
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Faculty Publications Computer Science

2023

Efficient GPU Implementation of Automatic Differentiation for Efficient GPU Implementation of Automatic Differentiation for

Computational Fluid Dynamics Computational Fluid Dynamics

Mohammad Zubair
Old Dominion University

Desh Ranjan
Old Dominion University

Aaron Walden
NASA Langley Research Center

Gabriel Nastac
NASA Langley Research Center

Eric Nielsen
NASA Langley Research Center

See next page for additional authors

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs

 Part of the Numerical Analysis and Scientific Computing Commons, Other Computer Engineering

Commons, and the Systems Architecture Commons

Original Publication Citation Original Publication Citation
Zubair, M., Ranjan, D., Walden, A., Nastac, G., Nielsen, E., Diskin, B., Paterno, M., Jung, S., & Davis, J. H.
(2023). Efficient GPU implementation of automatic differentiation for computational fluid dynamics
(Report No. FERMILAB-CONF-23-342-CSAID). Fermilab. https://inspirehep.net/literature/2679722

This Report is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has
been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of ODU
Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_fac_pubs
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://inspirehep.net/literature/2679722
mailto:digitalcommons@odu.edu

Authors Authors
Mohammad Zubair, Desh Ranjan, Aaron Walden, Gabriel Nastac, Eric Nielsen, Boris Diskin, Marc Paterno,
Samuel Jung, and Joshua Hoke Davis

This report is available at ODU Digital Commons: https://digitalcommons.odu.edu/computerscience_fac_pubs/241

https://digitalcommons.odu.edu/computerscience_fac_pubs/241

Efficient GPU Implementation of Automatic
Differentiation for Computational Fluid Dynamics

Mohammad Zubair and Desh Ranjan
Old Dominion University

Norfolk, Virginia

Aaron Walden, Gabriel Nastac, and Eric Nielsen
NASA Langley Research Center

Hampton, Virginia

Boris Diskin
National Institute of Aerospace

Hampton, Virginia

Marc Paterno
Fermi National Accelerator Laboratory

Batavia, Illinois

Samuel Jung
Northwestern University

Evanston, Illinois

Joshua Hoke Davis
University of Maryland
College Park, Maryland

Abstract—Many scientific and engineering applications require
repeated calculation of derivatives of output functions with
respect to input parameters. Automatic Differentiation (AD) is
a methodology that automates derivative calculation and can
significantly speed up the code development. In Computational
Fluid Dynamics (CFD), derivatives of flux functions with respect
to state variables (Jacobian) are needed for efficient solution of
nonlinear governing equations. AD of the flux function on graph-
ics processing units (GPUs) is challenging as flux computation
involves many intermediate variables that create a high register
pressure and requires significant memory traffic because of the
need to store the derivatives.

This paper presents a forward-mode AD method based om
multivariate dual numbers that addresses these challenges and
simultaneously reduces the operation count. The dimension of
multivarite dual numbers is optimized for performance. The flux
computations are restructured to minimize the number of tem-
porary variables and reduce the register pressure. For effective
utilization of the memory bandwidth, we use shared memory to
store the local Jacobian. The threads assigned to process an edge
(dual-face) collectively populate the local Jacobian in the shared
memory.

Shared memory is used to store local flux Jacobian. The
threads assigned to process a flux differentiation at an edge
collectively populate the local Jacobian in the shared memory.
The use of shared memory allows further reducing temporary
variables. The local Jacobian is written from the shared memory
to the device memory taking advantage of coalesced stores.
This is another major benefit of the shared memory approach.
During this work, we assessed existing GPU-based forward-
mode AD approaches for flux Jacobian computation and found
them performing suboptimally. We demonstrated that our GPU
implementation based on multivariate dual numbers of dimension
5 outperforms other tested implementations including the hand-
differentiated version optimized for NVIDIA V100. Our imple-
mentation achieves 75% of the peak floating point throughput
and 61% of the peak device bandwidth on V100.

We present solutions to address these challenges while taking
advantage of reducing the operation count in forward mode AD
simultaneously via the use of multivariate dual numbers. This
includes the optimal choice of the dimension of the multivariate
dual numbers to be used. Additionally, we restructure the
computation to minimize the number of temporary variables.
For effective utilization of the memory bandwidth, we use
shared memory to store the local Jacobian. The threads assigned
to process an edge (dual-face) collectively populate the local

Identify applicable funding agency here. If none, delete this.

Jacobian in the shared memory. Next, we write the local Jacobian
from the shared memory to the device memory. The use of
shared memory helps reduce temporary arrays or variables,
which can be very expensive. The other major benefit is to
perform coalesced stores when writing from shared memory to
the device memory. We created and analyzed the performance
of different GPU implementations. We demonstrated that the
GPU implementation based on multivariate dual numbers of size
5 (perfect compressible gas) outperforms all other implementa-
tions including the optimized hand-differentiated version on an
NVIDIA V100. This implementation achieves 75% of the peak
floating point throughput and 61% of the peak device bandwidth
on V100.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Many scientific and engineering applications require re-
peated calculation of derivatives of output functions with
respect to input parameters. In Computational Fluid Dynamics
(CFD), derivatives of flux functions with respect to state vari-
ables (Jacobian) are needed for efficient solution of nonlinear
governing equations. Optimization, error estimation, uncer-
tainty quantification and other applications require derivatives
of selected objective functions with respect to a specified
set of input parameters that may be counted in thousands.
Often, the differentiated functions are expressed via a coded
algorithm. Apart from mathematical operations, the code for
a mathematical function may contain loops, branches, and
other programming constructs. Differentiation of such a code
is a complex task that may require significant development
efforts and computational resources. With increased interest
in machine learning and quick deployment of large complex
models, efficient implementation of derivatives on graphics-
processing units (GPUs) becomes critical. This paper studies
GPU implementations of Automatic Differentiation (AD) for
a CFD application.

Traditionally, CFD derivatives are computed by hand dif-
ferentiating the target functions and coding the resulting
derivative formulations. Hand differentiation is a manual labor-
intensive process that is prone to errors. Reference [1] illus-
trates the complexity of a hand-differentiated formulation for
a practical application in aerodynamics. AD is an alternative

FERMILAB-CONF-23-342-CSAID

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

methodology that automates derivative calculation and can
significantly speed up the code development.

The AD approaches can be classified under two categories:
source code transformation and compile-time/run-time ap-
proaches. Source code transformation refers to creation of
a separate derivative code from the source code. This is
sometimes referred to as a “static approach” as the code for
computing the derivative is created before the compilation
process. In the compile-time/run-time approach, sometimes
referenced as a “dynamic approach”, no separate code is
created. The derivatives of an output function are computed
together with the function itself by declaring the source
code variables as suitable “structures” and using overloaded
operators.

Most real-valued mathematical functions used in scientific
and engineering applications are compositions of simple func-
tions. Hence the derivative of an output function can be
computed by repeatedly using the chain rule. For a composite
function f(g(x), h(x)), the derivative, df

dx , is computed as
follows.

df

dx
=

∂f

∂g
× dg

dx
+

∂f

∂h
× dh

dx

Different AD methods can be interpreted as a chain rule
executed either in ”forward mode” or ”reverse mode” [2]. In
the forward mode, the chain rule is executed from right to
left meaning that AD computes derivatives of all intermediate
quantities with respect to a particular input parameter. In the
reverse mode, the chain rule is executed from left to right
meaning that AD computes all derivatives of a particular
output function with respect to all intermediate quantities.

The forward mode is often easier to implement and has
a smaller memory footprint. The complexity of an efficient
forward-mode AD implementation is proportional to the num-
ber of input parameters. One forward-mode AD method that
is widely used in CFD and multidisciplinary optimization is
based on the complex-number theory [3]–[5]. Many forward-
mode AD implementations use the dynamic approach, for
example, [6]–[9]. The reverse-mode AD has the complex-
ity that is proportional to the number of output functions
and is suitable for applications where there are many input
parameters and few output functions. The reverse mode is
more challenging to implement and parallelize. Its implemen-
tation often requires additional memory or/and computations
[10]–[14]. Depending on the underlying GPU architecture
and the application, the registers required for the reverse-
mode implementation can far exceed the available registers
resulting in spills and significant performance slowdown. In
[15], authors demonstrated that an efficient forward-mode AD
implementation outperforms the most-efficient reverse-mode
AD implementation for a function with several hundreds of
input parameters. Note that in such a case, the forward mode
actually performs significantly more floating point operations
than the reverse mode; the superior performance is achieved
due to reduction of the memory-related overhead.

Recently, several AD tools have been developed for GPU
architectures, for example, [16]–[20]. Enzyme [16] performs

reverse-mode AD of GPU kernels using a LLVM-based plugin
[18] that can generate kernel gradients in CUDA or ROCm.
In [16], the authors demonstrated that the AD performance on
a set of benchmarks is within an order of magnitude of the
performance of the original program. Sacado [17] implements
forward-mode AD using operator overloading with expression
templates of C++ programs. The GPU support for Sacado is
accomplished through Kokkos [21], a C++ portable framework
that works with GPUs from different vendors.

In this paper, we focus on Jacobian computations for
discrete equations that arise in FUN3D [22], a CFD software
developed at the NASA Langley for aerodynamics applications
across the speed range. FUN3D plays a critical role in many
national programs, including numerous science and engineer-
ing efforts across all mission directorates at NASA, other
government agencies, major companies across the aerospace
industry, and a large number of academic institutions.

To understand the challenges of Jacobian computations, we
briefly describe the computations that are involved in evalu-
ation of discrete residuals of the governing conservation-law
equations implemented in FUN3D. The residuals of discrete
equations are evaluated at grid points of an unstructured grid.
The residuals are obtained by summing the flux contributions
from grid edges which are dual-faces. This summation is
accomplished in a loop over edges. For each edge, a function
fluxkernel is called to compute the flux associated with
the edge. The edge flux contributes to the residuals at two
endpoints of the edge. The inputs to the fluxkernel func-
tion are 2nb real numbers representing solution components.
Here, nb is the number of governing equations. The output
of the fluxkernel function is a real vector of size nb.
The calculation of the flux at an edge is independent of flux
calculations at all other edges. The residual computation is
parallelized over edges. Care should be taken to avoid race
conditions, which can occur when two threads operating on
different edges try to write to the same location corresponding
to a residual at a grid point.

The global Jacobian matrix represents the derivative of
the residual vector with respect to the vector of solution
components. The Jacobian assembly is also parallelized over
edges. At each edge, the derivatives of the flux vector are
computed with respect to the inputs of the fluxkernel
function. The resulting local flux Jacobian matrices contribute
to the global Jacobian matrix.

There are several challenges for developing a high-
performance Jacobian implementation. The flux computation
within the fluxkernel function involves many intermediate
variables that create a high register pressure and requires
nb memory updates per edge. The Jacobian computations
further increase the register pressure. The need to aggregate
the local flux Jacobian into a global Jacobian matrix results in
a significant increase in memory traffic. The derivative of the
fluxkernel function locally generates 2nb×nb size output
that is used to build the global Jacobian matrix. In FUN3D, the
diagonal part of the global Jacobian matrix (Adiag) is kept
separately from the off-diagonal part (Aoff). Adiag is stored

with double precision, Aoff is stored with single precision.
The two nb × nb local Jacobian blocks append two nb × nb

blocks of the Adiag matrix and the two nb × nb blocks of
the Aoff matrix.

This paper presents a forward-mode AD method that ad-
dresses these Jacobian GPU implementation challenges and
simultaneously reduces the operation count via use of mul-
tivariate dual numbers. The dimension of multivarite dual
numbers has been optimized for performance. The flux com-
putations have been restructured to minimize the number of
temporary variables and reduce the register pressure. Shared
memory is used to store local flux Jacobian. The threads
assigned to process a flux differentiation at an edge collectively
populate the local Jacobian in the shared memory. The use of
shared memory allows further reducing temporary variables.
The local Jacobian is written from the shared memory to the
device memory taking advantage of coalesced stores. This
is another major benefit of the shared memory approach.
During this work, we assessed existing GPU-based forward-
mode AD approaches for flux Jacobian computation and found
them performing suboptimally. We demonstrated that our GPU
implementation based on multivariate dual numbers of di-
mension 5 outperforms other tested implementations including
the hand-differentiated version optimized for NVIDIA V100.
Our implementation achieves 75% of the peak floating point
throughput and 61% of the peak device bandwidth on V100.

The paper is organized as follows. Section II gives back-
ground on AD. Section III details the various implementations
investigated. Lastly, results are presented in Section IV.

II. AUTOMATIC DIFFERENTIATION WITH DUAL NUMBERS

In this section, we review AD implementations based on
simple and multivariate dual numbers. Operation count and
memory requirements associated with such implementations
are analyzed.

A. Simple Dual Numbers

A simple dual number (or dual) is an ordered pair of real
numbers. A dual-number forward-mode AD can be imple-
mented as follows. All real numbers involved in function
evaluation are replaced by duals. For each quantity u, the
dual corresponding to u stores the value of u and the value of
du
dx . The mathematical operations are extended to duals. For
example, for duals u = ⟨a0, b0⟩ and v = ⟨a1, b1⟩, we can
define the operations +,×, sin, and sqrt as below:

u+ v = ⟨a0 + a1, b0 + b1⟩
u× v = ⟨a0 ∗ a1, a0 ∗ b1 + b0 ∗ a1⟩
sin(u) = ⟨sin(a0), cos(a0) ∗ b0⟩

sqrt(u) = ⟨sqrt(a0), (0.5/sqrt(a0)) ∗ b0⟩

Recursively performing the operations, one can carry for-
ward both the real quantity in the first component and
its derivative in the second component. The differentiated
functions can be multivariate, i.e., f = f(x1, . . . , xn). The
forward mode considers derivatives with respect to a single
independent input parameter xk. By convention, dxj

dxk
= 0 if

j ̸= k and dxk

dxk
= 1. Hence, to compute the derivative df

dxk

at x1 = r1, . . . , xn = rn, we initialize the corresponding
duals to ⟨r1, 0⟩, ⟨r2, 0⟩, . . . , ⟨rk, 1⟩, . . . , ⟨rn, 0⟩. To obtain the
derivatives with respect to several or all input parameters, one
can repeat the computation with each desired value of k. The
only thing that changes is the initialization of the duals.

A major advantage of the dual-number AD implementation
is that it requires only minor modifications of the source code.
One can define a new type for duals with corresponding dual
operators as a standalone library. Once this is done, one can
change all real variables in the function calculation to duals.
The operator overload mechanism provided in languages like
C++ automatically takes care of applying the dual operators
where appropriate.

B. Multivariate Dual Numbers

Calculation of multiple derivatives of a multivariate function
using simple duals as described above incurs a penalty of
repeated computations, for example, those performed for com-
puting the function itself. One way to alleviate this penalty is to
compute several derivatives simultaneously. This can be done
by using multivariate dual numbers (or multivariate duals).
A multivariate dual is a vector. The first component of the
vector stores the quantity itself, the other components store
the derivatives of the quantity with respect to specified input
parameters. For example, if we want to compute the derivatives
of f with respect to two independent parameters, xk and xl,
we can define a multivariate dual with three components. The
first component is f , the second component is df

dxk
, and the

third component is df
dxl

. The corresponding dual operators can
be defined as follows. If u = ⟨a0, b0, c0⟩ and v = (a1, b1, c1),

u+ v = ⟨a0 + a1, b0 + b1, c0 + c1⟩
u× v = ⟨a0 ∗ a1, a0 ∗ b1 + b0 ∗ a1, a0 ∗ c1 + c0 ∗ a1⟩

sin(u) = ⟨sin(a0), cos(a0) ∗ b0, cos(a0) ∗ c0⟩
sqrt(u) =

⟨sqrt(a0), (0.5/sqrt(a0)) ∗ b0, (0.5/sqrt(a0) ∗ c0⟩

GN: not checking for 0 or negative values for sqrt in snippet
Note that use of multivariate duals avoids re-computation not
only in the first component but also across other components,
e.g., for the derivative of sin(u), cos(a0) can be calculated
only once and reused.

Let’s assume that we have a function f = f(x1, . . . , xn)
of n independent input parameters and need to compute
its derivatives with respect to all input parameters. We can
do so by using simple duals and computing the function
n times (once for each input parameter). In the simple-
dual implementation, f is executed n times. If f contains a
multiplication instruction u∗v, the number of scalar operations
needed to execute it over n iterations is 3n multiplications and
n additions since each simple-dual multiplication takes three
scalar multiplications and one scalar addition. In contrast, if we
use multivariate dual numbers with n+1 components, f and all
derivatives can be calculated simultaneously in one execution.
The instruction u ∗ v takes 2n + 1 scalar multiplications and
n− 1 scalar additions. This represents a significant reduction

of the computation cost of this multiplication instruction.
Similarly, if f evaluates sin(u), the simple- dual implemen-
tation computes sin and cos functions at the same value
n times in addition to performing n scalar multiplications.
An implementation that uses multivariate duals of dimension
n + 1, calculates the sin and cos values only once and
uses them to multiply with the n derivative components. This
leads to significant cost saving as evaluation of trigonometric
functions and functions like sqrt is expensive. Additionally,
an efficient vector-scalar multiplication capability is available
for many architectures and can be used to further improve the
performance.

A significant reduction of the total operation count achieved
by using multivariate duals comes at a cost of increased
memory use, which can have a negative impact on perfor-
mance. For example, if the function f use memory to store
m real variables, simple-dual implementation doubles the
memory requirement to 2m. An implementation based on
n+ 1 dimensional duals, requires memory for (n+ 1)m real
variables, which can be detrimental for performance or even
prohibitive. To optimize performance for a specific application
on a specific architecture, one can choose a suitable dimension
of multivariate dual numbers. For example, the AD implemen-
tation based of multivariate duals of size n/2 + 1 calls the
function twice calculating n/2 derivatives each time. In this
case, some computations repeat but the memory requirements
are reduced to (n/2+1)m. Such a trade-off can improve AD
performance [23].

III. GPU IMPLEMENTATION OF AUTOMATIC
DIFFERENTIATION FOR FLUX FUNCTION

In this section, we review the computation requirements of
Roe’s flux function [24] and its derivatives. This is the default
flux function for FUN3D and is used in many applications.
The approaches for AD implementations of the flux function
on a GPU architecture are discussed.

A. Residual Computations on Unstructured Grids

In three dimensions (3D), FUN3D uses a finite-volume
discretization scheme on unstructured mixed-element grids
that may contain tetrahedra, pyramids, prisms, and hexahedra.
Independent primitive variables represent density, velocity
components, and pressure of a fluid and reside at the grid
points. The governing-equation residuals are flux balances of
conservation laws evaluated on a set of median-dual control
volumes centered at grid points. Edge-based inviscid fluxes are
computed at edge midpoints using an approximate Riemann
solver. In the current study, Roe’s approximate Riemann solver
[24] is used. A directed area vector is precomputed for
each edge and represents the portion of the control-volume
boundary associated with the edge.

B. Flux Function

The 3D Roe’s flux function (fluxkernel) used in our
implementation is based on an open-source Fortran routine
available at [25] and is similar to the one used in FUN3D.

Algorithm 1 FLUX(G)
1: Input: Grid G
2: for i← 1 to nedges in G do
3: qL, qR ← getPrimitive(G, i)
4: dir ← getDirection(G, i)
5: localF lux← fluxkernel(qL, qR, dir)
6: globalF lux(i)← localF lux
7: end for
8: return globalF lux

The correctness of our implementation has been verified by
matching inputs and outputs with the FUN3D production
routine. The fluxkernel routine is called in a loop over
edges. The input to the routine is two (”left” and ”right”) sets
of primitive variables, qL = (ρL, uL, vL, wL, pL) and qR =
(ρR, uR, vR, wR, pR) and a 3D unit vector dir = (nx, ny, nz)
representing the direction of the directed area vector associated
with the edge. The fluxkernel output is a numerical flux
vector of size 5 that is post-multiplied with the magnitude of
the directed-area vector. A high-level description of the flux
computation is shown in Algorithm 1. The input G contains
solutions and unstructured-grid metrics.

While the fluxkernel routine uses primitive variables as
input, the Jacobian employed by the solver for the nonlinear
governing equations is the derivative of the discrete residual
vector with respect to the vector of conservative variables
representing mass, momentum, and energy conservation. There
is a one-to-one differentiable mapping between primitive and
conservative variables. Another variation of the flux function,
fluxkernelC, inputs conservative variables, QL and QR,
and converts them into primitive variables as part of the flux
computation routine. (See Figure 1 and Algorithm 2.)

fluxkernel

5𝑞𝐿

5𝑞𝑅

5 f
CtoP

5𝑝𝐿

5𝑝𝑅

fluxkernelC

Fig. 1: Flux computation. QL, QR are conservative variables
that are converted to primitive variables qL, qR by function
CtoP. fluxkernel uses the primitive variables to compute
the flux. GN: I changed primitive notation to q and conserva-
tive notation to Q. This needs updated for this figure.

C. Automatic Differentiation of Flux Function

In this paper we study AD approaches for computing Jaco-
bian that is the derivative of the residual vector with respect
to conservative variables. There are two ways to account
for conversion from conservative to primitive variables. The
first way is to hand differentiate the map from conservative
to primitive variables, seed the resulting matrix as input,
and perform AD of fluxkernel. This way is illustrated in

fluxkernelC

Algorithm 2 FLUXC(G)
1: Input: Grid G
2: for i← 1 to nedges in G do
3: QL, QR ← getConservative(G, i)
4: dir ← getDirection(G, i)
5: localF lux← fluxkernelC(QL, QR, dir)
6: globalF lux(i)← localF lux
7: end for
8: return globalF lux

Algorithm 3. The subscript D denotes variables and routines
that use duals. The second way that directly performs AD on
fluxkernelC is illustrated in Algorithm 4. Both Algorithm 3
and Algorithm 4 are written for AD based on simple dual
numbers.

Let us first consider Algorithm 3. There are ten fluxkernel

input parameters representing primitive variables. In the for
loop in line 3 of Algorithm 3, in iteration j, the derivative of
fluxkernel is computed with respect to the jth conservative
variable. In Line 6, the seedDual procedure creates simple
dual numbers that are used by the fluxkernelD function
in line 7. For example, for j=1 and k=1, . . . , 5, five simple
duals are created: qLD

[k] = ⟨qL[k], ∂qL[k]
∂QL[j] ⟩. Here, qL[k]

is obtained by conservative-to-primitive conversion (see the
CtoP block in Figure 1) and ∂qL[k]

∂QL[j] is the k, j entry of
the hand-differentiated matrix of the conservative-to-primitive
map. Note that the fluxkernelD routine is the fluxkernel

routine operating on duals and using operator overloading. The
localF luxD is a vector of 5 duals, which is used to update
the sparse global Jacobian matrix. As stated earlier, the global
Jacobian matrix consists of a block-diagonal matrix Adiag, and
an off-diagonal matrix Aoff. Aoff is a block-sparse matrix that
is maintained in a block compressed sparse row (CSR) format
[26]. The functions in lines 8 and 9 update Aoff and Adiag
by accumulating flux derivatives (localF luxD) at Aoff and
Adiag locations identified by edge i.

Algorithm 4 is similar to Algorithm 3, except that there is
no seeding from a precomputed matrix. In iteration j of for
loop in line 3, the simple duals are set for the conservative
variables (line 6) by initializing the derivative component of
the jth variable to 1 and the derivative components of all other
variables to zero. These simple duals are then used on line 7
to compute the derivative of fluxkernelC with respect to the
jth conservative variable.

D. GPU Operator Overload Implementation

We developed several GPU implementations based on sim-
ple duals, multivariate duals, and different ways of mapping
GPU threads to computations. In the following, we briefly
discuss these implementations.

1) Simple duals with ten threads per edge: This implemen-
tation is based on simple duals. A DualNum structure has been
implemented and supported basic operations through operator
overloading. Figure 2 shows the DualNum structure and the
multiplication and division operations.

Algorithm 3 FLUX-DERIVATIVE(G,Aoff,Adiag)
1: Input: Grid G
2: for i← 1 to nedges in G do
3: for j ← 1 to 10 do
4: QL, QR ← getConservative(G, i)
5: dir ← getDirection(G, i)
6: qLD , qRD ← seedDual(QL, QR, j)
7: localF luxD ← fluxkernelD(qLD , qRD , dir)
8: updateAoff(Aoff, localF luxD, G, i)
9: updateAdiag(Adiag, localF luxD, G, i)

10: end for
11: end for
12: return Aoff, Adiag

Algorithm 4 FLUX-DERIVATIVEC(G,Aoff,Adiag)
1: Input: Grid G
2: for i← 1 to nedges in G do
3: for j ← 1 to 10 do
4: QL, QR ← getConservative(G, i)
5: dir ← getDirection(G, i)
6: QLD , QRD ← initDual(QL, QR, j)
7: localF luxD ← fluxkernelCD(QLD , QRD , dir)
8: updateAoff(Aoff, localF luxD, G, i)
9: updateAdiag(Adiag, localF luxD, G, i)

10: end for
11: end for
12: return Aoff, Adiag

This implementation exploits parallelism at two levels.
The first-level parallelism is across edges, and the second-
level parallelism is across iterations for ten partial derivatives
(line 2 and line 3 in Algorithm 3 and Algorithm 4). In
other words, we assign 10 threads to process an edge. The
first-five threads call the edge kernel to compute derivatives
with respect to five qL variables. The next set of five threads
computes derivatives with respect to five qR variables. It is
possible to call the same routine for both instances because of
the computation symmetry while performing derivatives with
respect to qL and qR variables. When the fluxkernel is
called by the second set of five threads, we just need to negate
the dir vector as shown in Figure 3.

Listing 1: Illustration of identical fluxkernel interface for
derivatives with respect to QL and QR.

1 / / s e t t h e p o i n t e r f o r t h e s h a r e d memory
2 d o ub l e * f l u x = &f l u x e s s [l e d g e] [i t e r *NDIM] ;
3 / / f o r f i r s t s e t o f f i v e t h r e a d s s i d e = 0
4 / / f o r t h e n e x t s e t o f f i v e t h r e a d s s i d e = 1
5 c o n s t d o u b l e s i g n = (s i d e == 0) 1 . 0 : − 1 . 0 ;
6 / / n e g a t i v e s i g n t o use t h e same r o u t i n e due t o symmetry
7 / / q l and qr a r e a l s o swapped
8 f l u x k e r n e l (s i g n *nx , s i g n *ny , s i g n *nz , a r ea , q l , qr , f l u x) ;

GN: can remove the listing in favor of PDF; not sure how
you generated a PDF. I simplified the kernel and notation.
BD: change the flag in Figure 3 from ”k” to something else.
”k” is associated with previously used index through entries
of localFlux function. Also nx, ny, and nz are not norms, but
components of a unit vector that is direction of the directed
area vector. Should change comments in the listing.

The computation has been restructured to minimize the

1: struct DualNum {

2: double v_real, v_dual;

3:

4: __device__

5: DualNum(double real=0,

6: double dual=0)

7: : v_real(real), v_dual(dual)

8: { }

9:

10: __device__

11: DualNum& operator=(double op1)

12: {

13: v_real = op1;

14: v_dual = 0.0;

15: return *this;

16: }

17: };

(a) DualNum structure based on simple dual num-
bers.

1: __forceinline__ __device__ DualNum

2: operator*(DualNum const& op1,

3: DualNum const& op2)

4: {

5: return

6: { op1.v_real * op2.v_real,

7: op1.v_real * op2.v_dual +

8: op1.v_dual * op2.v_real };

9: }

10:

11: __forceinline__ __device__ DualNum

12: operator/(const DualNum &op1,

13: const DualNum &op2)

14: {

15: double temp = 1.0 / op2.v_real;

16: return { op1.v_real * temp,

17: (op1.v_dual* op2.v_real -

18: op2.v_dual* op1.v_real)

19: * temp * temp};

20: }

(b) DualNum multiplication and division operations.

Fig. 2: DualNum structure and sample operations.

1: // set the pointer for the shared memory

2: double *flux = &fluxes_s[ledge][iter*NDIM];

3: // for first set of five threads side = 0

4: // for the next set of five threads side = 1

5: const double sign = (side == 0) 1.0 : -1.0;

6: // negative sign to use the same routine due to symmetry

7: // ql and qr are also swapped

8: fluxkernel(sign*nx, sign*ny, sign*nz, area, ql, qr, flux);

Fig. 3: Illustration of identical fluxkernel interface for
derivatives with respect to QL and QR.

number of temporary variables and reduce the register pres-
sure. The use of shared memory further reduces temporary
arrays and variables. Dual local flux vectors localF luxD are
stored in shared memory. Their derivative parts are collectively
populated by ten threads. When completed, the matrices of
local flux derivatives are copied from the shared memory to
the device memory using memory coalescing. Additionally,
atomics are used for updating Adiag to avoid race conditions,
which can occur when two threads operating on different edges
try to write to the same location. Atomics are not required
for updating Aoff. However, we found the atomics are faster
compared to regular updates on V100. Figure 4 lists the code
segment that writes the data from the shared memory to the
device memory in a coalesced way.

1: // size of state

2: constexpr int NDIM = 5;

3: // size of local Jacobian

4: constexpr int NDIM2 = NDIM*NDIM;

5: // number of edges processed by a block

6: constexpr int NEDGES_BLOCK = 25;

7: // number of threads per edge

8: constexpr int NTE = 10;

9: // NEDGES_BLOCK*NTE threads write NEDGES_BLOCK*NDIM2*2 values

10: // into the device memory in coalesced way

11: for (int sid = threadIdx.x; sid < NEDGES_BLOCK*NDIM2*2;

12: sid += NEDGES_BLOCK*NTE)

13: {

14: // set indices for shared and device memory

15: .

16: .

17: .

18: // fetch data from shared memory fluxes_s

19: double value = fluxes_s[local_edge][side * NDIM2 + id25];

20: // first five threads update dervatives values wrt q_L

21: // next five threads update dervatives values wrt q_R

22: const int id_diag = (side == 0) ? id11 : id22;

23: const int id_off = (side == 0) ? id21 : id12;

24: atomicAdd(&a_diag[id_diag * NDIM2 + id25], value);

25: atomicAdd(&a_off[id_off * NDIM2 + id25], -value);

26: }

Fig. 4: A block of threads moves values from the shared
memory to the device memory in a coalesced way.

Listing 2: A block of threads moves values from the shared
memory to the device memory in a coalesced way.

1 / / s i z e o f s t a t e
2 c o n s t e x p r i n t NDIM = 5 ;
3 / / s i z e o f l o c a l J a c o b i a n
4 c o n s t e x p r i n t NDIM2 = NDIM*NDIM;
5 / / number o f edges p r o c e s s e d by a b l o c k
6 c o n s t e x p r i n t NEDGES BLOCK = 2 5 ;
7 / / number o f t h r e a d s p e r edge
8 c o n s t e x p r i n t NTE = 1 0 ;
9 / / NEDGES BLOCK*NTE t h r e a d s w r i t e NEDGES BLOCK*NDIM2*2

v a l u e s
10 / / i n t o t h e d e v i c e memory i n c o a l e s c e d way
11 f o r (i n t s i d = t h r e a d I d x . x ; s i d < NEDGES BLOCK*NDIM2* 2 ;
12 s i d += NEDGES BLOCK*NTE)
13 {
14 / / s e t i n d i c e s f o r s h a r e d and d e v i c e memory
15 .
16 .
17 .
18 / / f e t c h d a t a from s h a r e d memory f l u x e s s
19 d o ub l e v a l u e = f l u x e s s [l o c a l e d g e] [s i d e * NDIM2 + id 25] ;
20 / / f i r s t f i v e t h r e a d s u p d a t e d e r v a t i v e s v a l u e s wr t q L
21 / / n e x t f i v e t h r e a d s u p d a t e d e r v a t i v e s v a l u e s wr t q R
22 c o n s t i n t i d d i a g = (s i d e == 0) ? id11 : id2 2 ;
23 c o n s t i n t i d o f f = (s i d e == 0) ? id21 : i d12 ;
24 atomicAdd (& a d i a g [i d d i a g * NDIM2 + id25] , v a l u e) ;
25 atomicAdd (& a o f f [i d o f f * NDIM2 + id 25] , − v a l u e) ;
26 }

GN: can remove the listing in favor of PDF; not sure how you
generated a PDF. I simplified the kernel and notation.

2) Simple duals with five threads per edge: The second
implementation is also based on simple duals and uses hi-
erarchical parallelism. However, the second-level parallelism
is restricted to five threads per edge. The five threads first
compute derivatives with respect to five QL variables, and
then compute derivatives with respect to five QR variables.
As in the first implementation, the edge kernel is restructured
to minimize the use of temporary variables and uses the shared
memory to enable coalesced updates.

3) Simple duals with two threads per edge: This imple-
mentation is also based on simple duals and uses hierarchical
parallelism. However, the second-level parallelism is restricted

to two threads per edge. One thread is responsible for comput-
ing derivatives with respect to five QL variables, and the other
is responsible for computing derivatives with respect to five
QR variables. As in the first implementation, the edge kernel
is restructured to minimize the use of temporary variables and
uses shared memory to enable coalesced updates.

4) Multivariate duals with two threads per edge: This
implementation is based on multivariate duals. As explained
earlier, multivariate dual numbers enable the simultaneous
computation of multiple derivatives. For example, using multi-
variate dual numbers of size 5, we can compute flux derivatives
with respect to five QL variables with one call to the AD ver-
sion of the flux computation routine. We created a DualNum5
structure that uses multivariate duals of size 5 and supports
basic operations. Figure 5 shows the DualNum5 structure and
a few operations.

E. GPU Operator Overload with Expression Template

Expression templates are a C++ programming technique that
builds an expression tree for computation at compile time.
They provide the notional convenience of operator overloading
with an expectation of efficient code generation. They provide
the opportunity for a compiler to generate code only for those
parts of an expression that are needed in the computation.
For some tasks, such as determining diagonal elements of a
product of several large matrices, expression templates result
in an optimized code that is much more efficient than any code
based even on well-tuned matrix multiplication routines that
perform full multiplications. In addition to the option of elimi-
nating unnecessary parts of a calculation, expression templates
also provide opportunities for important compiler optimization
such as common subexpression elimination and loop fusion.
An advanced compiler might be able to take advantage of
these opportunities to trade-off between register usage and
operation count. The salient features of the expression template
implementation, those that support the representation of lazily-
evaluated expressions, are shown in figures 6a, 6b, and 7.

Central to the design of expression template implementation
are the types that represent expressions. The simplest
expression is a dual value; this is represented by the struct
DualNum, shown in figure 6a. Note that this provides
a “function call” operator, operator()(std :: size ti),
to provide access to the ith element of the dual.
Shown in figure 6b is the class template Prod that
represents a product of two expressions. We have
implemented also Sum, Diff and the other operators
needed to support the required calculations. The type
Product⟨DualNum,DualNum⟩ represents an expression
of the form xy, where both x and y are duals. The
type Product⟨Sum⟨DualNum,DualNum⟩, DualNum⟩
similarly represents (x + y)z, where x, y and z are duals.
With relatively few building blocks, arbitrary expressions
can be represented. The class template Product, and its
related templates, contain as their data references to the
expression objects from which is created; they do not evaluate
the expressions when constructed. Each class template

1: struct DualNum5 {

2: double v, d0, d1, d2, d3, d4;

3:

4: __device__

5: DualNum5(double value=0,

6: double der0=0,

7: double der1=0,

8: double der2=0,

9: double der3=0,

10: double der4=0)

11: : v(value), d1(der1), d2(der2),

12: d3(der3), d4(der4)

13: { }

14:

15: __device__

16: DualNum5& operator=(double op1)

17: {

18: v = op1;

19: d0=0.0;

20: d1=0.0;

21: d2=0.0;

22: d3=0.0;

23: d4=0.0;

24: return *this;

25: }

26: };

(a) DualNum5 structure.
1: __forceinline__ __device__ DualNum5

2: operator*(DualNum5 const& op1,

3: DualNum5 const& op2)

4: {

5: return

6: { op1.v * op2.v,

7: op1.v * op2.d0 + op1.d0 * op2.v,

8: op1.v * op2.d1 + op1.d1 * op2.v,

9: op1.v * op2.d2 + op1.d2 * op2.v,

10: op1.v * op2.d3 + op1.d3 * op2.v,

11: op1.v * op2.d4 + op1.d4 * op2.v };

12: }

13:

14: __forceinline__ __device__ DualNum5

15: operator/(DualNum5 const& op1,

16: DualNum5 const& op2)

17: {

18: double temp = 1.0 / op2.v;

19: double temp2 = temp*temp;

20: return

21: { op1.v * temp,

22: (op1.d0 * op2.v - op2.d0 * op1.v) * temp2,

23: (op1.d1 * op2.v - op2.d1 * op1.v) * temp2,

24: (op1.d2 * op2.v - op2.d2 * op1.v) * temp2,

25: (op1.d3 * op2.v - op2.d3 * op1.v) * temp2,

26: (op1.d4 * op2.v - op2.d4 * op1.v) * temp2 };

27: }

(b) DualNum5 multiplication and division operations.

Fig. 5: DualNum5 structure and sample operations.

also provides operator()() which provides access to the
ith element of dual resulting from the evaluation of the
expression. Only when operator()() is called to access
the element does the compiler generate the code required
to evaluate that part of the expression. Note that it is in
the implementation of operator()() that the mathematical
rules for the evaluation of the product of duals is encoded.
DualNum also supports creation from, or assignment from,
and arbitrary dual number expression; both creation and
assignment force the valuation of all the components of
the expression. The final piece of the design is illustrated
in figure 7. These are the functions, and function template,
that overload the multiplication operator to form products of
expressions. The critical feature here is the fact that these

-

1: struct DualNum {

2: using value_type = double;

3: std::array<value_type, 2> vals;

4:

5: __device__

6: DualNum(double real=0, double dual=0)

7: : vals{real, dual} { }

8:

9: template <typename E>

10: __device__ DualNum(E const& expr)

11: : vals{expr(0), expr(1)} { }

12:

13: __device__ value_type

14: operator()(std::size_t i) const

15: { return vals[i]; }

16:

17: __device__ value_type&

18: operator()(std::size_t i)

19: { return vals[i]; }

20:

21: template <typename E>

22: __device__ DualNum&

23: operator=(E const& expr)

24: {

25: vals[0] = expr(0);

26: vals[1] = expr(1);

27: return *this;

28: }

29: };

(a) DualNum structure with partial expression template
support.
1: template <typename LHS, typename RHS>

2: class Product {

3: public:

4: using value_type = typename LHS::value_type;

5:

6: __device__

7: Product(LHS const& lhs, RHS const& rhs)

8: : lhs(lhs), rhs(rhs) { }

9:

10: __device__

11: value_type operator()(std::size_t i) const

12: { return i == 0

13: ? lhs(0) * rhs(0)

14: : lhs(0) * rhs(1) + lhs(1) * rhs(0);

15: }

16:

17: private:

18: LHS const& lhs;

19: RHS const& rhs;

20: };

(b) Example DualNum lazily-evaluated multiplication
support with expression templates.

Fig. 6: Expression template types representing a dual number
and a lazily-evaluated product.

operators create, but do not evaluate, the objects representing
the expressions.

IV. RESULTS AND PERFORMANCE EVALUATION

We evaluated the performance of various implementations
listed in Table I on the NVIDIA Tesla V100-PCIE-16GB,
Memory Clock Rate (KHz): 877000, and Peak Memory Band-
width (GB/s): 898. The compilation of code was done using
CUDA 11.4 with gcc/10.2. The test case used here is based
on transonic turbulent flow over the semispan wing-body [27]
configuration shown in Fig. 8. The freestream Mach number
is 0.85, the angle of attack is zero degrees, and the Reynolds
number, based on the mean aerodynamic chord, is 5 million.
The computational mesh consists of 1.1 million grid vertices,
1.2 million prisms, 3.0 million tetrahedra, and 7.3 thousand

1: __device__ inline DualNum

2: operator*(DualNum const& x, double y)

3: {

4: return x * DualNum(y);

5: }

6:

7: __device__ inline DualNum

8: operator*(double x, DualNum const& y)

9: {

10: return DualNum(x) * y;

11: }

12:

13: template <typename EXPR>

14: __device__ auto

15: operator*(EXPR const& x, double y)

16: {

17: DualNum temp{x};

18: return temp * y;

19: }

20:

21: template <typename EXPR>

22: __device__ auto

23: operator*(double x, EXPR const& y)

24: {

25: DualNum temp{y};

26: return x * temp;

27: }

Fig. 7: Free function support for multiplication of expressions
involving dual numbers.

Fig. 8: Wing-body configuration taken from Ref. [27].

pyramids. The total number of edges in the mesh is 5.97
million. This problem size is representative of the workload
that would typically be placed on a single GPU in practice.
For the purposes of the current study, the input/output to
the automatic derivative routine is extracted from an arbitrary
time step during the nonlinear convergence of the mean flow
equations.

The execution time of the various implementations is listed
in Table II. For comparison, we include the timing of a
hand-differentiated code and Tapenade. Note that somewhat
unexpectedly, dn5 2 implementation outperforms the hand-
differentiated code3

We looked at the operation count for various overload
operator-based implementations using dual numbers and dual
numbers with expression templates. Note that all the com-
putation for the automatic differentiation is done in double
precision. For updates to Aoff, which is a single precision
array, the double precision values are converted to single
precision just before getting written to the device memory.

3The hand-differentiated code attempts to compute all partial derivatives in
one routine and thereby increases the register pressure. The hand-differentiated
code can be improved using the lessons learned from the current study.

TABLE I: Designation for various implementations.

Designation Approach

dn 10 DualNum struct with ten threads per edge
dn 5 DualNum struct with five threads per edge
dn 2 DualNum struct with two threads per edge
dn5 2 DualNum5 struct with two threads per edge
hd Hand-differentiated code1

tp Tapenade source code transformation2

edn 5 Expression template with dual numbers based on dn 5
edn5 2 Expression template with dual numbers based on dn5 2

1Hand-differentiated code is optimized FUN3D production code.
2Source code transformation applied to FUN3D production code.

TABLE II: Execution time in milliseconds and relative
slowdown for various implementations on V100. The relative
slowdown is computed with reference to the performance of
the hand-differentiated code.

Approach Execution Time (ms) Relative Slowdown

hd 8.1 1.0
tp 22.8 2.8
dn 10 13.16 1.62
dn 5 8.99 1.11
dn 2 12.18 1.50
dn5 2 7.80 0.96
edn 5 10.32 1.27
edn5 2 8.87 1.09

As expected, we observed differences in the operation count
for implementations based on simple and multivariate duals.
There was also variation in the operation count depending on
the version of algorithm used: Algorithm 3 or Algorithm 4.
Note that in Algorithm 4, we modify the edge kernel to accept
conservative variables as input, and for Algorithm 3 we need
to seed the input with a hand-differentiated matrix. However,
surprisingly the implementation using expression templates
has a higher count of FLOPs than the implementations that
use simple and multivariate dual numbers. The results are
summarized in Table III.

TABLE III: Number of double precision fused multiply and
add (DFMA), double precision add (DADD), and double
precision multiplication (DMUL) for various implementations
on V100.

Approach Seeding DFMA DADD DMUL Total FLOPS
(109) (109) (109) (109)

dn 10 Yes 9.25 2.82 7.75 29.07
dn 5 Yes 8.95 2.82 7.72 28.45
dn 2 Yes 8.95 2.82 7.70 28.43

dn5 2 No 4.79 2.15 4.54 16.26
edn 5 Yes 11.16 5.32 9.27 36.92

edn5 2 No 5.91 3.71 4.11 19.64

A. Performance Analysis for dn5 2

We analyzed the best performing implementation, dn5 2,
to see if it can be improved further. The atomic updates to
Aoff and Adiag create the major traffic to the device memory.
To get an estimate on how much we are spending on this
part, first, we disabled the atomic updates4. Next, we disabled
the automatic differentiation routine and measured only the
time spent on the atomic updates. These timings along with
the regular execution time are summarized in Table IV. The
timings indicate that in dn5 2, we spend most of the time
in atomic updates, and the computation part is almost free.
Hence, if we want to make any improvement first, we need
to see if we can improve the performance of atomic updates
and then try to improve the computation part. We profiled the
code with NVIDIA NSight Compute to explore how close we
are to the possible peek of compute and memory throughput.

TABLE IV

Time(ms) Code segment active

7.80 Full code
6.85 Computation with no atomic updates5

7.57 Only atomic updates

The roofline model and workload analysis from the profiler
are shown in Figure 9. The arithmetic intensity of the dn5 2
kernel is 3.69 and the performance of the kernel is 2.016
TFLOPS/s. The kernel is memory bound, as indicated in the
roofline chart, and the overall performance is close to the peak.
From the profiler we observed the device memory bandwidth
of 610 GB/s, which is around 61% of the peak device memory
bandwidth. The workload analysis indicates that the FP64
utilization is close to 75% of the peak FP64 throughput. If we
examine the application bandwidth requirement, which is the
minimum data that needs to be moved between memory and
the SMs, we are only achieving 435 GB/s from the application.
However, we are forced to access more data than required as
our coalesced reads and writes are of size 25 ∗ 4 bytes or
25 ∗ 8 bytes. The cache line size is of 128 bytes resulting in
additional memory accesses. Additionally, the 5×5 blocks that
we are accessing in the kernel are not contiguous and that also
slows down the memory sub-unit. Because of this we believe,
it is difficult to improve the performance further, and we are
almost performing as well as we could.

V. CONCLUSION

We presented several GPU implementations of forward
mode AD for a commonly used flux computation function
in CFD. We identified common challenges faced in obtaining
a highly-performant GPU implementation and presented so-
lutions to address them and experimented with different tech-
niques to improve the performance. Our experimentation led to

4We need to be careful on how to disable the atomic updates because the
compiler can optimize away a lot of code. We typically do this by putting
the code segment to be disabled inside an if condition that is evaluated at
runtime.

Fig. 9: Roofline model and workload analysis. [27].

a GPU implementation that outperforms all other existing GPU
implementations. The analysis of this GPU implementation
leads us to believe that it will be hard to improve for this ker-
nel. However, we believe that the techniques used here can be
utilized more broadly in design of fast GPU implementations
for other scientific (especially CFD) computations.

ACKNOWLEDGMENT

We should acknowledge Eleni Adam’s help with expression
templates implementation.

The preferred spelling of the word “acknowledgment” in
America is without an “e” after the “g”. Avoid the stilted
expression “one of us (R. B. G.) thanks . . .”. Instead, try
“R. B. G. thanks . . .”. Put sponsor acknowledgments in the
unnumbered footnote on the first page.

REFERENCES

[1] E. J. Nielsen and B. Diskin, “Discrete Adjoint-Based Design
Optimization of Unsteady Turbulent Flows on Dynamic Overset
Unstructured Grids,” AIAA Journal, vol. 51, no. 6, pp. 1355–1373,
2013. [Online]. Available: https://doi.org/10.2514/1.J051859

[2] A. Griewank and A. Walther, Principles and Techniques of Algorithmic
Differentiation, 2nd ed. Society for Industrial and Applied Mathematics,
2008.

[3] J. C. Newman, W. K. Anderson, and D. L. Whitfield, “Multidisciplinary
Sensitivity Derivatives Using Complex Variables,” Computational
Fluid Dynamics Laboratory, NSF Engineering Research Center
for Computational Field Simulation, Mississippi State Univ.,
Tech. Rep. MSSU-COE-ERC-98-08, July 1998. [Online]. Available:
https://fun3d.larc.nasa.gov/papers/MsReport.pdf

[4] J. N. Lyness and C. B. Moler, “Numerical Differentiation of Analytic
Functions,” SIAM Journal on Numerical Analysis, vol. 4, no. 2, pp.
202–210, 1967. [Online]. Available: https://doi.org/10.1137/0704019

[5] J. Lyness, “Numerical algorithms based on the theory of complex
variables,” in Proceedings of 22nd ACM National Conference.
Washington, DC, USA: Thomas Book Co., 1967, p. 124–134. [Online].
Available: https://doi.org/10.1145/800196.805983

[6] CppAD:A C++ Algorithmic Differentiation Pack-
age, last accessed 6/23/23. [Online]. Available:
https://cppad.readthedocs.io/en/latest/user guide.html

[7] U. Naumann, J. Lotz, K. Leppkes, and M. Towara, “Algorithmic
Differentiation of Numerical Methods: Tangent and Adjoint Solvers
for Parameterized Systems of Nonlinear Equations,” ACM Trans.
Math. Softw., vol. 41, no. 4, oct 2015. [Online]. Available:
https://doi.org/10.1145/2700820

[8] A. Walther, “Getting started with ADOL-C,” in Combinatorial Scientific
Computing, 01.02. - 06.02.2009, ser. Dagstuhl Seminar Proceedings,
U. Naumann, O. Schenk, H. D. Simon, and S. Toledo, Eds., vol. 09061.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2009.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2009/2084/

[9] C. H. Bischof, P. D. Hovland, and B. Norris, “Implementation of Auto-
matic Differentiation Tools,” SIGPLAN Not., vol. 37, no. 3, p. 98–107,
jan 2002. [Online]. Available: https://doi.org/10.1145/509799.503047

[10] A. Griewank and A. Walther, “Algorithm 799: Revolve: An
Implementation of Checkpointing for the Reverse or Adjoint
Mode of Computational Differentiation,” ACM Trans. Math.
Softw., vol. 26, no. 1, p. 19–45, mar 2000. [Online]. Available:
https://doi.org/10.1145/347837.347846

[11] R. J. Hogan, “Fast Reverse-Mode Automatic Differentiation Using
Expression Templates in C++,” ACM Trans. Math. Softw., vol. 40,
no. 4, jul 2014. [Online]. Available: https://doi.org/10.1145/2560359

[12] H. M. Bücker and G. F. Corliss, “A Bibliography on Automatic
Differentiation,” in Automatic Differentiation: Applications, Theory, and
Implementations, ser. Lecture Notes in Computational Science and
Engineering, H. M. Bücker, G. F. Corliss, P. D. Hovland, U. Naumann,
and B. Norris, Eds. New York, NY: Springer, 2005, vol. 50, pp. 321–
322.

[13] J. Hückelheim, N. Kukreja, S. H. K. Narayanan, F. Luporini,
G. Gorman, and P. Hovland, “Automatic Differentiation for Adjoint
Stencil Loops,” in Proceedings of the 48th International Conference
on Parallel Processing, ser. ICPP ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3337821.3337906

[14] L. Hascoet and V. Pascual, “The Tapenade Automatic Differentiation
Tool: Principles, Model, and Specification,” ACM Trans. Math.
Softw., vol. 39, no. 3, may 2013. [Online]. Available:
https://doi.org/10.1145/2450153.2450158

[15] J. Hückelheim, M. Schanen, S. H. K. Narayanan, and P. Hovland,
“Vector forward mode automatic differentiation on simd/simt
architectures,” in Proceedings of the 49th International Conference
on Parallel Processing, ser. ICPP ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3404397.3404470

[16] W. S. Moses, V. Churavy, L. Paehler, J. Hückelheim, S. H. K.
Narayanan, M. Schanen, and J. Doerfert, “Reverse-Mode Automatic
Differentiation and Optimization of GPU Kernels via Enzyme,” in In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’21. New
York, NY, USA: Association for Computing Machinery, 2021. [Online].
Available: https://doi.org/10.1145/3458817.3476165

[17] E. Phipps, R. Pawlowski, and C. Trott, “Automatic Differentiation of
C++ Codes on Emerging Manycore Architectures with Sacado,” ACM
Trans. Math. Softw., vol. 48, no. 4, dec 2022. [Online]. Available:
https://doi.org/10.1145/3560262

[18] M. E. Schüle, M. Springer, A. Kemper, and T. Neumann, “LLVM Code
Optimisation for Automatic Differentiation: When Forward and Reverse
Mode Lead in the Same Direction,” in Proceedings of the Sixth Workshop
on Data Management for End-To-End Machine Learning, ser. DEEM
’22. New York, NY, USA: Association for Computing Machinery,
2022. [Online]. Available: https://doi.org/10.1145/3533028.3533302

[19] I. Ifrim, V. Vassilev, and D. J. Lange, “GPU Accelerated Automatic
Differentiation With Clad,” Journal of Physics: Conference Series,
vol. 2438, no. 1, p. 012043, feb 2023. [Online]. Available:
https://dx.doi.org/10.1088/1742-6596/2438/1/012043

[20] J. Blühdorn, N. R. Gauger, and M. Kabel, “AutoMat: automatic
differentiation for generalized standard materials on GPUs,”
Computational Mechanics, vol. 69, no. 2, pp. 589–613, nov
2021. [Online]. Available: https://doi.org/10.1007/s00466-021-02105-2

[21] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang,
N. Ellingwood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez,
N. Liber, J. Madsen, J. Miles, D. Poliakoff, A. Powell,

Floadng Puhl Opawtbw Roofllnl!

,.,

., I IO '" , ... , . .,.
N.......ac:W--.IJ\01'\'ti,11i

p
O...,..,,.dir-.~~Ofll'lt ~~~-~IMfl"uel.wWaoiSl,W'C)ill'IIS .. ~61' --~ \IIMWI)'---"""'~---·~
E--.:IIKDIQNO~ 13,t SMa.,N 7AM,

~-~~ 1)1 f\il ,, ..
IIIUl411)::Nti'!Ot~ 13,t

Pipe Ulllil~•l;IQA -

S. Rajamanickam, M. Simberg, D. Sunderland, B. Turcksin, and
J. Wilke, “Kokkos 3: Programming Model Extensions for the
Exascale Era,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 4, pp. 805–817, 2022. [Online]. Available:
https://doi.org/10.1109/TPDS.2021.3097283

[22] W. K. Anderson, R. T. Biedron, J.-R. Carlson, J. M. Derlaga, C. T. D.
Jr., P. A. Gnoffo, D. P. Hammond, K. E. Jacobson, W. T. Jones, B. Kleb,
E. M. Lee-Rausch, G. C. Nastac, E. J. Nielsen, M. A. Park, C. L.
Rumsey, J. L. Thomas, K. B. Thompson, A. C. Walden, L. Wang, S. L.
Wood, W. A. Wood, B. Diskin, Y. Liu, and X. Zhang, FUN3D Manual
14.0.1, NASA/TM-2023-0004211, 2023.

[23] J. Revels, M. Lubin, and T. Papamarkou, “Forward-Mode Automatic
Differentiation in Julia,” 2016.

[24] P. P. Roe, “Approximate Riemann Solvers, Parameter Vectors, and
Difference Schemes,” Journal of Computational Physics, vol. 43, no. 2,
p. 357–372, 1981. [Online]. Available: https://doi.org/10.1016/0021-
9991(81)90128-5

[25] K. Masatsuka, “I Do Like CFD, Vol. 1. Governing Equations
and Exact Solutions. Second Edition.” 2013. [Online]. Available:
http://www.cfdbooks.com/

[26] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2003.

[27] K. R. Laflin, S. M. Klausmeyer, T. Zickuhr, J. C. Vassberg, R. A. Wahls,
J. H. Morrison, O. P. Brodersen, M. E. Rakowitz, E. N. Tinoco, and
J.-L. Godard, “Data Summary from Second AIAA Computational Fluid
Dynamics Drag Prediction Workshop,” AIAA Journal of Aircraft, vol. 42,
no. 5, pp. 1165 – 1178, 2005.

	Efficient GPU Implementation of Automatic Differentiation for Computational Fluid Dynamics
	Original Publication Citation
	Authors

	tmp.1691418438.pdf.SH3KC

