training data
set containing trends of previous responses to all com-
binations of actions, representative of multiple geogra-
phies, AI/ML approaches will struggle. Our approach
was to ensemble theory-driven simulations with the AI/
ML driven models to develop forecasts that could help
decisionmakers understand “what if.”

SIMULATION AS EXECUTABLE
THEORY

Given the newness of COVID-19 and the limited
amount of available data, the use of simulation model-
ing, built from a foundational understanding of the dis-
ease and its characteristics, was the only alternative to
provide actionable forecasts, especially in the opening
months of the pandemic. The professional simulation
community reacted quickly with recommended solu-
tions, such as in the publication by Currie et al.,1 as well
as with calls to action, as by Squazzoni et al.2 The
C19HCC working group on modeling and simulation
actively contributed to answer this call and utilize pro-
posed solutions. This occurred in several phases, along
the lines of new scientific insights about the pandemic.

The earliest phase of modeling was led by SEIR(S)
compartment models, a long-time tool of public health
in which differential equations describe the flow
between compartments of the population of those
being “Susceptible,” “Exposed,” “Infectious,” “Recov-
ered,” or “Dead,” and possibly again “Susceptible.” The
discipline of system dynamics provides a well-sup-
ported set of methods and tools to allow the rapid
development of suchmodels, which then could be con-
figured by empirically observed data on contact rates,
infection rates and incubation time, and recovery/

death rates and recovery time. These SEIR(S) models
were the first simulations that used theoretic insights
to drive the simulation, differing from data-driven fore-
casting to knowledge-driven prognosis. Using an estab-
lished and accepted theory of how a virus generally
spreads, simulation systems could help to think about
what interventions could work best to decrease the
amount of infected people at the same time, as the first
objective was to flatten the curve to preserve the
healthcare delivery system. The earliest models
released, such as that of the Imperial College London3

fall into this category of models, built from our under-
standing of disease transmission, as observed in China
and later Italy.

AWEAKNESS OF SEIR(S) MODELS IS
THAT THEY ARE HIGHLY SENSITIVE TO
THEIR INITIAL CONDITIONS,
PARAMETER VALUES, AND A
STRUCTURAL KNOWLEDGE OF THE
DISEASE.

However, SEIR(S) is a relatively simple theory leading
to simple models that can show trends and effects, and
differential equations approaches to these models
require assumptions of even mixing of heterogeneous
populations, or cumbersome work arounds. As the pan-
demic unfolded, it quickly became evident these were
not valid assumptions: the virus does not impact all pop-
ulations evenly, and the interaction among different
groups is far from even. “Super spreader” events, where
infections begin in places of very high contact rates, as
well as infections among susceptible populations, such
as retirement communities and incarcerated popula-
tions, play an outsized role in the evolution of the COVID-
19 outbreaks. A weakness of SEIR(S) models is that they
are highly sensitive to their initial conditions, parameter
values, and a structural knowledge of the disease.

Early in the outbreak, it was not yet known that
asymptomatic individuals could spread the virus. Mis-
understandings like this can drastically change model
results. Given the number of unknowns in the early
months, these models gave wildly divergent forecasts,
leading some decision makers to completely discount
models, even when they provided a logical basis for
comparing courses of action.

SEIR(S) models served their initial purpose for
quick insight given limited information, but better sol-
utions were needed to inform decision makers that
could be tailored to local populations.
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The C19HCC developed a set of requirements for
such improved simulation solutions, allowing both
quantitative and qualitative data. They should be
driven by detailed data, describing the spatial and
demographic details per region, and calibrated to
reflect the region’s characteristics. The calibration
was supported by genetic algorithms. Small experi-
ments, using agent-based models, demonstrated
that social groups and interactions, network struc-
tures, and local distribution are often more impor-
tant for the spread of the disease than infection
parameters in SEIR(S). The coalition observed in
their experiments that the social network structure
of interactions usually led to infection numbers sig-
nificantly lower than those predicted from SEIR(S)
models that assumed uniform interactions. While
the average infectivity is important, they are not
always the dominant characteristic of an outbreak.
We also observed that mobility and movement sig-
nificantly impact the spread. Finally, human factors,
like being compliant with regulations or altering
behavior as perceived conditions change, were
identified and demonstrated to be important
factors.

The situation of requiring more detailed informa-
tion about distribution and social nets for better
understanding is reminiscent of Anscombes quartet,
shown in Figure 1. All four distributions shown in the
figure have identical standard statistics: mean, vari-
ance, and correlation, but obviously are quite different,
so that higher resolution modeling is required.

Another insight was coming from members of the
Operational Research community, namely that the
spread of COVID-19 is characterized by deep uncer-
tainty. Lempert et al.4 define deep uncertainty as con-
ditions “where analysts do not know, or the parties to
a decision cannot agree on, (1) the appropriate

conceptual models that describe the relationships
among the key driving forces that will shape the long-
term future, (2) the probability distributions used to
represent uncertainty about key variables and param-
eters in the mathematical representations of these
conceptual models, and/or (3) how to value the desir-
ability of alternative outcomes.” In other words, deep
uncertainty is systemic in the research. Parameters of
systems may be unknown, behaviors and roles are
unclear, objectives to be reached are still in question,
etc. Computational science addresses deep uncer-
tainty using exploratory analysis, such as that cap-
tured for research on technology forecast and social
change by Kwakkel and Pruyt.5 This approach requires
conducting experiments in large numbers to be statis-
tically significant, running multiple scenarios to under-
stand the stability under various circumstances, and
using intuitive interfaces to present the results to the
decision makers.

An additional challenge is the time delay between
cause and resulting effect observations. Decision
makers are used to immediate feedback. In case of
disease spread, observable parameters—like new
infections and deaths—are happening days after new
policies are taking effect. The use of simulation can
bridge this gap by immediately allowing the simulation
of such decisions and present to the expected out-
come over time.

In the next phase, the need to understand counter-
ing COVID-19 as a multivalue, multicriteria decision
problem became apparent. Focusing predominantly
on one challenge in the complex problem space, like
focusing on minimizing the chance of contacts possi-
bly leading to infections by interventions like lock-
downs, were usually effective about the desired value
but also had side effects that were not immediately
obvious to the decision maker. A possible solution
was the use of artificial societies, as being developed
by three of the coalition members. The Argonne
National Laboratory, the Bio-Complexity Group of the
University of Virginia, and the Center for Health and
Humanitarian Systems of the Georgia Institute of
Technology all developed high-fidelity, individual-cen-
tered systems that not only address spatial-temporal
aspects, but also social nets, workplaces, malls,
schools, and many other aspects of daily life.6-8 The
socially capable agents within these models adjust
their behavior to various constraints, which include
the various interventions decision makers may
choose, including wearing masks, washing hands, etc.
These simulations quickly become so intensive com-
putationally that only high-performance computers
can provide the necessary power. The coalition there-
fore also looked at new forms of large-scale

FIGURE 1. Anscombes quartet as an example for the need of

higher resolution to capture the essence of local distributions.
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distributed computing, such as those initially dis-
cussed by Chen et al.9

With the Center for Mind and Culture of the Bos-
ton University as a member, the coalition was able to
put these lessons learned into its own solution as well.
Supported by the Virginia Modeling Analysis and Simu-
lation Center and the industry partner Simudyne, a
smaller scale artificial society was created to repre-
sent students, faculty, and administrators within a uni-
versity. The Artificial University (TAU) is implemented
as an agent-based epidemiological model that takes
account of often neglected human factors such as
compliance and social networks, represents most of
the interventions under discussion within universities,
and employs multiple metrics to express diverse priori-
ties. To support the coalition effort to empower minor-
ity and underserved population-centered universities,
the core model was published as open source.10 Using
this simulation, the group demonstrated that TAU can
be used to generate policy insights directly relevant
to the challenges facing university administrators
concerning reopening and operating universities in
the COVID-19 era. These insights include the identi-
fication of which interventions are most impactful
regarding the spectrum of supported values as well
as tipping points indicating how far to push any of
these interventions, including questions like how to

deploy limited testing kits and vaccination resour-
ces within the university. At the time this article is
written, several universities started to use this
resource in support of their decision making and
evaluation process.

Overall, the use of artificial societies and their ability
to support multiple viewpoints and facets in a coherent
computational representation showed to be a techni-
cally feasible and user acceptable approach. This
approach enables support of multi-criteria and multi-
value exploratory analysis of these complex situations.

DASHBOARDS
Themain objective for the development of dashboards is
the visualization of data in a way that clearly communi-
cates research insights to the decision maker. However,
as stated in the previous sections, countering COVID-19
is a multivalue, multicriteria decision problem, where
multiple criteria are influencing several, often conflicting
values. As Rouse points out,11 decision makers must be
able to immerse into the complex problem space and
have controls at hand easy enough to understand
quickly but also powerful enough to evaluate their vari-
ous options. The COVID-19 Healthcare Coalition Deci-
sion Support Dashboard (C19HCC DSD), shown in
Figure 2, was developed to support these ideas.

FIGURE 2. Screenshot of the Covid-19 decision support dashboard (https://dsd.c19hcc.org/) initial screen.
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The DSDwas first developed to analytically address
the reopening criteria established in the National Gov-
ernor’s Association (NGA), Roadmap to Recovery
Report issues in April 2020. The report identifies key
metrics and analytic questions that must be resolved
before a state or location can take actions to return to
normalcy. Understanding the data challenges, the ana-
lytics from this dashboard were processed to produce
Red, Yellow, and Green (RYG) risk indicators using both
qualitative and statistical analysis methods to identify
thresholds of performance against the NGA metrics.
Using logic tables, the method for determining RYG
risk is aggregated across the various decision aids con-
tained within the dashboard to assess an overall risk
status for each location.

The power of the DSD is that it can display data
with different pedigrees side-by-side for comparison.
This allows also to show the results of different model
forecasts and prognoses side by side. DSD can inte-
grate data from different sources into a common
representation and help to navigate through different
levels of abstraction and resolution. This requires,
however, that the data challenges addressed earlier in
this article have been solved, as otherwise it bears the
danger to provide the decision makers with a false
sense of security when they make their decision, as
they assume that the data are well aligned as sug-
gested by the common representation.

The C19HCC DSD allows users to “drill down” into
data with higher resolution, starting on the State level
and going down to Counties, and place names or cities, if
these data are available. It should be emphasized that
higher resolution does not always equal higher fidelity,
as data can be updated in various degrees of accuracy
as well as frequency. As such, precise and current data
of the County may have a higher fidelity than some of
the less precise and older data of some of the contained
districts. How to communicate the levels of trust into a
current display is topic of current research and was not
addressedwithin theCoalition.

However, the challenge of multivalues and compara-
bility was addressed by allowing to display a variety of
values, like new infections, economic impact, utilized
hospital beds, and intensive care units, and more, and
doing so side by side of different areas of interest, such
as different districts of a city, Counties of a State, or com-
paring State values with each other. The compared sec-
tion did not have to be on the same level, so that it is
possible, e.g., to compare how well certain regions are
doing in comparison with the State. Additionally, we uti-
lized location spatial-join methods to take lower-level
granular data and join it to form larger County level indi-
cators. This made it possible in certain cases to use
higher granular data to produce broader geospatial

decisions. The coalition also applied hybrid models,
allowing the use of data-driven AI/ML approaches as
well as knowledge-based simulationmodels.

A special challenge was the design decision options
for the decision makers. As observed by Rouse,11 offer-
ing too many decision parameters to choose from can
easily become a distraction.

Instead, having a small set of well-designed
options prepared by the decision maker’s staff is likely
to lead to better acceptance and easier use. There-
fore, an additional layer allowing for the configuration
of decision options had to be introduced, allowing the
supporting staff to prepare the decision options to
be used by the decision maker. Since the decision
aids are logically grouped into broad analytic cate-
gories, we can use this visualization of information
enabling meaningful analytic insights.

AS OBSERVED BY ROUSE, OFFERING
TOOMANY DECISION PARAMETERS
TO CHOOSE FROM CAN EASILY
BECOME A DISTRACTION.

All data is furthermore specifically aligned with tem-
porary analytic goals. However, as more data becomes
available these analytic goals are modified to reflect the
value and accuracy of these datasets. As such the ana-
lytic questions that are presented on the dashboard nat-
urally evolved as the pandemic evolved, and as our
understanding of the key indicators of public health, eco-
nomic recovery, and returning to work and school
became more impactful. It was important to tag and
attribute our data so that it could be used and realigned
with these evolving criteria so that we could maintain
rapid decision-making response to the crisis.

Within the coalition, DSD became the common
interface to experience the complex situation. As
such, the circle closes, as the coalition recom-
mended that dashboards shall display the aligned
and orchestrated data describing observed or for-
mer situations, visualize forecasting of trends and
allow to compare them among each other as well as
with prognosed development by simulation, and
finally also show the results of various options
selected by the decision maker. The dashboard as
such could be interpreted as the “command center”
for the decision maker, providing for situational
awareness as well as allow for the evaluation of dif-
ferent courses of action. This ambitious goal was
not reached at the time this article is written, but
the full integration of solutions as described in by
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Rouse11 should be considered for future designs to
be better prepared for challenges like the COVID-19
pandemic in the future.

Finally, we observed the danger of epistemological
and hermeneutical challenges as well.12 Epistemological
challenges occur when not all relevant parameters are
captured in the underlying model, often because they
are not known. As a result, the model outcome cannot
reflect the influence of the excluded data, potentially
leading to a wrong decision as not everything relevant is
captured in the underlying model. Hermeneutical chal-
lenges occur when the user of the model interprets the
results using parameters that were not reflected in the
model, therefore reading something into the model
which is not in there. Both are more human than techni-
cal challenges, but they play a pivotal role in the use of
data- and knowledge-driven decision support and should
be considered. How to generally avoid them is topic of
ongoing research.

With all these challenges that had to be overcome,
was it worth all the work? This question cannot be
answered for sure, but since its initial launch inMay 2020
to September 2020, the DSD was visited over 14K times
by over 6000 unique users from 38 states. These users
represented citizens, parents, teachers, health experts,
and decision makers in office of public health, offices of
education, offices of employment, chambers of com-
merce, and volunteer organizations. Users recognized
the uniqueness of how data was organized around ana-
lytic questions, and they provided positive feedback on
the simplicity of red/yellow/green risk analysismethods.

CONCLUSION
The COVID-19 Healthcare Coalition Working Group
brought experts from various disciplines together to
battle the pandemic. The degree of collaboration
between experts of different disciplines is often cap-
tured by the terms multi-, inter-, and transdisciplinary
team. The general understanding is that in multidisci-
plinary efforts, experts from various disciplines are
working together on one common question or topic of
interest. Each expert contributes knowledge, meth-
ods, and expertise as needed, but when the problem is
solved, all return to their disciplines. When common
tools are developed and the participating disciplines
start to link to each other instead of juxtaposing, the
effort becomes interdisciplinary. Permanent bridges
between the disciplines are established. Finally, when
the participating disciplines are systematically inte-
grated to create new knowledge components in tran-
scending and transgressing form, a new transdisciplinary
effort emerges.

Computers in science and engineering are enablers
of such increasingly mutually supporting developments.
One of the first challenges is creating interconnectivity
between the participating organizations and their infra-
structure. This allows the exchange of data, but the coali-
tion showed that a lot of work can easily go into the
effort to align the data, making sure that a common
understanding of structure and meaning of the data can
be established. The absence of standards was a primary
obstacle in the early phases of the coalition. While com-
mon tools were developed and distributed in later
phases, the desired stage of interdisciplinarity was not
reached. The reason was more on the organizational
side than a challenge in the computational domain, as
this requires the mutual understanding and merging of
research methods and the systematic integration of
knowledge components. To react to another outbreak
comparable to the COVID-19 pandemic quickly and effi-
ciently in the future, transdisciplinary teams will be
needed. Interconnected and standardized computa-
tional infrastructures are necessary but not sufficient.
Capturing metadata providing information about data
and processes to allow for rapid interconnections should
be theminimal requirement for future preparedness.

Within the coalition, the use of dashboards con-
tributed to establish a common, mutual understand-
ing and technical method of structuring analytics for
decisions support. This effect was increased when the
dynamic behavior of the represented system is visual-
ized as well and exposes weakness in the underlying
analysis methods and technologies. The visualization
of decision support information also exposes the vari-
ability and gaps in our datasets that must be rectified
before providing meaningful intelligence. The easier
the methods utilized for decision support could be
integrated into such dashboards, the easier the
computational support with common tools became.

The complexity of the solution space of this multi-
value, multicriteria challenges with many uncertainties
results in the conclusion that model-based approaches
are useful to better understand what may happen, but
we are not able to predict exactly what will happen.
Nonetheless, the provided decision support can be used
to exclude policy ideas that have no positive effects
under any constraints and identify policies with positive
effects under a great number of foreseeable constraints.

The main lesson learned, however, did not concern
the computational component, but the social and edu-
cational component of the coalition. The mutual
respect and recognition that all the various disciplines
must collaborate to have a chance in fighting the com-
mon enemy SARS-CoV-2 Coronavirus was the main
driver for success. The more future leaders, scientists,
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and researchers are prepared for disciplinary over-
arching teams, the easier our society will be able to
react, but our computational infrastructure must be
prepared to support such collaborative efforts.

DISCLAIMER
The views, opinions, and/or findings contained in this
article are those of The MITRE Corporation and should
not be construed as an official government position,
policy, or decision, unless designated by other docu-
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