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Class Activation Mapping and Uncertainty Estimation in Multi-Organ 

Segmentation  

 
M. S. Sadique, W. Farzana, A. Temtam, K. M. Iftekharuddin* 

Vision Lab in Department of Electrical and Computer Engineering, Old Dominion University, 

Norfolk, VA 23529 

ABSTRACT 

Deep learning (DL)-based medical imaging and image segmentation algorithms achieve impressive performance on 

many benchmarks. Yet the efficacy of deep learning methods for future clinical applications may become questionable 

due to the lack of ability to reason with uncertainty and interpret probable areas of failures in prediction decisions. 

Therefore, it is desired that such a deep learning model for segmentation classification is able to reliably predict its 

confidence measure and map back to the original imaging cases to interpret the prediction decisions. In this work, 

uncertainty estimation for multiorgan segmentation task is evaluated to interpret the predictive modeling in DL solutions. 

We use the state-of-the-art nnU-Net to perform segmentation of 15 abdominal organs (spleen, right kidney, left kidney, 

gallbladder, esophagus, liver, stomach, aorta, inferior vena cava, pancreas, right adrenal gland, left adrenal gland, 

duodenum, bladder, prostate/uterus) using 200 patient cases for the Multimodality Abdominal Multi-Organ 

Segmentation Challenge 2022. Further, the softmax probabilities from different variants of nnU-Net are used to compute 

the knowledge uncertainty in the deep learning framework. Knowledge uncertainty from ensemble of DL models is 

utilized to quantify and visualize class activation map for two example segmented organs. The preliminary result of our 

model shows that class activation maps may be used to interpret the prediction decision made by the DL model used in 

this study. 

Keywords: Uncertainty estimation, multi-organ segmentation and prediction, knowledge uncertainty, activation map  

 

1. DESCRIPTION OF OBJECTIVE 

One of the problems with modern deep neural networks is that they are poorly calibrated and tend to rely too heavily on 

predictions with inherent uncertainty [1]. There are different techniques to improve estimates of predictive uncertainty. A 

classical approach is called temperature scaling, where the model confidences are scaled using a post-hoc procedure on 

the retained validation set [2]. A popular approximate Bayesian approach is a dropout-based model, where the predictive 

uncertainty is computed based on multiple model outputs on a given image (with dropout enabled) [3]. Another 

sampling-based approach uses the agreement between a set of models as a measure of model uncertainty [4]. 

Interestingly, the use of ensembles has been shown to produce the best results in estimating uncertainty under 

distribution change [5,6]. The common configuration of ensembles is to use neural networks trained using different 

random initialization weights to induce diversity among the models [7]. This is because networks pretrained on the same 

dataset have been shown to stay in the same catchment in the loss landscape and thus reduce variation in the models [8].  

In deep learning, dropout is designed as a regularization technique and can also be interpreted as an ensemble of multiple 

models [9]. The realization that dropout could be used to effectively quantify uncertainty [10] motivated a further 

exploration of ensembles in deep learning models for the same purpose. Deep ensembles have been shown to outperform 

Monte-Carlo (MC) dropout in quantifying uncertainty in a variety of datasets and tasks in regression and classification 

[11]. Additionally, deep ensembles have been shown to be state-of-the-art in out-of-distribution settings (e.g., 

perturbations of the data or the introduction of new classes unseen during training). They outperform MC dropout and 

other methods [12]. The reason why deep ensembles perform so well in out-of-distribution settings is that their weight 

values and loss trajectories are very different from one another, and, as a result, they lead to diverse predictions [13]. 

 

This work examines ensemble-based uncertainty-estimation for deep learning models. The contributions are as follows. 

First, we consider generating ensembles using different nnU-Net variants (2D, 3D full resolution, 3D low resolution and 

3D cascade) for multi-organ segmentation. Second, we compute the total uncertainty (TU) and knowledge uncertainty 

(KU) from the softmax probabilities to predict the organs with highest accuracy. Third, to understand the attributes of  
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using ensembles-based uncertainty estimation in our models, we conduct extensive analysis associated with the highest  

and the lowest knowledge uncertainty values for different cases. Finally, we apply class activation maps technique to 

examine predictive uncertainty in two example organ classes and discriminative image regions used by our DL model to 

identify a specific class in the image.  

 

2. METHODOLOGY 

2.1 Datasets 

 
For this study, we use the datasets provided by Multi-Modality Abdominal Multi-Organ Segmentation (AMOS) 

Challenge 2022 .The AMOS Challenge 2022 Task I provides a total of 200 CT scans with voxel-level annotations of 15 

abdominal organs including the spleen, right kidney, left kidney, gallbladder, esophagus, liver, stomach, aorta, inferior 

vena cava, pancreas, right adrenal gland, left adrenal gland, duodenum, bladder, prostate/uterus for training cases and 

100 CT scans for the validation phase are presented [14]. 

 

2.2 Semantic Segmentation 

 
Semantic segmentation can be viewed as a pixel-wise classification problem where the goal is to assign to each pixel a 

predicted category c ∈ {1, ..., C}. As it is now common in the visual recognition area, semantic segmentation models are 

mostly based on Convolutional Neural Networks (CNNs), for example, UNet [15]. Many different DL architectures have 

been developed for medical image segmentation. In our work, we use state-of-the-art nnU-Net which is an open-source 

tools [16,17,18,19]. The abdominal CT images are used for training each configuration of the nnU-Net with five-fold 

cross-validation. A more detailed overview of the performance scores for all organs and different DL configurations are 

provided in Table 1. We use 2D, 3D_lowres, and 3D_fullres models and find the best configurations obtained from the 

cross validation on the training cases as an ensemble (ensemble 1: 2D and 3D_lowres, ensemble 2: 2D and 3D_fullres, 

and ensemble 3: 3D_lowres and 3D_fullres) to predict the validation cohort. We generate the segmented mask from 

different variants of nnU-Net configurations. 

 

 

Figure 1. Overall pipeline for class activation map and uncertainty estimation for multi-organ segmentation 
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2.3 Uncertainty Estimation 

Estimation of predictive uncertainty can be used to detect errors. Ideally, the model indicates a high level of uncertainty 

in situations where an error is likely to be made. That allows us to detect errors and take safer actions. Fundamentally, 

the choice of action may depend on why the model is uncertain. There are two main sources of uncertainty: data 

uncertainty (also known as random uncertainty) and knowledge uncertainty (also known as epistemic uncertainty).  

Knowledge uncertainty arises when the model receives input from a region that is poorly covered by the training data or 

far from the training data. In these cases, the model knows very little about this region and is likely to make an error.  
Estimating knowledge uncertainty requires a set of models. If all models understand an input, they will give similar 

predictions (low knowledge uncertainty). However, if the models do not understand the input, they are likely to provide 

diverse predictions and strongly disagree with each other (high knowledge uncertainty). 

Uncertainty represents the reliability of our inferences. Some statistics that proxy or approximate uncertainty include the 

softmax probability, predictive variance, and Shannon’s entropy of the softmax vector. Consider samples of softmax 

probabilities from models can yield different predictions.  Therefore, estimates of knowledge uncertainties can be 

obtained by analyzing the diversity of predictions. Consider an ensemble of softmax probabilistic models 

 sampled from the model’s predictions. Each model yields a different estimate of data 

uncertainty, represented by the entropy of its predictive distribution [20,21,22]. Uncertainty in predictions due to 

knowledge uncertainty is expressed as the level of spread, or disagreement of models in the ensemble. 

2.4 Activation Map 

Class activation maps may be used to interpret the prediction decision made by the DL methods. We apply Gradient-

weighted Class Activation Mapping (Grad-CAM) to visualize and interpret decisions from our DL-based models [23]. A 

class activation map for a particular category indicates the discriminative image regions used by the DL model to 

identify that category (e.g., Fig. 2).  

3. EXPERIMENTAL RESULTS 

 
We evaluate our model at two levels to estimate uncertainty: segmentation of multi-organ, and class activation mapping 

based on knowledge uncertainty. The 200 CT scans are used for training each configuration of our DL model followed  

 Table 1. 5-fold cross-validation on Training dataset 

 

 

 

 

 

 

 

 

 

 

 

 

Model Organs 2D 3D_fullres 3D_lowres 

3D_cascade_

fullres 

 

 

 

 

 

 

 

 

Training Dice 

5-fold CV 

Backround 0.9528 0.9595 0.9588 0.9588 

Spleen 0.945 0.9536 0.9557 0.9523 

Right Kidney 0.9364 0.9479 0.9477 0.9417 

Left Kidney 0.7898 0.8288 0.825 0.8028 

Gallbladder 0.8379 0.8434 0.8394 0.8071 

Esophagus 0.9692 0.9714 0.9741 0.9718 

Liver 0.8682 0.9027 0.9028 0.8893 

Stomach 0.9509 0.9542 0.9491 0.9419 

Aorta 0.8807 0.9102 0.9043 0.8938 

Inferior Vena 

Cava 
0.8192 0.8589 0.8448 0.8426 

Pancreas 0.7525 0.7861 0.763 0.7404 

Right Adrenal 

Gland 
0.7579 0.8009 0.7714 0.7469 

Left Adrenal 

Gland 
0.7567 0.8228 0.8053 0.78 

Duodenum 0.8692 0.8911 0.8926 0.8709 

Bladder 0.8077 0.8434 0.8386 0.8336 

Mean Dice Score 0.8596 0.885 0.8782 0.8649 
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by five-fold cross-validation. We generate the segmented mask from different variants of nnU-Net configurations. Table 

1 summarizes the results for 5-fold cross validation with mean Dice Similarity Co-efficient (DSC) for different 

configurations of nnU-Net (2D, 3D_fullres, 3D_lowres, 3D_cascade_fullres). We further compute the total uncertainty 

(TU) and knowledge uncertainty (KU) from the softmax probabilities of different class categories to understand the 

attributes of using ensembles-based uncertainty estimation in our models. We conduct extensive analysis associated with 

the highest and the lowest KU values for different patient datasets. 

Table 2. Total Uncertainty and Knowledge Uncertainty for each fold (mean) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 shows the mean value of total uncertainty and knowledge uncertainty for test cases in each fold for 5-fold cross 

validation for different DL (2D, 3D_fullres, 3D_lowres, 3D_cascade_fullres) models. To estimate total uncertainty, we 

calculate entropy of expected value of softmax probabilities from different models in the ensemble model and knowledge 

uncertainty is evaluated from mutual information which is the difference between total uncertainty (entropy of expected) 

and the expected entropy of each model in the ensemble. The range of total uncertainty and knowledge uncertainty is 0-

100 and the low value indicates lower uncertainty. However, as knowledge uncertainty provides insights into the 

disagreement in predictive probabilities of ensemble model for same test cases, we focus on knowledge uncertainty 

score.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Visualization of Activation Mappings for the two examples associated with Lowest and Highest Knowledge Uncertainty.  

(a) Image overlaid with predicted mask, Activation mapping for (b) Liver and (c) Right Adrenal Gland 

Fold Number Total Uncertainty (TU) % Knowledge Uncertainty 

(KU) % 

1 21.6308 

 

0.2305 

 

2 20.7892 

 

0.0063 

 

3 19.8342 

 

0.0078 

 

4 19.6178 

 

0.0097 

 

5 21.8820 

 

0.0056 
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We select two example cases with the highest and the lowest knowledge uncertainty scores, respectively. Consequently, 

for two example cases, we consider the predicted softmax probabilities for 16 abdominal organs and focus on the organs 

which have the highest and the lowest predictive probabilities. This yield liver (class 6) with the highest and right adrenal 

gland (class 11) with the lowest predictive probabilities. Figure 2 shows activation maps of predictions for fold 1 for the 

two example cases. The first row represents the case with high knowledge uncertainty while the second row depicts the 

case with low knowledge uncertainty. The second and third column represents the two organs (liver and right adrenal 

gland) with highest and lowest predictive probabilities for the two example organ cases. For the activation mappings we 

extract the context localization layers from our 2D DL model. Then we preprocess the input tensor and extract the 

corresponding class categories (Liver and Right Adrenal Gland) for visualizing the activation maps with GRAD-CAM.  

Note for the case with high knowledge uncertainty, the focus of the model presented by yellow and red pixels in the 

figure is not concentrated on the respective organs (liver and right adrenal gland). Hence, the model is more uncertain to 

make predictive decision. However, for the case with low knowledge uncertainty, the focus of the model (presented by 

yellow and red pixels) is localized to the two respective organs. these results show that activation map may be used to 

interpret the uncertainty of prediction decision made by the proposed DL model.  

 

4. DISCUSSION AND CONCLUSION 

 
This work represents that knowledge uncertainty from an ensemble of models for quantifying and managing uncertainty 

in our DL multiorgan segmentation framework. To understand the attributes of using ensembles-based uncertainty 

estimation in our models, we conduct analysis associated with the highest and the lowest knowledge uncertainty values 

for different class categories. In addition, we apply class activation maps technique to examine predictive uncertainty in 

two example segmentation organ classes obtained by our DL model. These results suggest the feasibility of explaining 

model uncertainty in prediction decision of DL segmentation models. 
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