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Transfer Learning using Infrared and Optical Full Motion Video Data 
for Gender Classification 

Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin
Electrical and Computer Engineering Dept., Old Dominion University, Norfolk, VA, USA 23529 

ABSTRACT 

This work is a review and extension of our ongoing research in human recognition analysis using multimodality motion 
sensor data. We review our work on hand crafted feature engineering for motion capture skeleton (MoCap) data, from 
the Air Force Research Lab for human gender followed by depth scan based skeleton extraction using LIDAR data from 
the Army Night Vision Lab for person identification. We then build on these works to demonstrate a transfer learning 
sensor fusion approach for using the larger MoCap and smaller LIDAR data for gender classification.   

Keywords: security, gender recognition, person re-identification, motion capture, LIDAR, transfer learning, small data, 
deep learning 

1. INTRODUCTION
The ODU Vision Lab has ongoing work in gender classification and person classification using optical and infrared 
special purpose sensors [1-5]. Infrared sensors compliment the abilities of visual range sensors for human subject 
analysis including face recognition [6-9], action recognition [10-14], and gender [15-20] and identity [20-26] 
recognition. These sensors may be deployed in the field with a small amount of training data available to establish 
recognition models. Our group began this project using motion capture (MoCap) data collected at the Air Force 
Research Lab. Our initial work used feature engineering to capture human motion gait signatures in walking data that are 
used to classify gender in walking and running subjects [1, 5]. Using kinematic features, this work was extended for 
gender classification in asymmetric limp and aperiodic throwing actions [4]. We also analyzed an infrared LIDAR 
dataset collected at the Army Night Vision Lab. Using novel silhouette, gait, and depth features we extract a skeleton 
representation that resembles the MoCap skeleton [2]. We also used this small LIDAR dataset to learn identity by 
augmenting the data with generative adversarial network samples [3].  

In this work we train a deep network to perform gender classification using data from MoCap to pretrain a deep model 
for the LIDAR data. Typically, deep learning requires a large dataset of training data to prepare a deep model with a 
large number of initially unknown parameters. In real world situations with special purpose sensors, there may not be a 
practical way to gather large datasets. However, deep learning can still be applied in these cases through transfer 
learning. We demonstrate a use case of transfer learning by using MoCap to learn a gender classification model that is 
transferred to the infrared LIDAR domain for a comparable gender classification task. Infrared LIDAR is a depth and 
intensity sensor that can measure a point cloud using time-of-flight of a laser and can also generate an infrared intensity 
image based on magnitude of reflected laser light. This sensor data was provided by the Army Night Vision and 
Electronic Sensors Directorate. MoCap data provides 3D video in a controlled setting where subjects walk in straight 
lines. The MoCap data is relatively low noise and contains many samples at a high frame rate. The LIDAR data has 
several kinds of challenging noise artifacts and has lower frame rate. Therefore, MoCap data is used to improve the 
gender recognition ability for LIDAR data. The ability to classify subject gender is one of many tasks that can help a 
real-world security effort to recognize or analyze human identity and behavior. This work continues an effort by our lab 
[1-5] to analyze human subject data using special sensors including MoCap and LIDAR.  

2. BACKGROUND
The advances in deep learning training algorithms are understood to have been enabled by high performance parallel 
computer processing and collection of large datasets. Crowd sourcing and brute force labeling have been employed to 
generate extremely large datasets for image and video understanding problems. In addition, special purpose sensors can 
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be employed in a constrained environment to collect a dataset for training a deep learning model. These models can 
subsequently be deployed in real-world environments. However, in many cases collection of large datasets is not 
practical.  
 
Small data learning can be divided into two approaches. Machine learning based on handcrafted features, and deep 
learning based on automated feature (representation [27]) learning. In prior work [2], we established the potential for 
skeleton extraction using the information rich data modality, LIDAR, and applied the extracted skeletons for human 
identification. In addition [2], we apply a matrix completion algorithm to estimate the position of occluded human limbs. 
There is a body of existing work using LIDAR with deep learning method. Given a larger dataset such as LIDAR or 
other 3D data, a deep learning model can be trained [28-30]. Our given dataset is small, consisting of 10 subjects with a 
total of 5326 frames of walking activity. There is also existing work using handcrafted features with LIDAR and other 
3D data. In [31] the authors extract silhouette features from LIDAR for pedestrian detection. In [32] the authors 
compliment silhouette with other features from LIDAR for object recognition including pedestrians. In [33] several 
handcrafted features are compared for human identification. Gait analysis is performed by other authors using motion 
capture data for human subjects [1, 5, 34]. We demonstrate in [2] that using motion capture type skeleton representation 
for feature extraction combined with occlusion completion improves human identification performance with our small in 
house LIDAR data, in comparison to existing human identification work. Using the data rich LIDAR modality, we 
extract a skeleton representation for robust small data learning. In this work, we approach a small data learning problem, 
but now we apply deep learning methods.  
 
There are four main techniques that allow deep models to be trained on small datasets. First is synthetic data generation 
[35-37]. If meaningful data can be artificially computer generated, this can reduce the need for timely manual collection 
and labeling. Second is model regularization. This is used to fit the model complexity to the amount of data available, 
such as the dropout method [38]. Neither synthetic data nor model regularization solve the problem of having an 
incomplete picture of the target distribution due of small data. The next two methods use large datasets related to the 
target small dataset to try and reduce the space of distributions (constrain or place a prior on the problem) using 
information gained from the adjacent domain. Transfer learning is one such method [39]. A deep learning model can 
first be trained on a large, similar dataset to learn a related problem distribution, or prior. Then the model can be further 
updated by training on a dataset from the target domain, thereby learning a posterior distribution. Transfer learning can 
be combined with data augmentation as in [40]. The other method is unsupervised learning [41]. This takes unlabeled 
data, which may be far less expensive to acquire than labeled data and learns underlying trends in the distribution. This 
information can be applied next to a model that performs a classification activity with a small subset of the data with 
labels.  
 
In this work we demonstrate hand crafted feature engineering for MoCap skeleton data from the Air Force Research Lab 
for human gender recognition in walking, running, limping, and throwing. Next, we develop a LIDAR skeleton modality 
from raw LIDAR data from the Army Night Vision Lab. This extracted 3D skeleton is initially used for human 
identification. The LIDAR skeleton is then used with a generative network to augment the dataset and perform human 
subject identification. Finally, the MoCap skeleton is used in transfer learning as a larger dataset to transfer knowledge 
to the smaller LIDAR dataset for gender classification.  
 
 
 

3. METHOD 
This work builds upon related ongoing works at the ODU Vision Lab [1-5] in multimodal image based learning for 
human subject classification tasks. The first two projects in section 3.1 and section 3.2 are based on a MoCap dataset 
collected at the Air Force Research Lab. These MoCap videos give the 3D location of 31 locations or joints of the 
human subject. This data was used to develop models for gender classification in walking, running, limping (asymmetric 
action), and throwing (aperiodic action). The next two projects add an Army Night Vision Lab LIDAR video dataset 
giving 3D depth scans of human subjects walking in front of an infrared laser. Section 3.3 describes a novel algorithm 
for skeleton data extraction to emulate MoCap data using the depth scans. These LIDAR skeletons are used for person 
re-identification. Section 3.4 describes training a generative model using the extracted LIDAR skeleton data to create 
synthetic examples for improving classification accuracy with our small LIDAR skeleton dataset. Finally, section 3.5 
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describes the latest work using the larger Airforce MoCap skeleton data in transfer learning to fuse MoCap and LIDAR 
image modalities to improve the accuracy of gender classification from the smaller Army LIDAR skeleton dataset.  
 
3.1 MoCap Gender Recognition in Periodic Walking and Running 

The initial work [1, 5] in gender analysis used skeleton data collected using MoCap sensors at the Air Force Research 
Lab. Fig. 1 shows an example of a MoCap data frame from the video sequence. The skeleton data takes the form of a 93-
dimensional vector for each frame in time. This contains the information from 31 motion capture location markers 
attached to the human subject in 3D space. In [1] principal component analysis (PCA) is used to reduce the dimension of 

the data for the videos for each subject. The PCA weights features from non-pathological gait studies [42, 43] based on 
the statistical significance in relation to gait analysis as shown in table 1. The size of each skeleton is normalized so that 
gender classification is not biased by skeleton height. Periodicity information including FFT frequency and phase  
 

Table 1. Features extracted for asymmetrical limping and aperiodic throwing actions [1]. 

Feature Statistical p-Value 

Cadence: Steps per minute 0.03 

Step Width: Gap between the feet 0.046 

Pelvic Obliquity: Pelvis range of motion along the 
frontal plane 

0.003 

Torso Sway: Torso range of motion 0.01 

Shoulder Excursion 0.044 

 
information is appended to the vector to add motion information for each subject. Different classifiers are applied 
including linear discriminant analysis (LDA) and support vector machine (SVM) and nonlinear SVM. Finally, features 
are selected from body part groupings to determine if certain skeleton joints are more representative of the gender 
specific gait. This gait based identification work is expanded in [5] where a more challenging action of running subject 
are studied using similar features derived from PCA with linear classifiers LDA and SVM and nonlinear classifiers SVM 
with modified kernel and decision stump with AdaBoost. In that work it is found that linear classification is sufficient for 
gender recognition using these gait-based skeleton features.  
 

 
                  Fig. 1a MoCap Skeleton Frame [1]                                       Fig 1b LIDAR Skeleton Frame 
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3.2 MoCap Gender Recognition in Asymmetrical Limping and Aperiodic Throwing 

The next part of our work [4] uses the same skeleton dataset for gender classification, but changes the underlying action 
of interest from walking and running to asymmetrical limping and aperiodic throwing actions. Kinematic features for 
throwing based on angles and velocities of the upper body throwing arm are extracted. Features for limping focusing on 
lower body and gait cycle that are also extracted. After these kinematic features are identified and collected, a short list 
of statistical features including mean, median, maximum, minimum, standard deviation, variance, sum of values, and 
length is calculated. An addition longer list is calculated using the python library tsfresh. The following machine 
learning models are applied to subsets of the features: SVM, SVM with radial basis function (RBF), decision tree, 
decision tree with AdaBoost, and K-nearest neighbor. Regular SVM (without RBF) gives the highest accuracy for both 
throwing and limping. The best feature subset for throwing returns 99.75% gender classification accuracy. The best 
feature subset for limping returns 98.53% gender classification accuracy.  
  

3.3 LIDAR data skeleton extraction and human identification 

The next step our group took was to examine a LIDAR dataset of depth scanning of human subjects. Many other groups 
performing depth analysis of human subject motion are focusing on Kinect depth sensors. The advantage of our sensor is 
the range of operation is increased from 11.5 feet for Kinect to 60+ feet for the LIDAR from the Army Night Vision 
Lab. This is a great advantage for security applications where distance of perception is an important factor.  
 
Taking inspiration from the MoCap skeleton data modality, we developed a computational model for skeleton extraction 
from LIDAR video. Fig 1a. gives an example of the MoCap skeleton and Fig 1b. the LIDAR skeleton. This model 
begins with a novel silhouette extraction algorithm using the depth and intensity scans of a human subject. It is based on 
a set of 4 proposed silhouettes that successively eliminate different components of the LIDAR noise as shown in Fig 2. 
Next walk direction vectors are extracted using the silhouette for side-to-side motion and the depth scan for back-and-
forth motion. These extracted 2D walk vectors give an idea of the orientation of the walking subject. Next the walk is 
decomposed into phases based on the orientation of the subject’s legs, arms, and body as a whole. A phase specific 
algorithm is used to extract the lower and upper arms, lower and upper legs, and spine and head. Using the phase 
information and a novel combination of morphological operations and constrained Hough transform in the silhouette 
space, and augmenting with depth information, 13 joints in total are extracted in 3D space over each frame as shown in 
Fig 1b. These joints are used to extract bone length, which can overcome a scenario where a subject is trying to mask 
their identity, as bone length cannot be easily faked. Using the skeleton and silhouette features together, an SVM is able 
to perform 91.69% identity recognition in a gallery of 10 subjects. 
 

 
Fig. 2 Silhouette Extraction from LIDAR [2] 
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3.4 Synthetic Data Augmentation for LIDAR Skeleton Human Identification 

The LIDAR data is next used to train a deep network called Hierarchical Co-occurrence Network (HCN) [44]. An 
augmented dataset is developed using generative adversarial network (GAN) for human re-identification [3]. The GAN 
generator and discriminator architectures are shown in Fig. 3. Using a 50% synthetic dataset, we are able to increase 
accuracy from 74.49% baseline to 78.22% accuracy on 10 subject gallery in LIDAR data. This demonstrates that deep 
networks can be improved for small data modeling using data augmentation.  
 

 
 
3.5 Transfer Learning using MoCap Skeleton and LIDAR Skeleton Data 

In addition to data augmentation, transfer learning is another paradigm that can be used to apply deep networks to 
smaller datasets. The LIDAR data is challenging for the following reasons: The data contains different noise artifacts 
and even some dead pixels. The intensity returned is grayscale for a single laser frequency being reflected. The ground 

 
Fig. 3 GAN Generator and Discriminator [3] 
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truth is not labeled for the joint locations, which prohibits supervised learning. The dataset is small with only 5326 
frames in total for all 10 subjects. Lastly, the resolution is small at 128x128 pixels with human subjects at a distance in 
the field of view. The MoCap dataset is a larger dataset with less noise than the LIDAR data. We pre-train the HCN 
convolutional neural network on MoCap data to perform gender classification in walking data. Then the LIDAR data is 
used to fine tune the HCN deep network. The MoCap data is pretrained on gender classification using 10-fold cross 
validation. For each fold, after the MoCap data is used for pretraining the HCN, the LIDAR dataset is then used for fine 
tuning. After both experiments are complete, we obtain 10 results for 10 folds MoCap, each with a train/test LIDAR 
90/10 split. Both pretraining and fine-tuning are run for 100 epochs. The same is repeated for a simple CNN with just 
two convolutional layers because of small datasets in this study. The results and discussion of this combined experiment 
are given as follows.  
 

4. RESULTS AND DISCUSSION 
First, we present the results for 10-fold cross validation on the HCN model. For MoCap training, we obtain a 10-fold 
average of 81.80% gender classification accuracy +/- 3.13 standard deviation. For MoCap testing, we obtain 61.82% +- 
20.94. Figure 4a shows the loss curve for the first fold of MoCap training. Figure 4b gives the training accuracy for the 
same fold. When we use a 90/10 split for training and testing using LIDAR dataset, we obtain training accuracy of 
95.63% +/- 0.44% over the 10 folds from MoCap pretraining. The testing accuracy over the same folds is 93.04% +/- 
1.56%. Figure 5 gives the loss curve and accuracy curve for the LIDAR training, respectively.  
 
Next for a simple CNN, we report complimentary transfer learning results for the LIDAR dataset. For MoCap training, 
we obtain 10-fold average of 98.34% gender classification accuracy +/- 0.68 standard deviation. For MoCap testing, we 
obtain 77.57% +/- 16.01. Figure 6a gives the loss curve for the first fold of MoCap training. Figure 6b shows the training 
accuracy for the same fold.  When we use a 90/10 split for training and testing using LIDAR dataset, we obtain training 
accuracy of 96.92% +/- 0.99% over the 10 folds from MoCap pretraining. The testing accuracy over the same folds is 
95.63% +/- 0.94%. Figure 7 gives the loss curve and accuracy curve for the LIDAR training. 
 
As shown in Figs. 4 and 5 the HCN training curves are very jagged. This is possibly due to the higher model complexity 
of HCN. In Figures 6 and 7 the simple CNN training curves are relatively smooth for the small parameter network. We 
also notice that the MoCap data for pretraining has a larger distance between training and testing accuracy for both HCN 
and simple CNN. Finally, we report ROC curves for HCN and CNN on the fine-tuned LIDAR models in Figure 8. We 
note that the lower complexity simple CNN model gives better true positive rate for lower false positive rates.  
 
 

HCN Training Loss and Accuracy on MoCap Pretraining 

 
                            Fig 4a. MoCap Training Loss                                                   Fig 4b. MoCap Training Accuracy 
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HCN Training Loss and Accuracy of LIDAR Fine Tuning 

 
                               Fig 5a. LIDAR Training Loss                                                          Fig 5b. LIDAR Training Accuracy 
 

Simple CNN Training Loss and Accuracy on LIDAR Fine Tuning 

           
                            Fig 7a. LIDAR Training Loss                                                   Fig 7. LIDAR Training Accuracy 
 

Simple CNN Training Loss and Accuracy on MoCap Pretraining 

           
                            Fig 6a. MoCap Training Loss                                                   Fig 6b. MoCap Training Accuracy 
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5. CONCLUSION 
In summary, this work is a continuation of an effort by the ODU Vision Lab to analyze human skeleton for gender and 
re-identification. We began with MoCap skeleton data collected by the Air Force Research Lab. Using feature 
engineering, we are able to extract information used to classify gender of walking and running subjects. Continuing this 
work, we selected asymmetric limping and aperiodic throwing to broaden the type of actions in performing gender 
classification. Next, we add LIDAR data collected from the Army Night Vision Lab. We are able to extract human 
skeletons using novel silhouette and depth feature extraction. The LIDAR skeletons are used to perform person re-
identification. Next, the human skeleton extracted from the LIDAR is used to train a GAN. This augmented data 
improves classification performance in a re-identification deep network. Finally, using the larger MoCap data, we 
pretrain a HCN network and fine tune with LIDAR to perform human gender classification. We have used these two 
datasets with several techniques aimed at small data including feature engineering, data augmentation, and transfer 
learning a deep model. In future work we plan to expand the LIDAR dataset, as it currently contains only one female 
subject, albeit across multiple videos. The MoCap data is better balanced with nearly a 50/50 split in gender. In the 
future we also believe we can obtain improved results by training for more epochs, as the training curve does not reach 
any plateau currently in the MoCap pretraining. We believe this body of work can serve as inspiration for the many 
approaches that can be taken with a novel dataset to generate interesting models for a variety of recognition tasks, 
especially for security domain.  
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ROC Curves for LIDAR Fine Tuning 

            
                                 Fig 8a. HCN ROC                                                                        Fig 8b. Vanilla CNN ROC 
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