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Abstract

Seagrasses are foundation species that provide ecosystem functions and services,

including increased biodiversity, sediment retention, carbon sequestration, and

fish nursery habitat. However, anthropogenic stressors that reduce water qual-

ity, impose large-scale climate changes, and amplify weather patterns, such as

marine heatwaves, are altering seagrass meadow configurations. Quantifying

large-scale trends in seagrass distributions will help evaluate the impacts of cli-

mate drivers on their functions and services. Here, we quantified spatiotempo-

ral dynamics in abundances and configurations of intertidal and shallow

subtidal seagrass (Zostera muelleri) meadows in 20 New Zealand (NZ) estuaries

that span a 5-year period (mid/late 2016–early 2022) just before, during and

after the Tasman Sea 2017/18 marine heatwave, the warmest summer ever

recorded in NZ. We used high-resolution PlanetScope satellite imagery to map

interseasonal seagrass extent and quantify seascape metrics across 20 estuaries

along a latitudinal gradient spanning 12° in NZ. We also explored the associa-

tion of changes in seagrass metrics with satellite-derived predictors such as sea

surface temperature (SST), SST anomaly (SSTa), water column turbidity, and

nutrient concentration. Our analyses revealed that NZ seagrass meadows varied

in areal extent between years and seasons, but with no clear patterns over the

5-year period, implying resilience to large-scale stressors like the 2017/18

marine heatwave. Small-scale patterns were also dynamic, for example, patch

sizes and patch configurations differed across estuaries, seasons, and years. Fur-

thermore, seagrass patches expanded in some estuaries with increasing SST and

SSTa. These results highlight dynamic seagrass patterns that likely affect local

processes such as biodiversity and carbon sequestration. Our analyses demon-

strate that a combination of high-resolution satellite remote sensing and sea-

scape metrics is an efficient and novel approach to detect impacts from

anthropogenic stressors, like eutrophication and climate changes, and climate

extremes like cyclones and heatwaves.

Introduction

Seagrass meadows support a variety of ecosystem functions

and services, such as provision of nursery habitat and

breeding grounds for diverse fauna (Fortes, 2012),

dampening coastal waves and stabilizing marine sediments

(Orth et al., 2006), removing nutrients (McGlathery

et al., 2007), and sequestering blue carbon (Howard

et al., 2017). Seagrasses, however, are vulnerable to light

reductions caused by eutrophication and sediment loading,
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climate change, and marine heatwaves (Arias-Ortiz

et al., 2018; Dunic et al., 2021; Marb�a & Duarte, 2010; Rob-

ertson & Savage, 2021; Smale et al., 2019; Thomson

et al., 2015). For example, substantial seagrass mortalities

have been documented after marine heatwaves in iconic

seagrass meadows, such as in Shark Bay, Western Australia

(Strydom et al., 2020), the Mediterranean Sea (Jord�a

et al., 2012), and the Chesapeake Bay (Hammer et al., 2018;

Moore et al., 2012; Moore & Jarvis, 2008). Given that

extreme climatic events like marine heatwaves are expected

to increase in the future, it is of paramount importance to

understand how they affect seagrass meadows.

Zostera muelleri, the only seagrass in New Zealand (NZ),

inhabits intertidal flats and shallow subtidal areas within

estuaries (Graeme, 2012; Turner & Schwarz, 2006). Anthro-

pogenic and natural disturbances and stressors to Z. muel-

leri sometimes cause patchy distributions and limit sexual

reproduction and resilience (Dos Santos & Mathe-

son, 2017). It has been suggested that Z. muelleri popula-

tions in NZ have declined in recent decades although their

present and historical extent is inadequately documented,

especially in relation to environmental stressors (Mathe-

son, 2018). Still, recent observations suggest that Z. muelleri

can recolonize lost patches and meadows in both estuarine

mudflats and intertidal reefs on the North Island of NZ

(Lundquist et al., 2018; Madarasz-Smith & Shanahan, 2020)

but few studies have analyzed losses and/or recovery pro-

cesses in the South Island. In the austral summer of 2017/

18, much of the South Island experienced the strongest

marine heatwave on record (Salinger et al., 2020) killing

large numbers of intertidal Durvillaea spp. (southern bull

kelp) (Thomsen et al., 2021) and subtidal Macrocystis pyri-

fera (giant kelp) (Tait et al., 2021), facilitating invasive spe-

cies (Thomsen et al., 2019) and altering species diversity

and species-interaction networks (Thomsen & South, 2019)

on coastal rocky reefs. In contrast, the effects of marine

heatwaves on Z. muelleri meadows have not been studied in

NZ even though heatwaves have grown stronger, longer,

and more frequent over the past decade (Salinger

et al., 2020; Tait et al., 2021; Thomsen et al., 2019). Simula-

tions of heatwaves in laboratory experiments suggest that Z.

muelleri responds with reduced photophysiological func-

tioning and is less tolerant to warm anomalous events com-

pared with other seagrass species (Nguyen, Bulleri,

et al., 2021). However, exposure to a second heatwave

improved the physiological performance of Z. muelleri

through thermal priming (Nguyen et al., 2020). These con-

flicting results make it difficult to understand or predict the

response of Z. muelleri meadows, under natural conditions,

to marine heatwaves in NZ.

Repeated mapping of seagrass meadows is essential to

document changes and better understand their spatiotem-

poral dynamics in response to stress factors such as marine

heatwaves. Robust measures for assessing spatial change in

seagrass meadows include quantifying changes in seascape

metrics (the marine equivalent to terrestrial landscapes

metrics, Table S1). For example, studies that used seascape

metrics have identified mechanisms of losses from time

series analysis of patch configuration (Kaufman &

Bell, 2022), linked seagrass seascape configuration and

complexity to conservation and environmental changes

(Arellano-M�endez et al., 2019), and linked facilitation pro-

cesses, habitat connectivity and aggregation of seagrass

patches (Cuevas et al., 2021). Analyzing seascape metrics

could therefore increase sensitivity to detect impacts from

extreme events, enable fine-scale detection of changes asso-

ciated with environmental stressors, and provide better

ecological understanding of seagrass dynamics.

Recent advances in satellite remote sensing imagery per-

mit detailed analysis of seascape metrics at scales not possi-

ble with traditional ground-based mapping efforts. Remote

sensing is potentially a useful tool because it can be done

on large scales covering entire meadows within and across

estuaries, using retrospective data collections (e.g., analyz-

ing images from before, during, and after a heatwave) and

allowing for repeated measurements to separate directional

and cyclic changes. High-resolution satellite imagery such

as PlanetScope (3 m pixel multispectral resolution) is

promising for seagrass detection because of its high (daily)

temporal coverage (Wicaksono et al., 2022), which

increases the probability of acquiring images taken at low

tide and on cloud-free days for better analysis of intertidal

seagrass cover. Remote sensing analysis combined with

environmental predictors and seagrass seascape metrics

should be a valuable tool to inform seagrass management

policies. The aims of this study were therefore: (i) to exploit

seagrass seascape metrics in 20 estuaries in NZ spanning a

12° latitudinal gradient to quantify temporal trends over a

5-year period that included the Tasman Sea 2017/18 marine

heatwave and (ii) to determine whether large climate

drivers such as sea surface temperature (SST), SST anoma-

lies, and other predictors like water clarity and nutrients

could be related to changes in spatial seascape metrics in

seagrass meadows. More specifically, we hypothesized that

Z. muelleri, like other seagrasses, would be negatively

affected by extreme marine heatwaves and that impacts

would be more severe in northern warmer estuaries (Arias-

Ortiz et al., 2018; Marb�a & Duarte, 2010; Smale et al., 2019;

Thomson et al., 2015).

Materials and Methods

Study sites

Twenty estuaries across NZ were selected (Fig. 1) based

on available prior data from geotagged photographs and

2 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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drone images and literature that reported Z. muelleri

occurrences (Table S2). The 20 estuaries were situated

along a gradient spanning 12° of latitude, and they expe-

rienced the 2017/18 marine heatwave to different degrees

(Fig. 1). In addition to different temperature regimes, the

20 estuaries also represented a wide range of Z. muelleri

meadow sizes and patch configurations (Figure S5), tidal

ranges, and anthropogenic stressors (Table 1).

Satellite image acquisition

To test for temporal trends in seagrass cover and possible

links to large-scale temperature stressors, satellite images

were analyzed for a period of c. 5 years from mid-late

2016 to early 2022. Images were sourced from the Planet-

Scope Dove satellite constellation from the PSScene4Band

Sensor (PS4) with pixel resolution of c. 3 m (nadir

viewing) (Planet Team, 2018). Using such high spatial

resolution allows for improved seagrass patch dynamic

analysis (Hill et al., 2014) that is particularly important

when quantifying fragmented seagrass meadows of

relatively small species, like Z. muelleri (McKenzie

et al., 2022). To get the best possible images for analyses,

temporal coverage was restricted to one image per season

(four images per year), generating 22 images per estuary

– including 20 images covering 2017–2021, one image

from 2016 to get best possible before heatwave data (Pla-

netScope launched in June 2016) and one image from

early 2022 to cover the 2021/22 summer that also was

unusually hot. A few estuaries did not have the complete

set of 22 images due to cloud cover, water column tur-

bidity, tide stage or lack of satellite pass. The screening

criteria for satellite images include <10% cloud cover,

minimal water turbidity, zero to minimal glint, and tem-

poral proximity to local low tide times modeled by

NIWA (www.tides.niwa.co.nz). All sourced images were

Figure 1. Maps of estuaries in New Zealand, analyzed for seagrass cover and patch dynamics with satellite images, including (A) overview of all

20 estuaries where five are from the North Island (outside dashed boxes) and 15 from (B) northern, (C) central, and (D) southern regions of South

Island (dashed boxes and insets). The estuaries are superimposed on a heat map showing monthly sea surface temperature anomaly (SSTa) in

January 2018, the hottest month during the extreme 2017/18 Tasman Sea marine heatwave. SSTa was based from NOAA Coral Reef Watch

Monthly Global 5 km grid data (2018).
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Table 1. Key characteristics of 20 estuaries in New Zealand, analyzed for seagrass cover and patch dynamics with satellite images, including SST

and SST anomaly means for 2017–2021, their estuary trophic index (ETI) susceptibility rating, and ecological stress based on ETI macroalgae sus-

ceptibility band.

Estuary Site ID Latitude Longitude Estuary typea
Spring tidal

range (m)a
5-year mean

SST (°C)b
5-year mean

SSTa (°C)b
ETI

susceptibilityc
Likely stress from

macroalgaec

North Island

Houhora NHOU �34.815 173.137 Shallow

drowned

valley

2.0 18.08 0.70 Moderate Minor

Wharekawa NWRK �37.113 175.874 Tidal lagoon 1.7 17.93 0.73 Moderate Minor

Tauranga NTAU �37.659 176.114 Shallow

drowned

valley

1.7 17.62 0.75 Moderate Minor

Kawhia NKAW �38.084 174.820 Shallow

drowned

valley

3.0 17.12 0.64 Low None

P�autahanui NPAU �41.097 174.877 Shallow

drowned

valley

1.0 15.52 0.83 Moderate Minor

North of South Island

Puponga

Bay

PUP �40.533 172.733 Tidal lagoon 3.7 15.61 0.56 Low None

Ruataniwha

Inlet

RUA �40.654 172.674 Tidal lagoon 3.7 15.56 0.52 High Moderate

Delaware

Inlet

DEL �41.167 173.441 Tidal lagoon 3.5 16.00 0.81 Low None

Nelson

Haven

NEL �41.240 173.300 Tidal lagoon 3.6 16.06 0.92 Low None

Anakiwa

Bay

ANA �41.265 173.916 Deep drowned

valley

1.5 14.88 0.53 Low None

Ngakuta Bay NGA �41.273 173.965 Deep drowned

valley

1.5 14.88 0.53 Low None

Central of South Island

Avon

Heathcote

AHE �43.550 172.745 Tidal lagoon 1.8 13.65 0.99 High Moderate

Duvauchelle

Bay

DUV �43.753 172.934 Deep drowned

valley

1.8 13.24 0.75 Moderate None

Robinsons

Bay

ROB �43.768 172.960 Deep drowned

valley

1.8 13.24 0.75 Moderate None

South of South Island

Waipuna

Bay

WAI �45.789 170.664 Deep drowned

valley

1.6 12.57 0.84 Low None

Portobello

Bay

POR �45.822 170.666 Deep drowned

valley

1.6 12.57 0.84 Low None

Papanui

Inlet

PAP �45.847 170.686 Tidal lagoon 1.6 12.51 0.88 Moderate Minor

Jacob River

Estuary

JAC �46.341 168.015 Tidal lagoon 2.3 12.97 0.63 Very high Significant

New River

Estuary

NRE �46.475 168.343 Shallow

drowned

valley

2.2 12.93 0.71 Very high Significant

Catlins River

Estuary

CAT �46.484 169.690 Tidal lagoon 1.8 12.47 0.97 High Moderate

a

Data based on Hume et al. (2016).
b

Satellite-derived annual mean sea surface temperature (SST) and SST anomaly based on the nearest oceanic pixels from estuary opening.
c

Ratings per estuary were based on the web tool for ETI Tool 1 (Zeldis et al., 2017) and interpreted according to Robertson et al. (2016).

4 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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downloaded as orthorectified, radiometrically calibrated,

atmospherically corrected, and Sentinel-harmonized sur-

face reflectance (SR) products (Planet Team, 2022).

Satellite image classification

The SR products from PS4 scenes were visually examined

and checked for spectral signatures prior to identifying

training sites for supervised classification. The training

sites were identified by examining the spectral informa-

tion contained in the training patches (Coffer et al., 2020;

Lebrasse et al., 2022) combined with georeferenced infor-

mation from drone and photo images taken by co-author

Thomsen and colleagues in South Island sites, literature-

reported seagrass maps for both North and South Island

sites (Table S2), or expert knowledge derived from field

surveys (Thomsen, pers. obs.). Training classes consisted

of ‘seagrass’, ‘sediment’, and ‘water’. Land pixels with

positive elevation identified using digital elevation models

downloaded from LINZ Data Service (http://data.linz.

govt.nz) were removed prior to classification analysis. The

time series images from each site were trained and batch-

classified using the Support Vector Machine (SVM) algo-

rithm implemented in ArcGIS Pro (Munir & Wicak-

sono, 2019; Traganos & Reinartz, 2018). SVM – a

supervised machine learning method that classifies pixel-

based multiband imagery from an input training dataset

– is a common and reliable mathematical algorithm for

seagrass classification (Chandra & Bedi, 2021; Traganos

et al., 2018; Widya et al., 2023). Specifically, SVM finds

the optimal hyperplane (boundary) that separates differ-

ent feature classes from the maximum margin between

closest points, a well-established method to detect com-

plex decision boundaries from relatively few training data

(Drucker et al., 1996). Because the seagrass cover was

temporally dynamic, some of the training patches had to

be repositioned from image to image for the same loca-

tion to achieve accurate classification. The classified raster

image outputs were postprocessed by reclassifying them

into ‘seagrass’ and ‘non-seagrass’ classes only. Raster maps

were also ‘cleaned’ using the shrink feature in ArcGIS that

removes isolated ‘noisy’ pixels (Enwright et al., 2022).

Training patches were created manually for each image in

ArcGIS Pro. Classification of the entire image library was

automated using the Python ‘arcpy’ library.

Classification agreement was assessed by first generat-

ing equalized random accuracy points derived from the

reference photograph and drone images that were not

used during model training (note that we used an aver-

age of 63% and 37% for training and validation, respec-

tively). We also compared our classification maps to

literature-reported seagrass maps that were georeferenced,

rasterized, resampled, and reprojected to attributes

similar to the classified raster images (Chiang

et al., 2014). This method is relatively similar to Lebrasse

et al. (2022) and Coffer et al. (2020) that performed

agreement assessment between classified satellite images

and aerial images. Comparing our classification to the

rasterized literature maps (which are primarily derived

from aerial imagery and field surveys, Table S2) is more

robust as it covers the same area as our area of interests

than the fewer rasterized points from photographs and

drones. Only classified images that closely coincided with

the reference dates were selected for agreement assess-

ment (Table 2). Confusion matrices were then calculated

to generate agreement statistics (Table 2). Note that we

used the term agreement throughout instead of accuracy

because the reference datasets were imbalanced and do

not always contain observations that were independently

validated (i.e., accuracy is not always guaranteed) (Coffer

et al., 2023). We also investigated the potential influence

of tidal height at the time of satellite image capture on

the seagrass cover detected by our classification process.

We performed regression analyses between seagrass can-

opy area estimates and the tidal heights acquired from

NIWA across the entire time series and for each site. We

also checked for assumptions of normality and homosce-

dasticity and implemented data transformation (Tukey’s

Ladder of Powers) where necessary. Agreement between

satellite date and ground-based data products, and tidal

height sensitivity analyses, were done in ArcGIS Pro and

R studio (R Core Team, 2021; RStudio Team, 2021),

respectively.

Seascape metrics analysis

The application of seascape metrics to remote sensing

classification provides a broader level of quantitative tech-

nique for seagrass monitoring than conventional pixel-by-

pixel quantification (Baumstark, 2018). Here, we used the

seagrass raster maps to calculate seascape metrics and

assess changes in seagrass meadow configuration over

time. Our study targeted seagrass dynamics, and we there-

fore selected the subset of class-level metrics that

accounted for total extent, and the size, fragmentation,

and connectivity of seagrass patches (Hesselbarth

et al., 2019; McGarigal et al., 2012) – metrics that have

ecological implications, for example, for seagrass-

associated animal population dynamics and species inter-

actions (Uhrin & Turner, 2018). Seascape metrics

included: total class area (CA), mean patch area

(AREA_MN), number of patches (NP), total class edge

(TE), patch cohesion index (COHESION), and largest

patch index (LPI). For details on these metric, please see

summary Table S1 and Hesselbarth et al. (2019). Spatial

metrics were calculated using the ‘landscapemetrics’

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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Table 2. Agreement assessment results per site.

Site Reference data used Reference date Satellite image date

P_accuracy

non-seagrass P_accuracy seagrass

U_accuracy

non-seagrass U_accuracy seagrass Overall accuracy Kappa coefficient

AHE Rasterized map 2016-Mar 2016-Nov 0.86 0.87 0.88 0.86 0.87 0.74

DUV/ROB Drone/Photographs 2020-Jul 2020-Jul 1.00 0.52 0.67 1.00 0.76 0.52

DWA Photographs 2016-Oct 2016-Sep 1.00 0.75 0.86 1.00 0.90 0.78

Drone/Photographs 2020-Jul 2020-Aug 1.00 0.72 0.78 1.00 0.86 0.72

POR Photographs 2020-Jul 2020-Aug 0.694 1.00 1.00 0.58 0.78 0.57

PAP Photographs 2016-Oct 2016-Sep 0.93 0.6 0.7 0.9 0.77 0.53

Rasterized map 2021-Nov 2021-Oct 0.81 0.83 0.84 0.80 0.82 0.64

CAT Rasterized map 2016-Dec 2016-Dec 0.80 0.72 0.68 0.84 0.76 0.52

NRE Rasterized map 2016-Feb 2016-Sep 0.73 1.00 1.00 0.64 0.82 0.64

JAC Rasterized map 2016-Feb 2017-Feb 0.77 0.94 0.96 0.72 0.84 0.68

NGA Photographs 2016-Apr 2016-Sep 1.00 0.67 0.875 1.00 0.90 0.74

Rasterized map 2018-Mar 2018-Feb 0.78 0.92 0.93 0.74 0.83 0.67

ANA Rasterized map 2018-Mar 2018-Jan 0.93 0.87 0.87 0.93 0.90 0.80

DEL Photographs 2016-Apr 2016-Nov 1.00 0.75 0.86 1.00 0.90 0.78

Drone/Photographs 2020-Jun 2020-Aug 1.00 0.79 0.83 1.00 0.89 0.79

NEL Photographs 2020-Jun 2020-Aug 1.00 0.82 0.82 1.00 0.90 0.80

RUA Rasterized map 2015-Mar 2016-Nov 0.81 1.00 1.00 0.76 0.88 0.76

Photographs 2016-Apr 2016-Nov 1.00 0.80 0.83 1.00 0.90 0.80

PUP Photographs 2016-Apr 2016-Sep 1.00 0.69 0.64 1.00 0.80 0.61

NPAU Rasterized map 2020-Jan 2020-Feb 0.84 0.91 0.92 0.82 0.87 0.74

NKAW Rasterized map (?)2011 2017-Jan 0.70 0.82 0.86 0.64 0.75 0.50

NTAU Rasterized map 2011 2016-Sep 0.72 0.97 0.98 0.62 0.80 0.60

NWRK Rasterized map 2017/18-SUM 2018-Feb 0.70 0.88 0.92 0.60 0.76 0.52

NHOU Spectral info only 2022-Jan 2022-Jan 1.00 0.82 0.81 1.00 0.90 0.80

See Table 1 for details and abbreviations of individual estuaries.

No available literature map can be rasterized for NHOU, but we refer to image and textual information from reference in Table S2.
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package (Hesselbarth et al., 2019) in R studio (R Core

Team, 2021; RStudio Team, 2021).

To detect whether there were monotonic temporal

increases or decreases in seagrass seascape metrics among

sites from 2016 to 2022, we ran seasonal Kendall (SK)

tests (Helsel et al., 2020; Hirsch & Slack, 1984) – an

extension of traditional Mann-Kendall trend tests (Ken-

dall, 1938; Mann, 1945). These tests ran the traditional

Mann-Kendall Test separately in each of the seasons (e.g.,

our summer data were only compared with other summer

data in the time series) (Helsel & Frans, 2006). An overall

SK statistic was generated by combining individual SK

statistics for each season to derive Kendall’s tau correla-

tion coefficient (s) that measures the strength of the

monotonic relationship between time and test variables

(Helsel & Frans, 2006). We calculated the trend slope, s,
and P-values to evaluate the probability that there were

no trends in all analyzed seascape metrics in each estuary.

Following Lebrasse et al. (2022), we interpreted s coeffi-

cients as in Cohen (1988), where an absolute value of

0.1 ≤ s < 0.3, 0.3 ≤ s < 0.5, and 0.5 ≤ s < 1 is consid-

ered a weak, moderate, or strong trend, respectively. The

SK trend tests were performed using the ‘rkt’ package

(Marchetto & Marchetto, 2021) in R studio (R Core

Team, 2021; RStudio Team, 2021).

Environmental predictors analysis

We explored the potential association of large-scale cli-

mate drivers such as nearby oceanic SST, SST anomaly

(SSTa), turbidity, and water column chlorophylls with

seagrass seascape metrics. Monthly estimates of SST and

SSTa from June 2016 to February 2022 were downloaded

from NOAA Coral Reef Watch Monthly Global 5 km res-

olution datasets (2018). These monthly estimates were

based on the oceanic pixels nearest the mouth of the estu-

aries supporting seagrass meadows (see Figure S4 for

pixels position). We also tested whether the seagrass met-

rics were sensitive to other satellite-derived water quality

predictors relevant to seagrass performance such as light

attenuation [Kd490 (Sully & van Woesik, 2020)] and

nutrient limitation [proxied by Chlorophyll-a concentra-

tion (Veettil et al., 2020)]. Monthly values of both Kd490

and Chl-a were obtained from the NASA OceanColor

database (https://oceandata.sci.gsfc.nasa.gov/) using

MODIS-Aqua Global 4 km Science Quality monthly com-

posite datasets. These data were taken from the same

pixel location as in the SST data (except for two sites that

were further in from the ocean and were not covered by

MODIS). High-quality in situ measurements for the water

quality predictors did not exist for all 20 estuaries; hence

for consistency, we used standardized satellite-derived

data mostly from the nearest offshore pixels (Figure S4),

assuming a linkage between the ocean and the estuary

through tidal mixing (Newton & Mudge, 2003; Sims

et al., 2022).

Monthly data of all predictors were filtered to match

the corresponding months of seagrass cover across the

time series. The potential effects of monthly SST, SSTa,

Kd490, and Chlorophyll-a on seagrass seascape metrics

were analyzed with multiple linear regression (MLR).

MLR is widely used to detect associations between envi-

ronmental predictors and seagrass response metrics (Leb-

rasse et al., 2022; Pansini et al., 2021; Tuya et al., 2013;

Unsworth et al., 2007). All seascape metrics data were

automatically transformed using Tukey’s Ladder of Pow-

ers approach (Tukey, 1977) prior to running MLR ana-

lyses. All workflow for environmental predictors was done

in R studio (R Core Team, 2021; RStudio Team, 2021),

using the ‘rerddap’ package (Chamberlain, 2021) for

fetching satellite data from the NOAA ERDDAP server,

and the ‘rcompanion’ package (Mangiafico, 2022) for data

transformation.

Results

We analyzed a total of 449 satellite images from 20 estu-

aries in NZ spanning the period from austral Spring 2016

to Summer 2021/22. Our analysis did not show clear

long-term monotonic trends in total seagrass extents

across all estuaries, and patch metrics often fluctuated in

sizes and configuration across estuaries, latitudes, seasons

and with water temperature. The classification process

had an overall agreement that ranged from 75 to 90%

and corresponding Kappa coefficients ranging from 0.52

to 0.80 (Table 2). Remote detection of seagrasses in all

images and sites was not biased by tidal height at the time

of satellite image capture (Figure S1).

Seascape metrics

For brevity, we focused here on results from estuaries

with evident trends in total seagrass areal extent (class

area) or those with a combination of three or more evi-

dent trends in other metrics (by assuming this as strong

demonstration of patch dynamics). The analyses revealed

no monotonic trends in seagrass class area in 18 of the 20

estuaries analyzed here across the +5 years as the slopes

were not different from zero (P > 0.05, Fig. 2A). Only

two estuaries, Nelson Haven and Duvauchelle Bay on the

South Island, exhibited strong and moderate increases in

class area (s = 0.51 and 0.46, P = 0.02 and 0.02, n = 22

and 22, respectively, Fig. 2A). However, seagrass area was

highly variable across seasons and years in most estuaries

(Fig. 3). Some estuaries, including Nelson and Duvau-

chelle, varied significantly in other seascape metrics,

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 7
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Figure 2. Summary of Seasonal Mann-Kendall trend tests (slopes) of six seascape metrics (A–F) for 20 estuaries arranged from northern (top) to

southern (bottom) latitudes across seasons from Spring 2016 to Summer 2021/22. See Table 1 and Figure 1 for details and abbreviations of indi-

vidual estuaries.

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

(K) (L) (M) (N) (O)

(P) (Q) (R) (S) (T)

Figure 3. Seagrass areal extent for 20 estuaries (A–T) arranged from northern (top) to southern (bottom) latitudes across the time series where

points are colored according to seasons. See Table 1 and Figure 1 for details and abbreviations of individual estuaries. Red box indicates data

during 2017/18 marine heatwave.

8 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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demonstrating high patch dynamics. Although total sea-

grass area in P�autahanui in North Island appeared con-

stant over time, patch fragmentation increased as

indicated by a decrease in mean patch area (s = �0.51,

P = 0.02, n = 22, Fig. 2B), increase in patch number

(s = 0.80, P < 0.01, Fig. 2C) and total edge length

(s = 0.51, P = 0.02, Fig. 2D). In contrast, the temporally

stable class area in Delaware Bay on South Island was

accompanied by a decrease in mean patch area

(s = �0.52, P < 0.01, n = 23, Fig. 2B) and in largest

patch index (s = �0.40, P = 0.045, Fig. 2F). There was

also an indication of fragmentation in Delaware due to

moderate trends in both number of patches (s = 0.46,

P = 0.02, Fig. 2C) and cohesion (s = �0.40, P = 0.045,

Fig. 2E). The significant increase in class area observed in

the Nelson Estuary was accompanied by moderate

increase in mean patch area, a strong increase in largest

patch index, and likely patch aggregation due to a strong

increase in cohesion. However, the increase in class area

observed in Duvauchelle Bay was not coupled with any

trends in patch configuration except for a strong increase

in total edge, which is also indicative of fragmentation.

Other trends were unique for some estuaries by having

one or two significant or near significant slopes among

the analyzed metrics (Fig. 2). Although there were few

temporal trends in total cover over the five-year period,

seagrass was more abundant in summer than winter in

NZ estuaries (14 estuaries increased by c. 63% vs. 6

decreased by c. 15%, Table S3). This seasonal pattern was

particularly strong in five of the estuaries (see Fig. 3B,J,O,

P,Q) where seagrass cover, on average, increased by >80%
from winter to summer (Table S3).

Environmental drivers

Multiple linear regressions quantified the associations

between monthly SST and SSTa and various seagrass sea-

scape metrics for several estuaries (Figs. 4 and 5). How-

ever, monthly Chlorophyll-a and Kd-490 had poor

explanatory power across seascape metrics, sites, and time

series with highly variable regression slopes and P > 0.10

(Figures S2 and S3). Furthermore, while SST and SSTa

were important warming predictors, they did not exhibit

uniform effects across estuaries. For example, there was

significant effect of SST but not SSTa on seagrass metrics

in Papanui Inlet. In contrast, there was a nonsignificant

SST and significant SSTa on seagrass meadows in Avon

Heathcote Estuary (Figs. 4 and 5). We therefore here pre-

sent their effects separately.

Specifically, we found a decreasing trend (�b) for

number of patches with SST but positive trend (+b)
between SST and class area, mean patch area, cohesion,

and largest patch index (Fig. 4). These patterns suggest

that seagrass expansion and patch aggregation generally

increased, and meadow fragmentation decreased with

temperature, as demonstrated in estuaries such as Whare-

kawa, Nelson, and Papanui (although in Nelson, patch

numbers appeared constant, Fig. 4C). This pattern poten-

tially also existed for Ruataniwha where similar direction

of slopes was evident for cohesion and largest patch index

(Fig. 4). Moreover, New River Estuary also showed asso-

ciation between SST and seagrass expansion for class area

and mean patch area but did not drive other patch con-

figurations (Fig. 4C–F).
By comparison with SST, association between SSTa on

seascape metrics was less common and varied more across

estuaries. For example, in Nelson, increases in SSTa

tended to decrease seagrass class area, mean patch area,

cohesion, and largest patch index (i.e., indicative of patch

contraction and fragmentation, Fig. 5). This pattern was

relatively similar for Ruataniwha where four metrics also

decreased although only near-significantly so for class

area, mean patch area, and cohesion (Fig. 5A,B,E,F).

Interestingly, we found positive association between SSTa

and seagrass class area, total edge, and largest patch index

in the Avon Heathcote estuary (Fig. 5A,D,F). Other

trends included a positive association between SSTa and

mean patch area but negative with total edge in Whare-

kawa (Fig. 5B,D) and decreasing mean patch area with

SSTa in New River Estuary (Fig. 5B).

Discussion

Remote sensing detection of seagrasses has been widely

used for management and monitoring of local systems

but rarely on a larger scale and wider ecological seascape

context. Our study is, as far as we know, the first to uti-

lize PlanetScope’s high-resolution satellite imagery to

detect trends across fine temporal (intraannual/interseaso-

nal) and wide geographic (20 estuaries along a 12° latitu-

dinal gradient) scales, compared with more common

interannual and/or single-site studies. The relations

between seascape metrics and climate variables presented

here also remain relatively rare in seagrass remote sensing

studies. By combining satellite-based methods with sea-

scape metrics, we documented that Z. muelleri meadows

fluctuated considerably across seasons in NZ estuaries,

without any clear monotonic trends of long-term losses

or gains, and that seagrass patches expanded significantly

in some estuaries with increasing SST and SST anomalies.

In other words, we did not find support for our initial

working hypothesis that Z. muelleri would be severely

inhibited by heatwaves. Instead, our results suggest that

Z. muelleri is resilient to large-scale stressors like the

extreme 2017/18 marine heatwave and may be responding

positively to climate warming that has potential cascading

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 9

K. J. E. Clemente et al. Remote Sensing of New Zealand Seagrass Seascapes

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.343 by O

ld D
om

inion U
niversity, W

iley O
nline L

ibrary on [18/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



effects on other ecosystem services provided by seagrass

meadows.

Seagrass seascape metrics

Here, using remotely sensed data, we quantified seagrass

patch dynamics, which are extremely difficult to detect

using ground-based measures of seagrass extent across the

estuarine landscape. Specifically, the lower seagrass cover

in winter months we found in some estuaries (Fig. 3;

Table S3) is consistent with results from Ramage and

Schiel (1999) where Z. muelleri patches decreased in size

during winter. Although our findings suggest that there

were no general increases or decreases in Z. muelleri

extent over the last 5 years, there is evidence of patch-

level variability and seasonal dynamics that potentially

affect ecosystem function (Yarnall et al., 2022). Such vari-

ation in patch sizes, configurations, and connectedness

can potentially affect meadow-scale processes including

faunal recruitment, diversity, community structure, facili-

tation, predation, and hydrodynamics (Bryan et al., 2007;

Turner et al., 1999). For example, fragmented Z. muelleri

patches in NZ typically have lower density and richness

of faunal assemblages when compared to continuous

meadows (Mills & Berkenbusch, 2009), and Z. muelleri

expansion or recolonization can increase animal diversity

(Lundquist et al., 2018). Dense cover in Z. muelleri

meadows has also been linked to higher densities of

grazers and predators (Alfaro, 2006), and patch fragmen-

tation can increase predation rates (Irlandi et al., 1995).

In addition to direct ecological effects, Z. muelleri patch

dynamics (in contrast to bare sediments) can also modify

local hydrodynamic conditions which again affects nutri-

ent uptake (Bryan et al., 2007) larval settlement (Grizzle

et al., 1996) and carbon sequestration (Lavery

et al., 2013). Our analyses could therefore be useful to

infer ecological consequences on both short-term seasonal

scales and to interpret long-term changes to seagrass-

associated communities.

Environmental predictors

The different spatiotemporal patterns in patch metrics

observed across 20 NZ estuaries may be related to differ-

ent underpinning abiotic and/or biotic drivers with subse-

quent differential impacts on the seagrass meadows (Bell

Figure 4. Summary of multiple linear regression tests (slopes) of six seascape metrics (A–F) versus monthly SST for 20 estuaries arranged from

northern (top) to southern (bottom) latitudes. See Table 1 and Figure 1 for details and abbreviations of individual estuaries. SST, sea surface

temperature.
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et al., 2007). Possible biological drivers of seagrass patch

dynamics, for example, associated with facilitation, her-

bivory, or diseases, cannot be measured from satellite

images, in contrast to many potential physicochemical

drivers, like SST, SSTa, chlorophyll and light attenuation.

We found no clear relationships between seagrass met-

rics and nearby oceanic Chlorophyll-a or light attenua-

tion, perhaps because intertidal Z. muelleri are less

affected by light limitation (Bulmer et al., 2016; Kohlme-

ier et al., 2014; Petrou et al., 2013; Schwarz, 2004;

Zabarte-Maeztu et al., 2020). Alternatively, suspended

sediment and phytoplankton concentrations could be dis-

connected from small-scale local estuarine water charac-

teristics. However, standardized small-scale light

attenuation and chlorophyll data do not exist for all 20

estuaries studied here, so our water quality tests were lim-

ited to oceanic satellite datasets. By contrast, we found

several significant associations between nearby oceanic

warming and seagrass seascape metrics. Although the ana-

lyses did not show clear consistent large-scale losses (or

gains) of Z. muelleri linked to extreme heatwaves, as

observed in other seagrass species (Jord�a et al., 2012; Stry-

dom et al., 2020), the warming predictors did affect many

Z. muelleri patch metrics. Specifically, our findings from

some estuaries showed increases in aggregation and

expansion of seagrass extent with increasing SST, which is

consistent with past observed expansion of Z. muelleri

during warmer months (Chartrand et al., 2016). This pos-

itive relationship is likely because Z. muelleri is living

below its thermal optima for gross photosynthesis at 31°C
(Collier et al., 2017) and vegetative growth at 27°C (York

et al., 2013) throughout much of NZ.

Furthermore, SSTa, which is strongly related to marine

heatwaves, rarely related with loss of seagrass extent, sug-

gesting a lack of negative effects from more abrupt and

short temperature spikes. Previous laboratory studies of

Z. muelleri have demonstrated strong resilience to high

temperatures, such as the ability to maintain productivity

at 35°C (Collier et al., 2018), tolerance up to 30°C before

biomass reduction (York et al., 2013) or tolerance up to

33°C before photosynthetic deterioration (Collier

et al., 2011). In concert, our results combined with past

findings suggest that Z. muelleri meadows in NZ may

increase in extent under future warmer conditions, partic-

ularly in central and southern NZ (assuming other

stressors, like eutrophication, do not increase), as also

Figure 5. Summary of multiple linear regression tests (slopes) of six seascape metrics (A–F) versus monthly SST anomaly for 20 estuaries arranged

from northern (top) to southern (bottom) latitudes. See Table 1 and Figure 1 for details and abbreviations of individual estuaries. SST, sea surface

temperature.
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demonstrated and predicted for Australian populations

(Collier et al., 2018; Nguyen et al., 2020). More generally,

future warming and stronger heatwaves will likely cause

‘tropicalization’ of NZ estuaries, bringing new winners

and losers (e.g., of facilitators, herbivores and diseases)

and may thereby cause cascading seagrass reconfigurations

(Hyndes et al., 2017; Nguyen, Ralph, et al., 2021). In

other words, although Z. muelleri may tolerate or benefit

from future heatwaves, associated species, like inverte-

brates and fish, could be negatively affected (Smale

et al., 2019). For example, the ubiquitous co-occurring

habitat-forming cockle, Austrovenus stutchburyi, is likely

to suffer from stronger and more frequent warming-

induced hypoxia events (Salmond & Wing, 2022) with

potentially complex impacts on the ecology of NZ sea-

grass meadows (Thomsen et al., 2016). These scenarios

suggest that some ecosystem functions of seagrass ecosys-

tems in NZ may still deteriorate from restructuring under

warmer conditions.

Still, we did observe a few seagrass losses associated

with SSTa and coincident with the 2017/18 marine heat-

wave, particularly in Nelson Haven, but it is possible that

covarying factors could have caused this temporary loss,

as the thermal tolerance of Z. muelleri indicate that SSTa

may not be the causal driver of seagrass loss. For exam-

ple, Nelson Haven is classified with ‘moderate-high’ vul-

nerability to stressors other than temperature and may

have experienced declining water quality, like increasing

sediment loading and eutrophication (Stevens & Robert-

son, 2017). Furthermore, while photosynthetic rates of Z.

muelleri remain positive at high temperatures approaching

its thermal limit, optimal light conditions are still

required (Collier et al., 2011), that is, Z. muelleri may not

benefit from warmer temperatures if water quality is

poor. Indeed, historical declines in NZ seagrasses have

typically been attributed to increased sedimentation,

eutrophication, and possible competition from algal

blooms (Siciliano et al., 2019; Thomsen et al., 2016;

Turner & Schwarz, 2006; Zabarte-Maeztu et al., 2022).

These studies suggest that localized human stressors may

be more important direct causes of seagrass declines than

warming and/or could amplify warming effects.

Co-occurring algae, limitations, and
opportunities

The increased extent of seagrass in the Avon Heathcote

Estuary with increasing SSTa potentially reflects a positive

response to temperatures approaching Z. muelleri’s ther-

mal optima. However, the green algae Ulva spp. co-

occurs with Z. muelleri in this estuary (Siciliano

et al., 2019; Thomsen et al., 2016, 2020) and could have

contributed to increased detection of green reflectance

that contaminates the spectral response of seagrass (Ram-

sey III et al., 2012). However, our many field observations

from the estuary indicate that Ulva within the analyzed

spatial polygon rarely forms monospecific and indepen-

dent patches but instead is found entangled around sea-

grass shoots (i.e., the presence of Ulva would thereby

increase the likelihood of detecting true seagrass patches;

Siciliano et al., 2019; Thomsen et al., 2016, 2020). More-

over, our satellite analyses were complemented by per-

centage cover data derived from close-up photographs

and high-quality drone images where seagrass and Ulva

are easy to distinguish (Figure S6) as well as published

seagrass habitat maps (Table S2) which all show domi-

nance of seagrasses compared with ephemeral Ulva. We

also note that the estuaries where the warming predictors

were significant also had relatively low algal cover

(Figure S6); that is, our results are unlikely to be affected

by algae. Nevertheless, the presence of co-occurring green

algae highlights the importance of collecting field-based

ground truth data.

Another study limitation is that pixels represented sea-

grass presence, not density, and that fragmentation and

aggregation implied simple expansion or contraction of

binary seagrass patches (detected with a cutoff related to

the strength of seagrass spectral response; Cuevas

et al., 2021; Lyons et al., 2012). However, future studies

could instead incorporate analysis of densities by applying

bio-optical algorithms to predict density from greenness

(Dierssen et al., 2003; Hill et al., 2014; Lebrasse

et al., 2022) or by implementing more detailed ground

truthing targeting different percent cover and discretely

designating them as classes for training and classification

(Martin et al., 2020). Such detailed ground truthing is,

however, labor-intensive, but some local managers do reg-

ularly measure percent cover of seagrass in field-based

monitoring programs (e.g., Crawshaw, 2020; Stevens &

Forrest, 2020). Moreover, since estuaries have different

topographies, tidal flow, catchment characteristics and

local anthropogenic stressors, like sedimentation, future

examination of seagrass seascape metrics could analyze

the influence of all these attributes, many of which can be

derived from satellite imagery (Chefaoui et al., 2016).

Lastly, radiometric inconsistencies in multidate Planet-

Scope scenes have been reported that affect classification

accuracy (Frazier & Hemingway, 2021; Wicaksono

et al., 2022). However, the new Sentinel-harmonized

image products used here show improved radiometric

consistency across the sensor constellation as indicated by

our evaluation of images from the same geographic loca-

tion collected by different sensors on the same day (R.

Zimmerman, unpublished). However, a rigorous evalua-

tion of radiometric consistency of these newest products

is beyond the scope of this paper. Despite these

12 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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limitations, as well as those imposed by co-occurring

algae, cloud cover, limited spectral resolution, tidal eleva-

tion, and lack of control of temporal sampling scheme,

our analysis still demonstrated that satellite-based

methods can provide quantitative maps of seagrass

meadows in turbid estuaries useful for both research and

management applications. Thus, optimization and autom-

atization of remote sensing data, including integration

with artificial intelligence tools and species distribution

modeling, for application in seagrass ecology would pro-

vide much improved information about the spatiotempo-

ral dynamics of estuarine seagrasses.

Conclusions

Our analyses highlighted that intertidal and shallow subti-

dal seagrass meadows from turbid estuaries in NZ are

dynamic in areal extent, individual patch sizes and patch

configurations, across sites, seasons, and years and that

SST and SST anomalies are potential drivers of many sea-

scape changes, because seagrass extent in some estuaries

was positively associated with these thermal predictors.

Furthermore, the marine heatwave did not appear to

drive significant seagrass loss which could be a sign of

stability or resilience. However, the interaction between

seagrass metrics and the tested environmental drivers is

likely complicated by local conditions. Hence, we empha-

size that fine-scale local water quality data would be valu-

able to detect which factors drive seagrass configuration.

Nonetheless, despite methodological limitations, like

inability to differentiate seagrass from green algae, and

potentially poor detection of the sparsest seagrasses, the

remote sensing workflow used here offers a powerful tool

to analyze temporal changes across multiple spatiotempo-

ral scales with lesser efforts. This study could provide a

baseline for methodological optimization and to guide

future monitoring of seagrasses to better detect impacts

from increasing anthropogenic stressors and climate

change.
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