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Key Points 2 

• Correlations between the Gulf Stream flow and coastal sea level along the U.S. East Coast occur 3 

over a wide range of time scales. 4 

• Geostrophic adjustment of the Gulf Stream could not be ruled out as one of the drivers of coastal 5 

sea level variability, but this driver may be overlooked in monthly altimeter data. 6 

• The Gulf Stream plays an important role in temporal rise of coastal sea level and unpredictable 7 

flooding post hurricanes. 8 
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Abstract  9 

Numerous recent studies found significant correlations between weakening of the Gulf Stream (GS) and 10 

rising coastal sea level (CSL) along the U.S. East Coast. Based on monthly altimeter data and Florida 11 

Current transport, Chi et al. (2023; here, CH23) argued that geostrophic adjustment of the GS is unlikely 12 

to drive variations in CSL in the Mid-Atlantic Bight (MAB). It is argued here that this conclusion cannot 13 

be universally applicable to all cases, since the monthly data disregard correlations previously found for 14 

short time scales based on hourly and daily data; the impact of GS variability on time scales of decades 15 

and longer as well as potential time lags between the GS and CSL variability were also not considered 16 

by CH23. Examples are given here to demonstrate the important role of the GS in post hurricane coastal 17 

flooding.     18 

 19 

Plain Language Summary 20 

Analysis of monthly altimeter data by Chi et al. (2023) interpreted to show that variations in the Gulf 21 

Stream (GS) transport can drive sea level variability only south but not north of Cape Hatteras. In 22 

contrast, it is shown here that the Gulf Stream plays an important role in short-term sea level variability, 23 

for example, causing an increase in flooding when the GS suddenly weakens following a nearby 24 

hurricane. It also should be noted that impact of decadal and longer GS variability could not be inferred 25 

from the relatively short altimeter data.     26 

 27 

1 Introduction  28 

Numerous studies addressed predicted climate-related weakening in the Atlantic Meridional 29 

Overturning Circulation, AMOC, and its potential consequences (Bryden et al., 2005; Ezer 2015; 30 

Rahmstorf et al., 2015; Caesar et al. 2018; Smeed et al., 2018; Ezer and Dangendorf, 2020; Pietrafesa et 31 

al., 2022). However, direct observations of AMOC are relatively short (<20 years) so studies often used 32 

reconstructions, proxies or numerical models to study long-term AMOC trends of the past or future 33 

AMOC under climate change scenarios. Since the Gulf Stream (GS) is part of AMOC and provides the 34 

main northward transport of mass and heat in the Atlantic Ocean, long-term weakening of the GS would 35 

cause significant disruption to weather systems and ocean circulation patterns, and potentially affect 36 

coastal sea level (CSL). However, because the GS system is dominated by mesoscale variability, 37 

meanders, eddies, and gyres, detecting long-term trends in the GS transport is still quite elusive, and 38 
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different trends are often found at different locations along the GS path (Andres et al., 2020; Zhang et 39 

al., 2020). Sea level rise and increased flooding along the U.S., East Coast of the U.S. is of great concern 40 

(Ezer and Atkinson, 2014; Sweet and Park, 2014; Wdowinski et al., 2016), so it is important to assess 41 

contribution to CSL from various processes such as AMOC, GS, wind pattern, Rossby Waves, etc. 42 

(Sallenger et al., 2012; Ezer and Corlett, 2012; Ezer et al., 2013; Goddard et al., 2015; Ezer, 2015; Ezer 43 

and Atkinson, 2014, 2017; Little et al., 2019; Ezer, 2019, 2020a, 2020b; Dangendorf et al., 2021, 2023). 44 

These studies indicate relation between different open ocean dynamic processes and the coast, and in 45 

particular, many studies found significant GS-CSL correlations on a wide range of time scales from 46 

daily to seasonal and decadal. One aspect of the GS-CSL connection is attributed to the geostrophic 47 

balance which implies that the sea level slope across the GS is proportional to the flow strength, so 48 

weakening GS could reduce the slope and raise CSL along the U.S. East Coast. Therefore, even though 49 

detecting long-term trends in the GS flow is challenging with existing data, relation between the GS and 50 

CSL on shorter time scales can help us understand the mechanisms involved.     51 

         To this end, Chi et al. (2023) (hereafter CH23) analyzed 27 years of monthly Gulf Stream (GS) 52 

transport at the Florida Straits and 10 satellite altimeter tracks across the GS and came up with two main 53 

conclusions. It is thus important to put their findings in the right perspective with respect to past studies:  54 

1. “…GS transport decorrelates quickly along its path, indicating it is misleading to assume 55 

that transport at a particular location represents strength of the GS as a whole.”. This 56 

conclusion is consistent with the fact that the GS system includes meanders and gyres, so 57 

observations show large differences in sections taken not far apart along the GS path (Andres 58 

et al., 2020). However, this result does not contradict any of the studies that found significant 59 

GS-CSL correlation, because those studies never used a correlation along altimeter track, as 60 

done here, but instead used averaged GS strength over large area from many altimeter tracks 61 

that filter out the mesoscale variability (e.g., Ezer at al., 2013; Ezer, 2019; Ezer and 62 

Dangendorf, 2020). 63 

2. “GS transport south of Cape Hatteras is significantly correlated with coastal sea level … 64 

North of Cape Hatteras, sea level changes associated with GS transport decay rapidly away 65 

from GS on the onshore side … In this region … coastal sea level is unlikely to be driven by 66 

geostrophic adjustment to changes in GS transport.” The fact that CSL responds to forcing 67 

differently north and south of Cape Hatteras is not new (Valle-Levinson et al., 2017; 68 

Domingues et al., 2018; Ezer, 2019), and partly explained by the fact that the GS flows close 69 
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to the coast in the South-Atlantic Bight (SAB) but is separated from the coast in the Mid-70 

Atlantic Bight (MAB). However, there is no evidence in CH23 that geostrophic adjustment 71 

does not play a role in CSL variability in the MAB, especially for time scales that were not 72 

resolved by CH23 analysis. For example, Ezer (2019) showed that on decadal time scales 73 

CSL in the MAB and the SAB are out of phase and may respond to GS variability in opposite 74 

way, while on shorter time scales CSL in the MAB and SAB are correlated. In fact, analysis 75 

of daily variations in the Florida Current transport or hourly tide gauge data show highly 76 

coherent CSL variations along the entire US East Coast, as seen in observations and in 77 

models (Ezer, 2016; Ezer and Atkinson, 2017). 78 

Examples of past studies below demonstrate why the findings of CH23 could not conclusively exclude 79 

GS-CSL relation based on geostrophic adjustment. In fact, CH23’s statement that “significant 80 

correlations between coastal sea level and the GS transport are rarely found north of Cape Hatteras” is 81 

not accurate given dozens of published papers that did find statistically significant correlations (see 82 

many of these examples in: http://www.ccpo.odu.edu/~tezer/FCvsSL/).  83 

  84 

2 On the Relation Between the Gulf Stream and Coastal Sea Level 85 

Based on both, tide gauge and altimeter data, Fig. 3a in CH23 shows significant negative 86 

correlation between the Florida Current transport (Baringer and Larsen, 2001; Meinen et al., 2010) and 87 

CSL along the U.S. East Coast from Florida to Massachusetts. Despite the fact that this result is 88 

consistent with many past studies (Park and Sweet, 2015; Ezer, 2016, 2019, 2020a, 2020b; Ezer et al., 89 

2013; Ezer and Atkinson, 2014, 2017; Wdowinski et al., 2018), CH23 tried to argue that mechanisms 90 

other than geostrophic adjustment, such as changing atmospheric conditions (Piecuch et al., 2016), may 91 

affect both the GS and CSL, so there is not necessarily a cause and effect relation between GS and CSL. 92 

It is true that several factors can contribute to CSL variability, but the impact of the GS cannot be 93 

dismissed. As a proof that there is a direct impact of the GS on CSL Ezer (2016) conducted controlled 94 

numerical simulations with fixed wind and time-dependent oscillations in the Florida Current transport, 95 

and the results show response of coherent CSL variations along the U.S. Coast, like those found in tide 96 

gauge observations. The simulations show that the response at the coast to wind-driven sea level is 97 

fundamentally different than the response to GS-driven sea level. Furthermore, numerical simulations of 98 

hurricanes (Ezer et al., 2017; Ezer, 2018; Ezer 2020a; Park et al., 2022) found that in the days after the 99 

hurricanes disappeared and wind was no more a factor, CSL remained higher than normal directly due to 100 

http://www.ccpo.odu.edu/~tezer/FCvsSL/
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a weaker GS that has not recovered yet from the disruption caused by the storm. Fig. 1 shows an 101 

example of sea level and flooding in Norfolk (North of Cape Hatteras) during and after hurricane 102 

Florence passed the region (it did not make landfall in Virginia). In this case, CSL was first raised by 103 

wind-driven storm surge (10-Sep-2018), but the hurricane also disrupted the GS flow (transport dropped 104 

by ~10sv), which caused CSL to rise again by ~0.5 m and cause tidal flooding two weeks later (25-Sep-105 

2018), driven by the weakening GS.  106 

 107 

 108 

Figure 1. Left: Example of the relation between hourly water level (colored lines) in Norfolk, VA, in the 109 

Mid-Atlantic Bight (southern Chesapeake Bay) and daily observed Florida Current (FC) transport (black 110 

heavy line), during and after the passage of hurricane Florence in September 2018. Blue, red, and green 111 

lines are predicted tides, tide gauge observations and the subtidal anomaly, respectively. Water level 112 

(left axis in m) is relative to the Mean Higher High Water (MHHW) and FC transport of maximum and 113 

minimum (in Sv; 1Sv=106 m3 s-1) are indicated. Right: Two weeks of “sunny-day” street flooding 114 

occurred in Norfolk due to weakening of the GS after the hurricane (picture taken by T. Ezer).   115 

 116 

Like Fig. 1, remote GS influence on CSL in the MAB has been recorded after hurricanes Sandy (2012), 117 

Joaquin (2015), Mathew (2016) and Dorian (2019). Altimeter data before and after storms show 118 

reduction of sea level slope along the entire GS path, which coincides with raised CSL along the entire 119 

MAB coast (see Fig. 4 in Ezer, 2018); these observations suggest that geostrophic adjustment to changes 120 

in the GS transport may be an important driver of CSL in those cases (though such mechanism cannot be 121 

detected by a monthly data, hence the results of CH23). There is also evidence that seasonal variations 122 

in the GS transport contribute to the seasonal CSL cycle in the MAB whereas the highest monthly CSL 123 
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of the year occurs when the seasonal GS has its maximum decline (see the high correlation between the 124 

two in Fig. 10c in Ezer, 2020b); since CH23 filtered out the seasonal signal, this contribution could not 125 

be captured by their analysis. 126 

Finally, trying to relate simultaneous observations of monthly GS transport and CSL ignores 127 

potential lag difference between the two. On interannual to decadal time scales Ezer et al. (2013) found 128 

that CSL has higher correlation with changes in GS flow (R=-0.85, p<0.001) than with GS strength 129 

itself (R=-0.58, p<0.001), i.e., CSL rises when the GS flow is in a downward trend, not necessarily when 130 

the GS is at its minimum transport. Ezer et al., (2013) also show that a simple solution of the equations 131 

of motion points to a mechanism in which time-changes in sea level slope across the GS can produce 132 

onshore/offshore transports that impact CSL variability. On hourly to monthly time scales Ezer and 133 

Atkinson (2017) also found significant correlation between CSL and changes in GS transport. The time 134 

lag between variations in the GS and the CSL response is near zero in the SAB when the GS is near the 135 

coast, but it is larger for the MAB where the GS is far from the coast and the coastal response is less 136 

direct (Ezer and Atkinson, 2017). In the MAB, recirculation gyres, the Slope Current from the north and 137 

shifting in the GS position, all can affect CSL, so the relation between the GS and CSL is more complex 138 

and more difficult to detect, especially with monthly data that ignores the largest instantaneous changes 139 

in the GS. Spectral analysis of daily transport of the GS and water level in Norfolk shows statistically 140 

significant coherence with near opposite phase (~180) for several different time scales from few days to 141 

months and years (see Fig. 3 in Ezer and Atkinson, 2017), demonstrating the complex nature of the GS-142 

CSL relation, which could not be captured by the monthly analysis of CH23. 143 

In summary, while several offshore dynamic processes can contribute to variations of CSL on a 144 

wide range of time and length scales, it is argued that geostrophic adjustment of the GS cannot be ruled 145 

out as one of the important factors that impact CSL along the U.S. East Coast (including the MAB). On 146 

the one hand the analysis of monthly data in CH23 could not explain correlations on short time scales, as 147 

demonstrated here, and on the other hand long-term coastal sea level rise and variability on decadal time 148 

scales associated with potential climate-related slowdown of ocean circulation could not be detected in 149 

the relatively short altimeter record. The acceleration in flooding due to sea level rise makes attempts to 150 

understand all potential forcing more important than ever. Many past events of sea level rise were 151 

unexplained by atmospheric forcing alone, pointing to the GS as an important factor that can raise CSL 152 

and cause additional flooding when it is weakening (Ezer and Atkinson, 2014). Prediction of potential 153 

acceleration of future floods (Ezer, 2022; Sweet et al., 2018) thus should not ignore the contribution of 154 
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the GS to CSL variability, even if all mechanisms involved are not fully understood. In any case, this 155 

area of research should continue with longer data sets as well as models.         156 
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